
Black-box equivalence checking across compiler
optimizations

Manjeet Dahiya and Sorav Bansal

Indian Institute of Technology Delhi,
{dahiya, sbansal}@cse.iitd.ac.in

Abstract. Equivalence checking is an important building block for pro-
gram synthesis and verification. For a synthesis tool to compete with
modern compilers, its equivalence checker should be able to verify the
transformations produced by these compilers. We find that the trans-
formations produced by compilers are much varied and the presence of
undefined behaviour allows them to produce even more aggressive opti-
mizations. Previous work on equivalence checking has been done in the
context of translation validation, where either a pass-by-pass based ap-
proach was employed or a set of handpicked optimizations were proven.
These settings are not suitable for a synthesis tool where a black-box
approach is required.
This paper presents the design and implementation of an equivalence
checker which can perform black-box checking across almost all the com-
posed transformations produced by modern compilers. We evaluate the
checker by testing it across unoptimized and optimized binaries of SPEC
benchmarks generated by gcc, clang, icc and ccomp. The tool has
overall success rates of 76% and 72% for O2 and O3 optimizations re-
spectively, for this first of its kind experiment.

1 Introduction

Equivalence checking is an important building block for program synthesis and
verification. For a target sequence, the synthesis tool generates many possible
optimized sequences and discharges the correctness check to the equivalence
checker. The checker returns a proof of equivalence or it fails. Because the prob-
lem is undecidable in general, incorrect failures are inevitable, i.e., the equiv-
alence checker can’t be both sound and complete. In the setting of program
synthesis and superoptimization, the checker must produce sound results: an in-
correct equivalence failure (incompleteness) would result in a potentially missed
optimization; on the other hand, a false positive (unsoundness) produces incor-
rect translation by the synthesis tool. Akin to compilers, a synthesis tool does
not have test cases or traces given to it, requiring that the underlying equivalence
checker be static. Another important difference from previous work on transla-
tion validation is that the equivalence checker is not aware of the exact nature of
transformations performed. The transformation is a black-box to the checker, and
the checker should be able to verify multiple composed transformations without
knowing about the actual transformations or their sequence.

Previous work on equivalence checking has been performed in the context
of translation validation. The goal of translation validation is to verify the cor-
rectness of a translation. This prior work has largely employed a pass-by-pass
based approach [14,26], where each pass is verified separately by the equivalence
checker, and/or worked with a set of handpicked transformations [14, 26, 37]. A
pass-by-pass approach simplifies the verification process by dividing a big step
into smaller and simpler steps, and the result is obtained by composing the re-
sults of individual steps. While this meets the objective of translation validation,
these are unsuitable settings for a synthesis tool, where the nature and sequence
of transformations are unknown. Note that an equivalence checker of a synthesis
tool can be used for translation validation, while the converse is not true. In
other words, the requirements on equivalence checking are stronger for synthesis
than for translation validation. We also find that the underlying algorithms of
previous techniques are not robust with respect to the transformations produced
by modern compilers, e.g., Necula’s TVI [26] fails when a simple if-block is re-
placed by a conditional move instruction (cmov). A detailed comparison with
previous work is available in Sec. 6.

For a synthesis tool to compete with modern compilers, its equivalence checker
should be able to verify the optimizations produced by these compilers. We find
that the transformations produced by these compilers are much varied and pres-
ence of language level undefined behaviour allows them to produce even more
aggressive optimizations. We present the design and implementation of an equiv-
alence checker which meets the requirements of a synthesis tool and can verify
the transformations produced by modern compilers. Our contributions towards
this goal are:

– A new algorithm to determine the proof of equivalence across programs.
The algorithm is robust with respect to modern compiler transformations
and in a black-box manner, can handle almost all composed transformations
performed by the modern compilers.

– New insights in equivalence checking, the most important being handling of
language level undefined behaviour based optimizations. Previous work had
disabled these optimizations, yet we find that these optimizations are very
commonly used in compilers. For example, our equivalence checking success
rates increase by 15%-52%, through modeling some important classes of
undefined behaviour. To our knowledge, we are the first to handle undefined
behaviour in equivalence checking for programs containing loops.

– Comprehensive experiments: we evaluate our implementation across black-
box optimizations produced by modern compilers gcc, clang, icc (Intel’s
C Compiler), and ccomp (CompCert). Our tool can automatically generate
proofs of equivalence, across O2/O3 compiler transformations, for 74% of
the functions in C programs belonging to the SPEC benchmark suite across
all four compilers. These results are comparable (and, in some cases, better)
to the success rates achieved by previous translation validation tools which
operated in much more restricted settings. This is a first of its kind experi-
mental setup for evaluating an equivalence checker. We have also successfully

tested a preliminary superoptimizer supporting loops, with our equivalence
checker.

2 Simulation relation as the basis of equivalence

Two programs are equivalent if for all equal inputs, the two programs have identi-
cal observables. We compute equivalence for C programs at function granularity.
The inputs in case of C functions are the formal arguments and memory (minus
stack) at function entry and the observables are the return values and memory
(minus stack) at exit. Two functions are equivalent if for same arguments and
memory (minus stack), the functions return identical return values and memory
state (minus stack).

A simulation relation is a structure to establish equivalence between two
programs. It has been used extensively in previous work on translation vali-
dation [14, 26, 28, 32, 41]. A simulation relation is a witness of the equivalence
between two programs, and is represented as a table with two columns: Loca-
tion and Relations. Location is a pair (L1, L2) of PC (program counter) in the
two programs and relations are predicates (P) in terms of the variables at these
respective PCs. The predicates P represent the invariants that hold across the
two programs, when they are at the corresponding locations L1 and L2 respec-
tively. A row ((L1, L2), P) of the simulation relation encodes that the relation
P holds whenever the two programs are at L1 and L2 respectively. For a valid
simulation relation, predicates at each location should be inductively provable
from predicates at the predecessor locations. Further, the predicates at the en-
try location (pair of entry points of the two programs) must be provable using
the input equivalence condition (base case). If the equivalence of the required
observables is provable at the exit location (pair of exits of two programs) us-
ing the simulation relation predicates, we can conclude that the programs are
equivalent.

Fig. 3a shows a simulation relation between the programs in Fig. 2a and
Fig. 2b. It has three rows, one each for entry (b0, b0’), exit (b4, b3’) and loop-
node (b1, b1’). The predicates at entry and exit represent the equivalence of in-
puts (formal arguments and memory) and outputs (memory state (minus stack))
respectively. The predicates at the loop-node are required for the inductive proof
of correctness of the simulation relation. The predicates represent the invariants
which hold across the two programs, e.g., the predicate iA = iB at loop-node
represents that the “i” variables of the two programs, at b1 and b1’ are equal.
Init represents the input equivalence conditions and Pre represents the precon-
ditions which can be assumed to be true for the programs; we model undefined
behaviour through such preconditions. The only observable of this function is
memory without the stack, as the function return type is void. The given sim-
ulation relation is valid and the predicates at the exit row can prove equivalence
of observables, i.e., MA =∆ MB .

This simulation relation based technique can only prove equivalence across
bi-similar transformations, e.g., it can not prove equivalence across the loop

int g[144]; int sum=0;
void sum_positive(int n) {
int *ptr = g;
for(int i = 0; i < n;

i++, ptr++) {
if (*ptr > 0)
sum = sum + *ptr;

}
}

Fig. 1: An example function ac-
cessing global variables g and sum.
Undefined behaviour if n > 144
(our algorithm would capture this
as preconditions).

ptr = g
i = 0

sum+=*ptr4

i++
ptr+=4

return

b0

N

Y

Y

N

b2

b3

b4

i < n

*ptr4>0
b1

(a) Unoptimized

ptr=g; i=0
r=sum

r+=*ptr4>0?
*ptr4 : 0

i++
ptr+=4

return

N

Y

NY

b0'

b1'

b2'

b3'

n > 0

i != n

sum=r

(b) Optimized

Fig. 2: Abstracted versions of unoptimized and
optimized implementations of the program in
Fig. 1. The ternary operator a?b:c represents the
cmov assembly instruction.

tiling transformation. Fortunately, most compiler transformations preserve bi-
similarity. Further, our notion of equivalence does not model constructs like non
termination, exceptions, interrupts and concurrency.

In contrast with checking the correctness of a simulation relation, construct-
ing the same is harder, and is in fact undecidable. The goal of our equivalence
checking algorithm (Sec. 4.3) is to try and construct a valid simulation relation
which can prove the equivalence. Before going into the details of the algorithm,
we show its working for the example program of Fig. 1.

3 An illustrative example

Fig. 2a, 2b show the abstracted, unoptimized (A) and optimized (B) versions, of
the program in Fig. 1. The optimized program has been compiled by gcc using
-O3 flag. While the programs are in x86 assembly, we have abstracted them into
C like syntax and flow charts for readability and exposition. The program has
undergone multiple optimizations like 1) loop inversion, 2) condition inequality
(i < n) to condition disequality (i 6= n) conversion, 3) usage of conditional move
instruction (cmov) to get rid of a branch, and 4) register allocation (sum is
written only once outside the loop). The last optimization is interesting, as it
assumes that ptr cannot alias with the pointer sum. Notice that n is unknown
and in general it is possible for ptr ∈ [g, g+4*n) to overlap with sum. And hence,
as such, the register allocation of global variable is not correct across the loop.
However, compilers commonly apply such transformations by relying on aliasing
based undefined behaviour assumptions. C specifies that an access beyond the
size of a variable is undefined behaviour. In this example, the semantics restrict
the value of ptr to lie within [g, g+4*144) and thus the compiler is free to
assume that ptr cannot alias with sum.

In our knowledge, no previous work can handle this transformation. All of
the previous work fail in proving this transformation correct, either due to one

or multiple optimizations (from the above four). There are three broad improve-
ments we make over previous work: 1) A robust algorithm for finding the corre-
lation of program points. Our algorithm is the first to be demonstrated to work
across black-box compiler transformations. 2) We present a systematic guess
and check based inference of predicates without assumptions on the transforma-
tions performed. Our careful engineering of the guessing heuristics to balance
efficiency and robustness is a novel contribution, and we evaluate it through
experiments. Previous translation validation approaches, which can make more
assumptions on the nature of transformations, did not need such a robust pred-
icate inference procedure. 3) We model C level undefined behaviour conditions.
Previous work on translation validation disabled transformations which exploit
undefined behaviour.

Our goal is to first model the undefined behaviour (preconditions) and in-
fer the simulation relation. Among all types of C undefined behaviour, aliasing
based undefined behaviour is perhaps the most commonly exploited by compilers
for optimization. In Fig. 1, the assumption that ptr and sum cannot alias with
each other is an example of aliasing based undefined behaviour. To model such
behaviour, we first need to reconstruct aliasing information from the compiled
code. The details on our alias analysis algorithm and generation of the related
undefined behaviour assumptions are available in [4]. In Fig. 1, alias analysis
determines that ptr may alias with global variable g, and as per C semantics,
ptr must always point within the region of g. This is represented by precon-
ditions: (ptr≥g) and (ptr<g+144*4). These preconditions are then used as
assumptions while discharging proof obligations at the time of determining the
correlation, and during the final simulation relation proof.

We now discuss how our algorithm computes a valid simulation relation; a
simulation relation is represented using a joint transfer function graph (JTFG)
(Sec. 4.2) which is constructed incrementally at each step. A JTFG represents a
correlation across nodes and edges of the two programs. A JTFG node represents
two PC values, one belonging to the first program and the other to the second
program. Similarly, a JTFG edge represents one control flow edge in the first
program and its correlated edge in the second program. Further, we assume
that for two edges to be correlated in a JTFG, they should have equivalent
edge condition, i.e., if one program makes a certain control transfer (follows an
edge), the other program will make a corresponding control transfer along the
respective correlated edge in the JTFG, and vice-versa. The individual edges of
an edge of a JTFG could be composite: a composite edge (Sec. 4.2) between two
nodes is formed by composing a sequence of edges (into a path), or by combining
a disjunction of multiple paths (an example of a composite edge involving a
disjunction of multiple paths is available in the following discussion).

Determining the correlation across program points and control transfers, is
one of the trickiest problems during the construction of a simulation relation.
Our algorithm proceeds as follows. We first fix the program points (PCs) and
composite edges in one program (say ProgB) and try to find the respective
correlated program points and composite edges in the other program (ProgA).

Location Relations (P)

(b0,b0’) nA = nB , gA = gB , sumA = sumB ,MA =∆ MB

(b1,b1’) sl4(MA, sumA) = rB , nA = nB , iA =
iB , sl4(MA, ptrA) = sl4(MB , ptrB), gA =
gB ,MA =∆∪sumB MB , ptrA = ptrB , sumA =
sumB , iB + 1 ≤ nB

(b4,b3’) MA =∆ MB

Init: nA = nB , gA = gB , sumA = sumB ,MA =∆ MB

Pre: gA ≤ ptrA < gA + 4 ∗ 144

(a) Simulation relation

b0,b0'

b1,b1'

b4,b3'

b3 b2'

b2

b3

b2

b2'

(b) JTFG

Fig. 3: Simulation relation (JTFG) for the TFGs in Fig. 5. Table shows the predicates
at each node and graph shows the correlation of edges and nodes of the two TFGs. Init
is the initial conditions representing equivalence of inputs. Pre is the preconditions
(undefined behaviour). =∆ represents equivalent arrays except ∆; ∆ represents the
stack region. Operator sl4 is a shorthand of select of size 4. The edges of the two
programs between (b1,b1’) to (b4,b3’) and (b1,b1’) are composite edges made up of
the individual edges in between.

For sound reasoning of loops, we ensure that a correlation exists for at least
one node in a loop, for all the loops. We pick the entry, exit and loop heads in
ProgB , as the interesting PCs that need to be correlated with PCs in ProgA. In
our example, we pick (b0’, b1’, b3’) in ProgB . Thus, ProgB can be represented as
the three picked nodes, and a set of composite edges, edgesB =(b0’-b1’, b1’-b2’-
b1’, b1’-b2’-b3’, b0’-b3’). We now try and find the correlated composite edges in
ProgA for each composite edge in ProgB . When all the composite edges of ProgB
get correlated, we obtain a candidate correlation between the two programs.

Running our algorithm on the example, we initialize the JTFG with its entry
node (b0, b0’). We pick an edgeB from edgesB (sorted in DFS order) and find
the list of composite edges in ProgA (up to some fixed length) which can be
correlated with edgeB . For edge (b0’-b1’) of ProgB we get (b0-b1, b0-b4, b0-
b1-b2, b0-b1-b3, b0-b1-b3-b2, b0-b1-b2||b0-b1-b3-b2)1 as the list of potential
composite edges in ProgA, up to unroll factor 1 (unrolling the loop once). The
last edge involves a disjunction of two paths. The conditions of these edges are
(0 < nA, 0 ≥ nA, 0 < nA∧∗ptr4 ≤ 0, 0 < nA∧∗ptr4 > 0, 0 < nA∧∗ptr4 > 0, 0 <
nA) respectively. And the condition of the current edgeB is 0 < nB . However,
the edge conditions of the two programs cannot be compared because there is
no relation between nA and nB . Before comparing the conditions across these
two programs, we need to find predicates which relate the variables of the two
programs at (b0, b0’). In this example, we require the predicate nA = nB at
(b0, b0’) (we later discuss how to obtain such predicates). Predicate nA = nB

1 a-b-c is sequential composition of edges a-b and b-c. a-b-c||a-d-c is parallel compo-
sition of edges a-b-c and a-d-c.

proves that the conditions of (b0-b1) and (b0’-b1’) are equal, implying that
the correlation is correct. We then try to correlate the next composite edge of
ProgB until all the composite edges are correlated and a simulation relation
(JTFG) is found which can prove the required equivalence. At each step, it
is possible for multiple composite edges in ProgA to have the required edge
condition for correlation, while only one (or a few of the choices) may yield a
provable simulation relation. To handle this, our algorithm backtracks to explore
the remaining choices for correlated edges (discussed later).

At each step of the algorithm, a partial JTFG gets constructed. For future
correlation we need to infer the predicates at the nodes of the currently con-
structed partial JTFG. We use a guess-and-check strategy to infer these predi-
cates. This is similar to previous work on invariant inference (Houdini [8]), except
that we are inferring these invariants/predicates on the JTFG, while previous
work used this strategy for inferring invariants of an individual program. This
guess-and-check procedure is formalized in Sec. 4.3.

The constructed JTFG may be incorrect on several counts. For example, it
is possible that the predicates inferred at intermediate steps are stronger than
what is eventually provable, and hence we infer an incorrect correlation. An in-
correct correlation would mean that we will fail to successfully correlate in future
steps of the algorithm, or will finish with a simulation relation that cannot prove
observable equivalence. To handle either of these cases of incorrect correlation,
our algorithm backtracks to try other potential composite edges for correlation,
unwinding the decisions at each step. In theory, the algorithm is exponential
in the number of edges to be correlated, but in practice, backtracking is rare,
especially if the candidate edges for correlation are heuristically prioritized. Our
simple heuristic to minimize backtracking is to explore the composite edges in
the order of increasing depth, up to a given maximum limit controlled by un-
roll factor (µ). This heuristic is based on the assumption that a majority of the
compiler transformations do not perform unrolling, and can thus be proven at
smaller depths. If the algorithm succeeds in finding a JTFG that proves ob-
servable equivalence at the exit node, we have successfully computed a provable
simulation relation, and hence completed the equivalence proof.

4 Formalization and algorithm

4.1 Abstracting programs as transfer function graph

We need an abstract program representation as a logical framework for rea-
soning about semantics and equivalence. This abstraction is called the transfer
function graph (TFG). A TFG is a graph with nodes and edges. Nodes represent
locations in the program, e.g., program counter (PC). Edges encode the effect
of the instruction and the condition under which the edge is taken. The state
of the program consists of bitvectors and a byte-addressable array, representing
registers and memory respectively.

A simplified TFG grammar is presented in Fig. 4. The TFG T consists of
preconditions, inputs, outputs and a graph G with nodes and edges. A node is

T ::= ([ε], [ε], [ε],G([node], [edge]))
node ::= pc(int) | exit(int)
edge ::= (node, node, edgecond, τ)
edgecond ::= state→ ε
τ ::= state→ state
state ::= [(string, ε)]
ε ::= var(string) | nryop(ε, ε) | select(ε, ε, int) | store(ε, ε, int, ε) | uif([ε])

Fig. 4: Transfer function graph (T).

named either by its PC location (pc(int)), or by an exit location (exit(int));
a TFG could have multiple exits. An edge is a four-tuple with from-node and
to-node (first two fields), its edge condition edgecond (third field) represented
as a function from state to expression, and its transfer function τ (fourth field).
An expression ε could be a boolean, bitvector, byte-addressable array, or an
uninterpreted function. Expressions are similar to standard SMT expressions,
with a few modifications for better analysis and optimization (e.g., unlike SMT,
select and store operators have an additional third integer argument rep-
resenting the number of bytes being read/written). An edge is taken when its
edgecond holds. An edge’s transfer function represents the effect of taking that
edge on the program state, as a function of the state at the from-node. A state
is represented as a set of (string, ε) tuples, where the string names the state
element (e.g., register name). Apart from registers and memory, the state also
includes an “IO” element indicating I/O activity, that in our setting, could occur
only due to a function call (inside the callee)2. A procedure’s TFG will have an
entry node, and a single return (exit) node.

The C function calls in programs are modeled as uninterpreted functions
(uif) in TFGs. The uif inputs include the callee function’s ID, signature and
the IO element value. uif modifies the state as per function signature. All
“outputs” of the function call (memory, return values, and IO) are modified
through uif. Fig. 5 shows the TFGs of unoptimized and optimized versions of
our running example program.

4.2 Joint transfer function graph

A joint transfer function graph (JTFG) is a subgraph of the cartesian product of
the two TFGs. Additionally, each JTFG node has predicates (second column of
simulation relation) representing the invariants across the two programs. Intu-
itively, a JTFG represents a correlation between two programs: it correlates the
move (edge) taken by one program with the move taken by the other program,
and vice-versa. Formally, a JTFG (JAB) between TFGA and TFGB is defined

2 In the programs we consider, the only method to perform I/O is through function
calls (that may internally invoke system calls).

Edge condition τ(ptr, i, n,M) =

b0-b1 n > 0 (g, 0, n,M)

b0-b4 n ≤ 0 (g, 0, n,M)

b1-b2 sl4(M,ptr) ≤ 0 (ptr, i, n,M)

b1-b3 sl4(M,ptr) > 0 (ptr, i, n,M)

b3-b2 true let v = sl4(M,ptr) + sl4(M, sum)
(ptr, i, n, st4(M, sum, v))

b2-b1 i+ 1 < n (ptr + 4, i+ 1, n,M)

b2-b4 i+ 1 ≥ n (ptr + 4, i+ 1, n,M)

Edge condition τ(ptr, i, r, n,M) =

b0’-b1’ n > 0 (g, 0, sl4(M, sum), n,M)

b1’-b2’-b1’ i+ 1 6= n let u = sl4(M,ptr)
(ptr+4, i+1, r+(u > 0?u : 0), n,M)

b1’-b2’-b3’ i+ 1 = n let u = sl4(M,ptr)
let v = r + (u > 0?u : 0)
(ptr + 4, i+ 1, v, n, st4(M, sum, v))

b0’-b3’ n ≤ 0 (g, 0, sl4(M, sum), n,M)

Fig. 5: TFGs of the unoptimized (top) and optimized programs, represented as a table
of edges. The ‘condition’ column represents the edge condition, and τ represents the
transfer function. Operators sl4 and st4 are shorthands of select and store of size 4.
sum and g represent the addresses of globals sum and g[] respectively.

as:

TFGA = (NA, EA), TFGB = (NB , EB), JAB = (NAB , EAB)

NAB = {nAB |nAB ∈ (NA ×NB) ∧ (
∨

e∈outedgesnAB

edgeconde)}

EAB = {(euA→vA , euB→vB) |{(uA, uB), (vA, vB)} ∈ NAB∧
edgecondeuA→vA

= edgecondeuB→vB
}

Here NA and EA represent the nodes and edges of TFGA respectively and
euA→vA is an edge in TFGA from node u to node v. The condition on nAB (in
NAB ’s definition) stipulates that the disjunction of all the outgoing edges of a
JTFG node should be true. The two individual edges (euA→vA and euB→vB)
in an edge of JTFG should have equivalent edge conditions. The individual
edge (e.g., euA→vA) within a JTFG edge could be a composite edge. Recall that
a composite edge between two nodes may be formed by composing multiple
paths between these two nodes into one. The transfer function of the composite
edge is determined by composing the transfer functions of the constituent edges,
predicated with their respective edge conditions. We use the ite (if-then-else)
operator to implement predication. Fig. 3b shows a JTFG for the programs in
Fig. 5.

Function Correlate(TFGA, TFGB)
jtfg ← InitializeJTFG(EntryPCA, EntryPCB)
edgesB ← DfsGetEdges(TFGB)
proofSuccess = CorrelateEdges(jtfg, edgesB , µ)

Function CorrelateEdges(jtfg, edgesB, µ)
if edgesB is empty then

return ExitAndIOConditionsProvable(jtfg)
end
edgeB ← RemoveFirst(edgesB)
fromPCB ← GetFromPC(edgeB)
fromPCA ← FindCorrelatedFirstPC(jtfg, fromPCB)
cedgesA ← GetCEdgesTillUnroll(TFGA,fromPCA,µ)
foreach cedgeA in cedgesA do

AddEdge(jtfg, cedgeA, edgeB)
PredicatesGuessAndCheck(jtfg)
if IsEqualEdgeConditions(jtfg) ∧ CorrelateEdges(jtfg, edgesB, µ) then

return true
else

RemoveEdge(jtfg, cedgeA, edgeB)
end

end
return false

Function IsEqualEdgeConditions(jtfg)
foreach e in edges(jtfg) do

rel ← GetSimRelationPredicates(efromPC)
if ¬ (rel =⇒ (eFirstEdgeCond ⇐⇒ eSecondEdgeCond)) then

return false
end

end
return true

Algorithm 1: Determining correlation. µ is the unroll factor.

4.3 Algorithm for determining the simulation relation

Our correlation algorithm works across black-box compiler transformations, which
is the primary difference between our work and previous work. Algorithm 1
presents the pseudo code of our algorithm. Function Correlate() is the top-
level function which takes the TFGs of the two programs, and returns either a
provable JTFG or a proof failure. The JTFG (jtfg) is initialized with its entry
node, which is the pair of entry nodes of the two TFGs. Then, we get the the
edges (edgesB) of TFGB in depth-first-search order by calling DfsGetEdges().
And finally, the initialized jtfg, edgesB , and µ are passed as inputs to the
CorrelateEdges() function, which attempts to correlate each edge in ProgB
with a composite edge in ProgA.

CorrelateEdges() consumes one edge from edgesB at a time, and then re-
cursively calls itself on the remaining edgesB . In every call, it first checks whether

all edgesB have been correlated (i.e., the jtfg is complete and correct). If it is so,
it tries proving the observables, through ExitAndIOConditionsProvable(),
and returns the status of this call. However, if there are still some edges left
for correlation (i.e., jtfg is not complete), we pick an edge (edgeB) from
edgesB and try to find its respective candidate composite edge for correlation
in TFGA. Because we are correlating the edges in DFS order, the from-node
of edgeB (say fromPCB) would have already been correlated with a node in
TFGA (say fromPCA). We next compute the composite edges originating at
fromPCA in TFGA, to identify candidates for correlation with edgeB . The
function GetCEdgesTillUnroll() returns the list of all composite edges
(cedgesA) which start at fromPCA with a maximum unrolling of loops bounded
by µ (unroll factor). cedgesA represents the potential candidates for correlation
with edgeB . The unroll factor µ allows our algorithm to capture transformations
involving loop unrolling and software pipelining.

We check every cedgeA in cedgesA for potential correlation in the foreach
loop in CorrelateEdges(). This is done by adding the edge (cedgeA, edgeB)
to the JTFG and checking whether their edge conditions are equivalent; be-
fore computing this equivalence however, we need to infer the predicates on
this partial JTFG through PredicatesGuessAndCheck() (discussed next).
These inferred predicates are required to relate the variables at already corre-
lated program points across the two programs. If the edge conditions are proven
equivalent (IsEqualEdgeConditions()) we proceed to correlate (recursive
call to CorrelateEdges()) the remaining edges in edgesB . If the conditions
are not equal or the recursive call returns false (no future correlation found)
the added edge is removed (RemoveEdge()) from jtfg and another cedgeA is
tried. If none of the composite edges can be correlated, the algorithm backtracks,
i.e., the current call to CorrelateEdges() returns false.

Predicates guess-and-check is an important building block of our algo-
rithm and it is one of the elements that lend robustness to our algorithm. Pre-
vious work has relied on inferring a relatively small set of syntactically gener-
ated predicates (e.g., [26, 32]) which are usually weaker, and do not suffice for
black-box compiler transformations. Like Houdini [8], we guess several predicates
generated through a grammar, and run a fixed point procedure to retain only
the provable predicates. The guessing grammar needs to be general enough to
capture the required predicates, but cannot be too large, for efficiency.

Guess: At every node of the JTFG, we guess predicates generated from a set
G = { ?A ⊕ ?B ,MA =?A∪?B MB }, where operator ⊕ ∈ {<,>,=,≤,≥}. ?A and
?B represent the program values (represented as symbolic expressions) appearing
in TFGA and TFGB respectively (including preconditions) and MA =X MB

represents equal memory states except the region X. The guesses are formed
through a cartesian product of values in TFGA and TFGB using the patterns
in G. This grammar for guessing predicates has been designed to work well with
the transformations produced by modern compilers, while keeping the proof
obligation discharge times tractable.

Check: Our checking procedure is a fixed point computation which eliminates
the unprovable predicates at each step, until only provable predicates remain.
At each step, we try and prove the predicates across a JTFG edge, i.e., prove
the predicates at the head of the edge, using the predicates at the tail of the
edge, and the edge’s condition and transfer function. Further, the preconditions
(Pre) determined through our model of language level undefined behaviour are
used as assumptions during this proof attempt. The predicates at the entry
node of JTFG are checked using the initial conditions across the two programs,
represented by Init. Init consists of predicates representing input equivalence
(C function arguments and input memory state). At each step, the following
condition is checked for every edge:

∀
(X→Y)∈edges

(Pre ∧ edgecondX→Y)⇒ (predsX ⇒ predY)

Here predsX represents the conjunction of all the (current) guessed predicates
at node X and predY represents a guessed predicate at node Y. edgecondX→Y

is the edge condition for the edge (X→Y). If this check fails for some guessed
predicate predY at some node Y, we remove that predicate, and repeat.

Undefined behaviour assumptions Most undefined behaviour modeling
is straightforward. Aliasing based undefined behaviour requires a detailed alias
analysis, however. For every memory access, our alias analysis algorithm deter-
mines the variables with which the memory address may alias. If an address
a may alias with only one variable v, we emit preconditions encoding that a
must belong to the region allocated to v. If an address may alias with multiple
variables (or could point within the heap), then the corresponding precondi-
tions involve a disjunction over all the respective regions. Additional precon-
dition clauses are generated to encode that these regions allocated to different
variables (and heap) may not overlap with each other. These aliasing based un-
defined behaviour assumptions are critical for achieving reasonable success rates
for black-box equivalence checking across compiler transformations (Sec. 5).

We have tested the algorithm and its implementation across transformations
like loop inversion, loop peeling, loop unrolling, loop splitting, loop invariant code
hoisting, induction variable optimizations, inter-loop strength reduction, SIMD
vectorization, and software pipelining. On the other hand, it does not support
loop reordering transformations that are not simulation preserving, such as tiling
and interchange. Also, if the transformations involve a reduction in the number
of loops (e.g., replacing a loop-based computation with a closed form expression),
the algorithm, in its current form, may fail to construct the proof.

5 Implementation and Evaluation

We compile multiple C programs by multiple compilers at different optimiza-
tion levels, for x86, to generate unoptimized (-O0) and optimized (-O2 and -O3)
binary executables. We then harvest functions from these executable files and

Bench Fun UN Loop SLOC ALOC Globals

mcf 26 2 21 1494 3676 43
bzip2 74 2 30 3236 9371 100
ctests 101 0 63 1408 4499 53
crafty 106 5 56 12939 72355 517
gzip 106 1 66 5615 14350 212
sjeng 142 3 68 10544 38829 312
twolf 191 17 140 17822 84295 348
vpr 272 69 155 11301 44981 153
parser 323 2 240 7763 30998 223
gap 854 0 466 35759 177511 330
vortex 922 5 116 49232 167947 815
perlbmk 1070 65 271 72189 175852 561

Table 1: Benchmarks characteristics. Fun, UN and Loop columns represent the total
number of functions, the number of functions containing unsupported opcodes, and
the number of functions with at least one loop, resp. SLOC is determined through the
sloccount tool. ALOC is based on gcc-O0 compilation. Globals represent the number
of global variables in the executable.

reconstruct C-level information, necessary for modeling undefined behaviour as-
sumptions and for performing equivalence checks. Once the functions are har-
vested and C-level information is reconstructed, we perform the equivalence
checks between the functions from unoptimized (O0) and optimized (O2/O3)
executables.

The high level C program information necessary for performing the equiva-
lence checking and modeling undefined behaviour are global variables and their
scope/type attributes, local stack, function declarations and function calls, and
program logic (function body). We reconstruct the language level semantics
from ELF executables by using certain (standard) ELF headers. We rely on
the debug headers (-g), symbol table and relocation table (-fdata-sections
--emit-relocs) for getting the required high level information. Debug head-
ers contain information about the functions and their signatures. Symbol table
provides the global variable name, address, size and binding attributes. The
relocation headers allows precise renaming of addresses appearing in code, to
respective global variable identifiers with appropriate offsets, ensuring that the
different placement of globals in different executables are abstracted away. None
of these flags affect the quality of generated code. All these flags (or equivalent)
are available in gcc, clang, icc and ccomp. Our reconstruction procedures
are identical for both O0 and O2/O3 executables. The difference is that while
the reconstructed information from O0 is used for obtaining the high level C
program specification, the reconstructed information from O2/O3 is used only
to help with proof construction.

Several optimizations were necessary to achieve reasonable results for equiva-
lence across assembly programs. We have developed custom simplification proce-

24 25 26 27 28 29 210 211 212 213

Assembly lines of code (ALOC) (log scale)

0

5000

10000

15000

20000

25000

30000
Eq

ui
va

le
nc

e
st

at
s

(c
ou

nt
)

ALOC: 105, 97% pass rate

ALOC: 345, 90% pass rate

Unknown
Timeouts
Passed

Fig. 6: Cumulative success rate (pass/fail) vs. ALOC.

Bench % change

gzip-gcc2 26
gzip-clang2 15
bzip2-gcc2 44
bzip2-clang2 42
mcf-gcc2 52
mcf-clang2 46
parser-gcc2 43
parser-clang2 19

Fig. 7: The effect of model-
ing aliasing based undefined be-
haviour assumptions. The %
change represents the difference
between the success rates with
and without modeling these un-
defined behaviour assumptions.

dures over expression trees to reduce expression size, for efficient pattern match-
ing (e.g., for select and store) and efficient discharge of proof obligations.
We use Z3 [5] and Yices [6] SMT solvers running in parallel for discharging proof
obligations over our custom-simplified expressions, and use the result of solver
which finishes first. We also employ caching of SMT query results to improve
performance.

The programs that were compiled and checked, are listed in Table 1 along
with their characteristics. ctests is a program taken from the CompCert test-
suite and involves a variety of different C features and behaviour; the other
programs are taken from the SPEC CPU2000 integer benchmarks. The SPEC
benchmark programs do not include gcc and eon because their ELF executables
files are very big, and our tool to harvest instruction sequences from executable
files does not support such large ELF files. We also include an integer program
from the SPEC CPU2006 integer benchmarks: sjeng. sjeng is one of the few
C benchmarks in SPEC CPU2006 that is not already present in CPU2000, and
has a low fraction of floating point operations. We avoid programs with signifi-
cant floating-point operations, as our semantic models for x86 floating point in-
structions are incomplete. While compiling these programs, we disabled inlining,
type based strict aliasing based assumptions, and signed integer strict overflow
assumptions: our tool cannot handle interprocedural optimizations and does not
model type based and signed integer overflow undefined behaviour assumptions.

A total of 4% of the functions contain unsupported (usually floating-point)
opcodes (Tab. 1), and we plot results only for the functions which contain only
supported opcodes. Fig. 6 plots the success rates as a function of the number of
assembly instructions in a function, and Fig. 8 plots the success rates for each
benchmark-compiler-optimization pair. There were 26007 function-pairs tested
across all benchmarks and compiler/optimization pairs. The timeout value used
was five hours. Overall, our tool is able to generate sound equivalence proofs

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

mcf

20

40

60

80

100

Eq
ui

va
le

nc
e

st
at

s
(%

)

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

bzip2

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

ctests
gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

gzip

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

sjeng

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

parser

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

gap

gc
c2

cl
an
g2

ic
c2

gc
c3

cl
an
g3

ic
c3

cc
om
p2

twolf

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

vpr

gc
c2

cl
an
g2

ic
c2

cc
om
p2

gc
c3

cl
an
g3

ic
c3

crafty

gc
c2

cl
an
g2

ic
c2

gc
c3

cl
an
g3

ic
c3

cc
om
p2

perlbmk

gc
c2

cl
an
g2

ic
c2

gc
c3

cl
an
g3

ic
c3

cc
om
p2

vortex

Passed cyclic Passed acyclic Failed cyclic Failed acyclic

Fig. 8: Equivalence statistics. Functions with at least one loop are called “cyclic”. The
bar corresponding to a compiler (e.g., clang) represents the results across O0/O2 and
O0/O3 transformations for that compiler (e.g., for clang2 and clang3 resp.). The
average success rate across 26007 equivalence tests on these benchmarks, is 76% for
O2 and 72% for O3 (dashed blue and red lines resp.). The missing bars for ccomp are
due to compilation failures for those benchmarks.

across almost all transformations across multiple compilers for 76% of the tested
function-pairs for O2 optimization level, and 72% of the tested function-pairs for
O3 optimization level. The success rates are much higher for smaller functions, as
seen in Fig. 6. The mean and median values for runtimes for passing equivalence
tests are 313 seconds and 8.5 seconds respectively. 5% of the passing tests take
over 1000 seconds to generate the result. Failures are dominated by timeouts (5
hours), inflating the mean and median runtimes for all (failing + passing) equiv-
alence tests to 3962 seconds and 22 seconds respectively. The largest function for
which equivalence was computed successfully has 4754 ALOC; the most com-
plex function for which equivalence was computed successfully has 31 composite
edges in its TFGB .

Modeling undefined behaviour conditions is crucial for robustness. Tab. 7
shows the impact of modeling aliasing based undefined behaviour. If we do not
model these undefined behaviour assumptions, the success rates decrease by
15%-52% for these programs.

Our experiments led to the discovery of one GCC bug (confirmed and fixed)
[9] and two ICC bugs (one of them is confirmed, and the second involves confusion
on the semantics of an ICC flag) [11, 12]. Each bug entails equivalence failures
across multiple functions.

Finally, we have used our tool inside a 32-bit x86 brute-force superopti-
mizer that supports a rudimentary form of loops: it allows enumeration of
straight-line instruction sequences potentially containing the x86 string instruc-
tions scas, stos, and cmps (the equivalent of memchr, memset, and memcmp
functions, resp.); each of these instructions is modeled as a TFG containing
a cycle. Through supporting these instructions, optimized implementations for
common routines like initializing an array, and comparing elements of two ar-
rays, get synthesized automatically, that are 1.04-12x faster than compiled code

generated by any of the four compilers we discussed (across O2 and O3). In
general, we expect the support for loops to enable general-purpose loop-based
optimizations in a superoptimizer, and this work is an initial step towards this
goal.

6 Related Work

One of the earliest examples of a translation validator can be found in [30]. Trans-
lation validation for mature compilers on large and complex programs, has been
reported in at least two previous works: Translation validation infrastructure
(TVI) [26] for GCC, and Value-graph translation validation [34,38] for LLVM.

TVI demonstrated the validation of the gcc-2.91 compiler and the Linux-2.2
kernel, across five IR passes in GCC, namely branch optimization, common-
subexpression elimination (CSE), loop unrolling and inversion, register alloca-
tion, and instruction scheduling. In TVI, validation is performed across each IR
pass, i.e., first the input IR is validated against the output of the first pass, then
the output of the first pass is validated against the output of the second pass, and
so on. The TVI paper reports around 87% validation success rates. Necula’s al-
gorithm does not support loop unrolling, and that was reported as the primary
cause for validation failures. There are several issues with TVI when applied
to end-to-end (black-box and composed transformations) equivalence checking.
First, this pass-based approach is not possible in a synthesis/superoptimizer
setting. Second, TVI’s heuristics for branch and memory-access correlations at
basic-block granularity are syntactic, and fail for a large number of compiler
transformations. Third, TVI relies on weakest-precondition based inference of
simulation relation predicates, which is both expensive and less robust than
our guessing procedure. For end-to-end checks, the substituted expressions gen-
erated by weakest-precondition become large and unwieldy, resulting in SMT
solver timeouts. Further, guessing based on only weakest preconditions is often
inadequate. Finally, TVI was tested across five compiler passes, and did not
address several transformations, including those relying on undefined behaviour.

Value-graph translation validation for LLVM has been performed previously
in two independent efforts [34, 38]. The value-graph based technique works by
adding all known equality-preserving transformations for a program, to a value
graph, until it saturates. Equivalence checking now involves checking if the graphs
are isomorphic. In the work by Tristan et. al. [38], validation is performed across
a known set of transformations, namely, dead-code elimination, global value
numbering, sparse-condition constant propagation, loop-invariant code motion,
loop deletion, loop unswitching, and dead-store elimination. Stepp et. al. [34]
support all these transformations, and additionally enable partial-redundancy
elimination, constant propagation, and basic block placement. While these tools
capture several important transformations, they also omit many, e.g., loop in-
version and unrolling, branch optimization, common-subexpression elimination,
and instruction scheduling, to name a few. Some of these omitted transforma-
tions (e.g., loop inversion) enable more aggressive transformations, and so by

omitting one of those, a chain of important transformation passes gets omitted.
Also, none of these transformations rely on language-level undefined behaviour.
For example, the transformations do not include the ones that could reorder
accesses to global variables (e.g., by register-allocating them). Both papers re-
port roughly 60-90% success rates for LLVM IR across the transformations they
support. Compared head-to-head, this is comparable to our success rates, albeit
in a much more restricted setting. A value-graph approach is limited by the
vocabulary of transformations that are supported by the translation validator,
and thus seems less general than constraint-based approaches like TVI and ours.
Also, the number of possible translations for passes like register allocation and
instruction scheduling is likely to grow exponentially in a value-graph approach.
At least with the current evidence, it seems unlikely that the value-graph based
translation validation approach would yield good results for end-to-end black-
box equivalence checking.

Data-driven equivalence checking (DDEC) [32] is an effort perhaps closest to
our goals of checking equivalence on x86 assembly programs. However, DDEC
takes a radically different approach of relying on the availability of execution
traces for high-coverage tests, an assumption that is not always practical in a
general compiler optimization setting. DDEC was tested on a smaller set of ex-
amples (around 18) of x86 assembly code generated using GCC and CompCert,
and all DDEC test examples are a part of our ctests benchmark. Compared
head-to-head with DDEC, our algorithm is static (does not rely on execution
traces), supports a richer set of constructs (stack/memory/global accesses, func-
tion calls, undefined behaviour), is more robust (tested on a much larger set of
programs, and across a richer set of transformations), and more efficient (when
compared head-to-head on the same programs). While DDEC can infer linear
equalities through execution traces, it cannot handle several other types of non-
linear invariants (e.g., inequalities) often required to prove equivalence across
modern compiler transformations. Recent work on loop superoptimization for
Google Native Client [3] extends DDEC by supporting inequality-based invari-
ants; the evaluation however is limited to a small selection of test cases, and
hence does not address several scalability and modeling issues that we tackle in
our equivalence checker. For example, the authors do not model undefined be-
haviour, which we find is critical for black-box equivalence checking across real
programs.

The Correlate module of parameterized program equivalence checking (PEC)
[14] computes simulation based equivalence for optimization patterns represented
as parameterized programs containing meta-variables. In contrast, we are inter-
ested in equivalence checking across black-box transformations involving low
level syntax, as is typical in synthesis and superoptimization settings: our cor-
relation algorithm with guessing procedures have been evaluated for this use
case. In PEC’s setting, the presence of meta-variables usually provides an easier
correspondence between the two programs, greatly simplifying the correlation
procedure; the relations (predicates relating variables in two programs) across
meta-variables are also easier to determine in this setting.

Previous work on regression verification [7,35] determines equivalence across
structurally similar programs, i.e., programs that are closely related, with similar
control structure and only a small (programmer introduced) delta between the
two programs. In our setting, the programs being compared are significantly dif-
ferent because of transformations due to multiple composed compiler optimiza-
tions. While our equivalence checker can correctly compute equivalence across
all the examples presented in regression verification [7, 35], the converse is not
true.

There are more approaches to translation validation and equivalence checking
(e.g., [13,22,24,29,41,44]), and most have been evaluated on a variety of relatively
smaller examples. To our knowledge, previous work has not dealt with compiler
transformations in as much generality, as our work. Our work also overlaps with
previous work on verified compilation [21, 42, 43], compiler testing tools [17, 18,
40], undefined behaviour detection [39], and domain specific languages for coding
and verifying compiler optimizations [19,20].

In terms of the correlation algorithm, our approach is perhaps closest to Co-
VaC [41], in that we both construct the JTFG incrementally, and rely on an
invariant generation procedure, while determining the correlations. There are
important differences however. CoVaC relies on an oracular procedure called In-
vGen; we show a concrete implementation of PredicatesGuessAndCheck().
Further, we differ significantly in our method to identify the correlations. Co-
VaC relies on correlating types of operations (e.g., memory reads and writes are
different types), which is similar to TVI’s syntactic memory correlations, and
is less general than our semantic treatment of memory. Also, CoVaC relies on
the satisfiability of the conjunction of edge conditions (viz. branch alignment) in
the two TFGs, which is unlikely to work across several common transformations
that alter the branch structure. CoVaC was tested on smaller examples across a
handful of transformations. In contrast, our correlation method based on equal-
ity of condition of composite edges is more general, and we demonstrate this
through experiments. Further, backtracking and careful engineering of guessing
heuristics are important novel features of our procedure.

Most previous translation validation work (except DDEC) has been applied
to IR. There has also been significant prior work on assembly level verification,
through equivalence checking. SymDiff [10, 15, 16] is an effort towards verifying
compilers and regression verification, and works on assembly code. However, the
support for loops in SymDiff is quite limited — they handle loops by unrolling
them twice. Thus, while SymDiff is good for checking partial equivalence, and
to catch errors across program versions and translations, generation of sound
equivalence proofs for programs with loops is not supported.

Alive [23] verifies acyclic peephole optimization patterns of the InstCombine
pass of LLVM and models undefined behaviour involving undefined values, poi-
son values and arithmetic overflow. While Alive computes equivalence across
acyclic programs, we are interested in simulation based equivalence for programs
with loops.

Program synthesis and superoptimization techniques [1, 2, 25, 27, 31, 33, 36]
rely on an equivalence checker (verifier) for correctness. The capabilities of a
synthesis based optimizer are directly dependent on the capabilities of its un-
derlying equivalence checker. We hope that our work on black-box equivalence
checking informs future work in program synthesis and superoptimization.

References

1. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. pp. 394–403. ASPLOS XII, ACM
(2006)

2. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation. pp. 177–192. OSDI’08, USENIX Association (2008)

3. Churchill, B., Sharma, R., Bastien, J., Aiken, A.: Sound loop superoptimization
for google native client. In: Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems. pp. 313–326. ASPLOS ’17, ACM (2017)

4. Dahiya, M., Bansal, S.: Modeling undefined behaviour semantics for checking
equivalence across compiler optimizations. In: Hardware and Software: Verifica-
tion and Testing - 13th International Haifa Verification Conference, HVC 2017

5. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337–340. TACAS’08/ETAPS’08

6. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer-Aided Verification
(CAV’2014). Lecture Notes in Computer Science, vol. 8559, pp. 737–744

7. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating re-
gression verification. In: Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering. pp. 349–360. ASE ’14, ACM (2014)

8. Flanagan, C., Leino, K.: Houdini, an annotation assistant for esc/java. In: FME
2001: Formal Methods for Increasing Software Productivity, Lecture Notes in Com-
puter Science, vol. 2021, pp. 500–517. Springer Berlin Heidelberg (2001)

9. GCC Bugzilla - Bug 68480, https://gcc.gnu.org/bugzilla/show_bug.
cgi?id=68480

10. Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L.,
Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? static cross-version
compiler validation. In: Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. pp. 191–201. ESEC/FSE 2013, ACM (2013)

11. ICC developer forums discussion: icc-16.0.3 not respecting fno-strict-overflow flag?,
https://software.intel.com/en-us/forums/intel-c-compiler/
topic/702516

12. ICC developer forums discussion: icc-16.0.3 not respecting no-ansi-alias flag?,
https://software.intel.com/en-us/forums/intel-c-compiler/
topic/702187

13. Kanade, A., Sanyal, A., Khedker, U.P.: Validation of gcc optimizers through trace
generation. Softw. Pract. Exper. 39(6), 611–639 (Apr 2009)

14. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Proceedings of the 2009 ACM SIGPLAN Conference

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68480
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68480
https://software.intel.com/en-us/forums/intel-c-compiler/topic/702516
https://software.intel.com/en-us/forums/intel-c-compiler/topic/702516
https://software.intel.com/en-us/forums/intel-c-compiler/topic/702187
https://software.intel.com/en-us/forums/intel-c-compiler/topic/702187

on Programming Language Design and Implementation. pp. 327–337. PLDI ’09,
ACM (2009)

15. Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebelo, H.: Symdiff: A language-agnostic
semantic diff tool for imperative programs. In: CAV ’12. Springer (2012)

16. Lahiri, S., Sinha, R., Hawblitzel, C.: Automatic rootcausing for program equiv-
alence failures in binaries. In: Computer Aided Verification (CAV’15). Springer
(2015)

17. Le, V., Afshari, M., Su, Z.: Compiler validation via equivalence modulo inputs. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 216–226. PLDI ’14, ACM (2014)

18. Le, V., Sun, C., Su, Z.: Finding deep compiler bugs via guided stochastic program
mutation. In: Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. pp. 386–
399. OOPSLA 2015, ACM (2015)

19. Lerner, S., Millstein, T., Chambers, C.: Automatically proving the correctness of
compiler optimizations. In: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation. pp. 220–231. PLDI ’03,
ACM (2003)

20. Lerner, S., Millstein, T., Rice, E., Chambers, C.: Automated soundness proofs for
dataflow analyses and transformations via local rules. In: Proceedings of the 32Nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 364–377. POPL ’05, ACM (2005)

21. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd ACM symposium on Principles of Programming
Languages. pp. 42–54. ACM Press (2006)

22. Leung, A., Bounov, D., Lerner, S.: C-to-verilog translation validation. In: Formal
Methods and Models for Codesign (MEMOCODE). pp. 42–47 (2015)

23. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 22–32. PLDI 2015,
ACM (2015)

24. Lopes, N.P., Monteiro, J.: Automatic equivalence checking of programs with un-
interpreted functions and integer arithmetic. Int. J. Softw. Tools Technol. Transf.
18(4), 359–374 (Aug 2016)

25. Massalin, H.: Superoptimizer: A look at the smallest program. In: Proceedings of
the Second International Conference on Architectual Support for Programming
Languages and Operating Systems. pp. 122–126. ASPLOS II, IEEE Computer
Society Press (1987)

26. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation. pp. 83–94. PLDI ’00, ACM (2000)

27. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: Scaling up superopti-
mization. In: Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. pp. 297–310.
ASPLOS ’16, ACM (2016)

28. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Proceedings of
the 4th International Conference on Tools and Algorithms for Construction and
Analysis of Systems. pp. 151–166. TACAS ’98, Springer-Verlag (1998)

29. Poetzsch-Heffter, A., Gawkowski, M.: Towards proof generating compilers. Elec-
tron. Notes Theor. Comput. Sci. 132(1), 37–51 (May 2005)

30. Samet, H.: Proving the correctness of heuristically optimized code. Commun. ACM
21(7), 570–582 (Jul 1978)

31. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proceedings
of the Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. pp. 305–316. ASPLOS ’13, ACM (2013)

32. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence check-
ing. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Ob-
ject Oriented Programming Systems Languages and Applications. pp. 391–406.
OOPSLA ’13, ACM (2013)

33. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Conditionally correct superop-
timization. In: Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. pp. 147–
162. OOPSLA 2015, ACM (2015)

34. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for llvm. In:
Proceedings of the 23rd International Conference on Computer Aided Verification.
pp. 737–742. CAV’11, Springer-Verlag (2011)

35. Strichman, O., Godlin, B.: Regression verification - a practical way to verify pro-
grams. In: Verified Software: Theories, Tools, Experiments, vol. 4171, pp. 496–501.
Springer Berlin Heidelberg (2008)

36. Tate, R., Stepp, M., Lerner, S.: Generating compiler optimizations from proofs. In:
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. pp. 389–402. POPL ’10, ACM (2010)

37. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. In: POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages. pp. 264–276. ACM
(2009)

38. Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for llvm. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. pp. 295–305. PLDI ’11, ACM
(2011)

39. Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: Towards optimization-
safe systems: Analyzing the impact of undefined behavior. In: Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP ’13

40. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c com-
pilers. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 283–294. PLDI ’11, ACM (2011)

41. Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the cross-
product. In: Proceedings of the 15th International Symposium on Formal Methods.
pp. 35–51. FM ’08, Springer-Verlag (2008)

42. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formalizing the llvm inter-
mediate representation for verified program transformations. In: Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 427–440. POPL ’12, ACM (2012)

43. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formal verification of
ssa-based optimizations for llvm. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 175–186.
PLDI ’13, ACM (2013)

44. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: Voc: A methodology for the translation
validation of optimizing compilers 9(3), 223–247 (2003)

	Black-box equivalence checking across compiler optimizations

