
Fast Dynamic Binary Translation for the Kernel

Piyus Kedia and Sorav Bansal
Indian Institute of Technology Delhi

Abstract

Dynamic binary translation (DBT) is a powerful tech-
nique with several important applications. System-level
binary translators have been used for implementing a
Virtual Machine Monitor [2] and for instrumentation in
the OS kernel [10]. In current designs, the performance
overhead of binary translation on kernel-intensive work-
loads is high. e.g., over 10x slowdowns were reported on
the syscall nanobenchmark in [2], 2-5x slowdowns were
reported onlmbench microbenchmarks in [10]. These
overheads are primarily due to the extra work required to
correctly handle kernel mechanisms like interrupts, ex-
ceptions, and physical CPU concurrency.

We present a kernel-level binary translation mecha-
nism which exhibits near-native performance even on
applications with large kernel activity. Our translator re-
laxes transparency requirements and aggressively takes
advantage of kernel invariants to eliminate sources of
slowdown. We have implemented our translator as a
loadable module in unmodified Linux, and present per-
formance and scalability experiments on multiprocessor
hardware. Although our implementation is Linux spe-
cific, our mechanisms are quite general; we only take
advantage of typical kernel design patterns, not Linux-
specific features. For example, our translator performs
3x faster than previous kernel-level DBT implementa-
tions while running the Apache web server.

1 Introduction

Dynamic binary translation (DBT) is a popular tech-
nique, with applications in virtualization [2], test-
ing/verification [14], debugging [20], profiling [19],

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. Forall other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522718

sandboxing [12], dynamic optimizations [4], and more.
DBT can be implemented both at user-level [7] and at
system-level [2, 10]. Current system-level binary trans-
lators exhibit large performance overheads on kernel-
intensive workloads. For example, VMware’s binary
translator in a Virtual Machine Monitor (VMM) shows
10x slowdowns for thesyscall nanobenchmark [2];
corresponding overheads are also observed in mac-
robenchmarks. VMware’s DBT performance also in-
cludes the overheads of other virtualization mechanisms,
like memory virtualization through shadow page tables,
etc. Another kernel-level binary translator, DRK [10],
reports 2-5x slowdowns on kernel intensive workloads.
Applications requiring high kernel activity (like high
performance fileservers, databases, webservers, soft-
ware routers, etc.) exhibit prohibitive DBT slowdowns,
and are thus seldom used with DBT frameworks.

Ideally, a translated system must run at near-native
speed. Low-overhead user-level DBT is well under-
stood [6]; kernel-level translation involves correctly
handling interrupts, exceptions, CPU concurrency, de-
vice/hardware interfaces, and is thus more complex and
expensive. We present a kernel-level dynamic binary
translator with near-native performance. Like DRK [10],
our translator works for the entire kernel including ar-
bitrary devices and their drivers. This is in contrast
with virtual-machine based approaches (e.g., VMware
[2], PinOS [9], BitBlaze [17]), where translation is only
performed for code that runs in a virtualized guest. As
also discussed by DRK authors [10], making dynamic
binary translation work for arbitrary devices and drivers
is important because drivers constitute a large fraction
of kernel code, and most of this remains unexercised in
a virtual machine. Moreover, most interesting program
behaviour (e.g., bugs, security issues, etc.) occurs in
drivers. Further, many workloads are incapable of run-
ning in virtual environments due to device constraints.

We evaluate the performance of our DBT framework
on a number of workloads, and show significant im-
provements over previous work. We also evaluate the
functionality of our DBT framework by implementing a
few important applications on it. In particular, we ob-
tained Linux kernel’s byte-level memory sharing profile
on multiprocessor hardware using our DBT framework.

Our translator is implemented as a loadable kernel
module and can attach to a running OS kernel, ensur-
ing that all kernel instructions run translated thereafter.
It does not translate user-level code. Our translator ex-
hibits performanceimprovementsof up to 17% over na-
tive on certain workloads. Similar improvements have
previously been observed for user-level binary transla-
tors [6], and have been attributed to improved caching
behaviour, especially at the instruction cache. Our trans-
lator can be detached from a running system at will, to
revert to native execution.

Like previous work [2, 10], our translator provides
full kernel code coverage, preserves original concur-
rency and execution interleaving, and is “transparent” to
the kernel. i.e., kernel code does not behave differently
or break if it observes the state of the instrumented sys-
tem. While VMware promises complete transparency,
both DRK and our translator have transparency limi-
tations, i.e., it is in general possible for kernel code
to inspect translated state/data structures. We only en-
sure that this does not result in incorrect behaviour dur-
ing regular kernel execution1. Our design differs from
VMware and DRK in the following important ways:
Entry Points: We replace kernel entry points (interrupt
and exception handlers) directly with their translated
counterparts. This is in contrast with VMware and DRK
which replace kernel entry points with calls to the DBT’s
dispatcher (see Figure 1 for the component diagram of
a dynamic binary translator), which in turn jumps to the
translated handlersafterrestoring native state on the ker-
nel stack. This extra work by DBT dispatcher causes
significant overhead on each kernel entry. In our design,
kernel entries execute at near-native speed. In doing so,
we allow the kernel handlers to potentially observe the
non-native state generated by the hardware interrupt on
stack.
Interrupts and Exceptions: Previous DBT solutions
(VMware, DRK) handle exceptions by emulating pre-
cise exceptions2 in software by rolling back execution to
the start of the translation of the current native instruc-
tion; and handle interrupts by delaying them till the start
of the translation of the next native instruction. These
mechanisms are complex and expensive, and are primar-
ily needed to ensure that the interrupt handlers observe
consistent state. In our design, we allow imprecise ex-

1Actually, VMware’s binary translator also does not guarantee full
transparency. For example, they do not translate user-level code for
performance. Most “well-behaved” operating systems work well in
this model, but an adversarial guest can expose their transparency lim-
itations.

2A precise exception means that before execution of an exception
handler, all instructions up to the executing (emulated) instruction have
been executed, and the excepting instruction and everything afterwards
have not been executed. Previous DBT implementations have pre-
served precise exception behaviour for architectures thatsupport pre-
cise exceptions (e.g., x86).

ceptions and interrupts. Relaxing precision greatly sim-
plifies design and improves performance. In our experi-
ence, operating systems rarely depend on precise excep-
tion and interrupt behaviour.
Reentrancy and Concurrency: The translator’s code
and data structures need to be reentrant to allow in-
terrupts and exceptions to occur at arbitrary program
points. Similarly, physical CPU concurrency needs to be
handled carefully. DBT requires maintenance of CPU-
private data structures, and migration of a thread from
one CPU to another should not cause unsafe concurrent
access to common state. In our design, the presence
of imprecise exceptions and interrupts introduces more
reentrancy and concurrency challenges. We present an
efficient mechanism to provide correct translated execu-
tion.

Our optimizations result in a very different translator
design from both VMware and DRK. We are more ag-
gressive about assumptions on usual kernel behaviour.
In doing so, we sometimes relax “transparency”; for us,
ensuringcorrectnessis enough. Essentially, we show
that many transparency requirements are unnecessary
and can be relaxed for better performance. Because our
translator is implemented as a kernel module, it can be
used both for standalone kernel translation (as done in
our implementation) or for use with VMMs (through the
“guest tools” mechanism).

The paper is organized as follows. We present a back-
ground discussion on code generation and other kernel-
level DBT mechanisms in Section 2. Section 3 presents
our faster and simpler design, and Section 4 discusses its
subtleties. Section 5 discusses our implementation and
results. Section 6 summarizes our techniques and the OS
kernel invariants that we rely upon. Section 7 discusses
related work, and finally Section 8 concludes.

2 DBT Background

We first introduce the terminology and provide a ba-
sic understanding of how a dynamic binary translator
works (also see Figure 1). We refer to the terms and
concepts described in this section, while discussing our
design and optimizations in the rest of the paper. We
call the kernel being translated, theguestkernel. Start-
ing at the first instruction, a straight-line native code se-
quence (code block) of the guest is translated by thedis-
patcher. A code block (also called atrace in previous
work) is a straight-line sequence of instructions which
terminates at an unconditional control transfer (branch,
call, or return). The instructions in a block are trans-
lated using atranslation rulebook. For quick future ac-
cess, the translations are stored in acode cache. The
dispatcher ensures that it regains control when the block

Figure 1: Control Flow of a Dynamic Binary Translator.

jmp .edge0
.edge0: save_registers_and flags

clear interrupts
set nextpc
jump to dispatcher

Figure 2: The translated (pseudo) code generated for a di-
rect unconditional branch. After the first execution of this
code, the first “jmp .edge0” instruction is replaced with “ jmp
tx-nextpc” to implement direct branch chaining.

exits by replacing the terminating control flow instruc-
tion by a branch back to the dispatcher after appropri-
ately setting the next native PC (callednextpc). The
dispatcher looks up the code cache to search if a trans-
lation fornextpc already exists. If so, it jumps to this
translation. If not, the native code block beginning at
nextpc is translated and the translation is stored in the
code cache before jumping to it. We call the translated
code corresponding tonextpc, tx-nextpc.

To improve performance,direct branch chainingis
used, i.e., before the dispatcher jumps to a translation in
the code cache, it checks if the previous executed block
performed a direct branch to this address. If so, the cor-
responding branch instruction in the previous executed
block is replaced with a direct jump to the translation of
the current program counter. This allows the translated
code to directly jump from one block to another within
the code cache (without exits to the dispatcher), thus re-
sulting in near-native performance.

Figure 2 shows the translation code for a direct un-
conditional branch, to illustrate the direct branch chain-
ing mechanism. At the first execution of this translated
code, the operand of the firstjmp instruction is the ad-
dress of the following instruction (.edge0). The code
at .edge0 setsnextpc before jumping to the dis-
patcher. After the first execution, the dispatcher replaces
the first instruction with “jmp tx-nextpc” to imple-
ment direct branch chaining.

If a code block ends with an indirect branch,nextpc

save flags and clear interrupts
save temporary regs %tempreg0 and %tempreg1
mov *MEM, %tempreg0
%tempreg1 := jumptable_hashfn(%tempreg0)
index %per_cpu:jumptable using %tempreg1
if jumptable hit,

restore flags and jump to tx-nextpc
else,

jump to dispatcher

Figure 3: Translation for the indirect branch instruction
“jmp *MEM”, which looks up the jumptable to convert nextpc
to tx-nextpc. As discussed in Section 4.1, a separate per-
CPU jumptable is maintained, and “%percpu:jumptable” ob-
tains the address of the jumptable of the currently executing
CPU. jumptable hashfn() represents the jumptable’s hash
function. On Linux, the %fs segment stores the value of the
%per cpu segment and is used to store CPU-private variables
(like the jumptable in this case). Section 4.1 also discusses the need
to clear interrupts before a jumptable lookup.

can only be determined at runtime. As an optimization,
a fast lookup table is maintained to convertnextpc to
tx-nextpc without having to exit into the dispatcher.
The lookup table, calledjumptable, is implemented as a
small hashtable. Additions to the jumptable are done
in the dispatcher, and lookups are done using assem-
bly code (emitted in the code cache for every indirect
branch). Figure 3 shows the pseudo-code of the transla-
tion of an indirect branch.

2.1 Kernel-level DBT Background

Kernel-level DBT requires more mechanisms to cor-
rectly handle interrupts, exceptions, reentrancy and con-
currency issues. Interposition on kernel execution is en-
sured by replacing all kernel entry points (interrupt and
exception handlers) with custom handlers. In previous
work, these entry points have been replaced with a call
to the DBT dispatcher. The dispatcher receives as argu-
ment, the original PC value at the entry point. Before the
dispatcher translates and executes the handler at this PC
value, it performs more work as discussed below. (As
we discuss in Section 3, we avoid this extra work in our
design).

PC value pushed on the interrupt stack by hard-
ware is translated to its native counterpart by the dis-
patcher on every interrupt/exception. The value pushed
on stack by hardware is the PC value at the time of the
interrupt/exception. This value could be a code cache
address or a dispatcher address. In either case, the value
is replaced with the address of thenative instructionthat
must run after the handler finishes execution. Conse-
quently, the return-from-interrupt instruction (iret) is
translated to obtainnextpc from stack and exit to the
dispatcher.

If a synchronous exception has occurred in the middle

of the translation of an instruction,precise exception
behaviour is emulated. The procedure requiresrolling
backmachine state to its state at the start of the (trans-
lation of the) current native instruction. The code to im-
plement this rollback must be provided in the transla-
tion rulebook, and is executed in the context of the dis-
patcher. After executing the rollback code and putting
the native instruction address on stack, the exception
handler is executed.

If an asynchronous interrupt was received, thedeliv-
ery of this interrupt is delayed until the (translation of
the) next native instruction boundary. This is done to
ensureprecise interrupts, i.e., the interrupted native in-
struction must never be seen “partially executed” by the
handler. This delayed interrupt delivery is implemented
by patching the translation of the next native instruction
with a software-interrupt instruction (to recover control
at that point). After recovering control, the interrupt
stack is setup to return to this next instruction before ex-
ecuting the interrupt handler.

These mechanisms are discussed in detail in the DRK
paper [10] and also previously in a VMware patent [8].
The complexity of these mechanisms is evident from the
5-6 long pages of explanation needed to describe them
in previous work. These mechanisms are also expensive,
as we discuss next:

First, replacing the PC value pushed by hardware on
the interrupt stack, to its native counterpart, on each in-
terrupt, results in significant overhead for an interrupt-
intensive application. Similarly, the translation code for
theiret instruction adds overhead on every return from
interrupt.

Second, the rollback operation required to ensure pre-
cise exceptions is expensive. There is a direct cost of ex-
ecuting the rollback code on each exception. But more
significantly, there is an indirect cost of having to struc-
ture a translation in a way that it can be rolled back. Typ-
ically, this involves making a copy of the old value of any
register that is being overwritten. This cost is incurred on
the straight-line non-exceptionalexecution path on every
execution of that instruction, and is thus significant.

Third, the delaying of interrupts involves identifying
the next native instruction, patching it, incurring an ex-
tra software trap, and then patching the interrupt stack.
These are expensive operations.

In our work, we show that a guest kernel rarely re-
lies on the PC value being pushed on stack on an in-
terrupt/exception, and is largely indifferent to imprecise
exception and interrupt behaviour, and thus these over-
heads can be avoided for a vast majority of DBT appli-
cations.

3 A Faster Design

In our design, we do not ensure precise exceptions and
interrupts. We also do not guarantee that the PC value
on the interrupt stack is a valid native address. We sim-
ply allow the PC value pushed by hardware to get ex-
posed to the interrupt handler. We also allow the inter-
rupt handler to inspect intermediate machine state if an
interrupt/exception occurred in the middle of the trans-
lation of a single instruction.

The design is simple. We disallow interrupts and ex-
ceptions in the dispatcher (see Section 4.1 for details).
Thus, interrupts and exceptions only occur while execut-
ing in the code cache, or while executing in user mode.
We replace a kernel entry point with the translation of
the code block at the original entry point. This causes
an interrupt or exception to directly jump into the code
cache (see Figure 1). Consequently, we use the identity
translation for theiret instruction (i.e.,iret in native
code is translated toiret in translated code) to return
back directly to the code cache. The system thus exe-
cutes at full speed. But we need more mechanisms to
maintain correctness.

The first correctness concern is whether an inter-
rupt or exception handler could behave incorrectly if
it observes an unexpected PC value on the interrupt
stack. Fortunately, in practice, the answer is no, bar-
ring a few exceptions. For example, on Linux, only the
page fault handler depends on the value of the faulting
PC. The Linux page fault handler uses the faulting PC
value to check if the fault is due to a permissible op-
eration (like one of the specialcopy from user(),
copy to user() functions) or a kernel bug. To im-
plement this check, the kernel compiler generates an
“exception table” representing the PCs that are allowed
to fault and the faulting PC is searched against this table
at runtime. With DBT, because the code cache addresses
will not belong to this table, the page fault handler could
incorrectly panic.

Similar patterns, where certain exception handlers are
sensitive to the excepting PC value, are also found in
other kernels. For example, on some architectures (e.g.,
MIPS), restartable atomic sequences(RAS) [5] are im-
plemented to support fast mutual exclusion on unipro-
cessors. RAS code regions, indicating critical sections,
can be registered with the kernel using PC start and end
values. If a thread was context-switched out in the mid-
dle of the execution of a RAS region (determined by
checking the interrupted PC against the RAS registry),
the RAS region is “restarted” by the kernel by over-
writing the interrupt return address by the start address
of the RAS region. With DBT, this mutual-exclusion
mechanism could get violated because the code cache
addresses will not belong to the RAS registry. Also, ker-

void function_that_can_cause_page_fault()
{

/* by default, pcb_onfault = 0. */
push pcb_onfault;
pcb_onfault = custom_page_fault_handler_pc;

/* code that could page fault. */

pop pcb_onfault;
}

void kernel_page_fault_handler()
{

/* handler invoked on every page fault. */
if (pcb_onfault) {
intr_stack[RETADDR_INDEX] = pcb_onfault;

}
}

Figure 4: Pseudo-code showing registry of custom page
fault handlers by kernel subsystems in BSD kernels. The
pcb onfault variable is set to the PC of the custom page fault
handler before execution of potentially faulting code. On apage
fault, the kernel’s page fault handler overwrites the interrupt re-
turn address on stack withpcb onfault.

nels implementing RAS can cause execution of native
code as they could potentially overwrite the interrupt’s
return address with a native value. A similar pattern in-
volving overwriting of the interrupt return address by
the handler is also present in the BSD kernels, namely
FreeBSD, NetBSD, and OpenBSD. The pattern is shown
in Figure 4. As explained in the figure, this is done
to allow kernel subsystems to install custom page fault
handlers for themselves. As another example of a sim-
ilar pattern, Microsoft Windows NT Structured Excep-
tion Handling model supports atry/ except con-
struct which registers the exception handler specified
by the except keyword with the code in the try
block. These constructs are implemented by maintain-
ing per-thread stacks of exception frames; on entry to a
try/ except block, an exception frame containing

the exception handler pointer is pushed to this stack and
on function return, this exception frame is popped off
the stack. If an exception occurs, the kernel’s exception
handler (e.g., page fault handler) traverses this exception
stack top-to-bottom to find and execute the appropriate
except handler3. Because on an exception inside the
try block, the kernel’s exception handler overwrites

the excepting PC, our DBT design can incorrectly cause
execution of native untranslated code.

Fortunately, such patterns are few, and can be usu-

3On non-x86 architectures (e.g., ARM, AMD64, IA64), a some-
what different implementation fortry/ except is used. A static
exception directory in the binary executable contains information
about the functions and theirtry/ except blocks. On an excep-
tion, the call stack is unwound and the exception directory is consulted
for each unwound frame to check if a handler has been registered for
the excepting PC.

ally handled as special cases. On Linux for example,
the kernel allows loadable modules to register custom
exception tables at load time, to extend similar function-
ality to loadable modules. On a page fault, the fault-
ing PC is also checked against the modules’ exception
tables. For our DBT implementation, we ensure that
the code cache addresses corresponding to the functions
that already existed in kernel’s exception table belong
to our module’s exception table. This ensures correct
behaviour on kernel page faults. Similarly, DBT for ker-
nels implementing RAS can be handled by manipulating
the RAS registry to also include the translated RAS re-
gions. The exception directory in Microsoft Windows
for non-x86 architectures can be handled similarly. Fur-
ther, to avoid execution of native code after interrupt
return, due to overwriting of return address by a han-
dler (e.g., custom page fault handler installation in BSD
kernels), theiret instruction can be translated to also
check the return address; if the return address does not
belong to the code cache, indicating overwriting by the
handler, the translator should jump to the dispatcher to
perform the appropriate conversion to its corresponding
translated code cache address4.

In general, we believe that for a well-designed kernel,
any interrupt or exception handler whose behaviour de-
pends on the value of the interrupted PC value, should
ideally also allow a loadable module to influence the
handler’s behaviour, because the PC values of the mod-
ule code are only determined at module load time. For
example, Linux provides the module exception table for
page fault handling. This allows a DBT module to inter-
pose without violating kernel invariants. In cases where
such interposition is not possible, our DBT design will
fail.

In some kernels, we also found instances where an
excepting PC address is compared for equality with a
kernel function address in the exception handler. These
checks against hardcoded addresses (as opposed to a ta-
ble of addresses as in Linux), pose a special problem,
as it is no longer possible for the DBT module to ma-
nipulate these checks. Fortunately, such patterns are
rare, and are primarily used for debugging purposes.
If such patterns are known to exist, special checks can
be inserted at interrupt entry (by appropriately translat-
ing the first basic block pointed to by the interrupt de-
scriptor table) to compare the interrupted PC pushed on
stack against translations of these hardcoded addresses.
If found equal, the PC pushed on stack should be re-
placed by their corresponding native code address. Sim-

4If the code cache is allocated in a contiguous address range,this
translation ofiret to check the return address is cheap (4-8 instruc-
tions). This is much faster than converting native addresses to trans-
lated addresses on every interrupt return, as done in previous DBT
designs.

OS Unconventional uses of the interrupted/excepting
PC value pushed on stack by hardware

Linux Found one check against a table of addresses (excep-
tion table) in page fault handler.

MS Windows try()/ catch() blocks implemented by
maintaining per-thread stacks of exception frames.

FreeBSD Found three equality checks against hardcoded func-
tion addresses. Found two more uses for debugging
purposes. Implements RAS. Overwrites return ad-
dress to implement custom page fault handlers.

OpenBSD Implements RAS. Overwrites return address to im-
plement custom page fault handlers.

NetBSD Found two uses for debugging purposes. Implements
RAS. Overwrites return address to implement cus-
tom page fault handlers.

BarrelFish Found no such use.
L4 Found two equality checks against harcoded function

addresses in page fault handler.

Table 1: Unconventional uses of the interrupt return address (in
ways that need special handling in our DBT design) found in the
kernels we studied.

ilar checks should be added on interrupt return with ap-
propriate conversion from native address to its translated
counterpart, if needed. Notice that these special-case
checks are much cheaper than translations from native
addresses to code cache addresses and vice-versa on ev-
ery interrupt entry and return respectively, as done in
previous designs.

Table 1 summarizes our survey findings regarding the
use of the interrupted PC address on stack in various ker-
nels. In summary, we allow fast execution of the com-
mon case (where interrupted PC value is not read or writ-
ten), and use special-case handling for the few design
patterns where the PC value is known to be read/written
in unconventional ways.

The second correctness concern has to do with the
presence of code cache addresses in the kernel’s data
structures. For example, if an interrupt occurs while the
translated kernel is executing in the code cache, the code
cache address would be pushed on the kernel stack. If
the executing thread then gets context-switched out, the
code cache address would continue to live in the kernel
data structures. If the code cache address becomes in-
valid in future (due to cache replacement, for example),
this can cause a failure.

To solve this problem, we ensure that code cache ad-
dresses do not become invalid until they have been re-
moved from all kernel data structures. Firstly, we disal-
low cache replacement; we assume that the space avail-
able for code cache is sufficient to store translations of
all kernel code. This is not an unreasonable assumption;
for example, we use a code cache of 10MB which is suf-
ficient for the Linux kernel, whose entire code section
(including code of loadable modules) is typically less

than 8MB in size. There may be corner cases, where the
size of the code cache may exceed the available space
(for example, due to repeated loading and unloading of
modules); we discuss how to handle such situations in
Section 4.4. Secondly, once a code block is created in
the code cache, we do not move or modify it (except
the one-time patch for direct branch chaining). This en-
sures that a code cache address, once created, remains
valid for the lifetime of the translated execution. Fur-
ther, translator switchoff needs to be handled carefully
— all code cache addresses should be removed from
kernel data structures before effecting a switchoff (see
Section 4.4).

The third correctness concern is regarding violation of
precise exception and interrupt behaviour. Interestingly,
none of the kernel exception handlers we encountered,
depend on precise exception behaviour. In practice, the
kernel exception handlers at most examine the contents
(opcode and operands) of the instruction at the faulting
PC to make control flow decisions. As long as the trans-
lated code does not cause any extra exceptions or does
not suppress any exception that would have occurred in
native code, the system behaves correctly. Similarly, the
kernel never depends on the PC value for interrupt han-
dling and is thus indifferent to violation of precise inter-
rupts. The handlers are also indifferent to the values of
other registers (that are not used by the faulting instruc-
tion) at interrupt/exception time5.

4 Design Subtleties

4.1 Reentrancy and Concurrency

Consider a CPU executing inside the dispatcher. An in-
terrupt or exception at this point could result in a fresh
call to the dispatcher, to translate the code in the inter-
rupt/exception handler. Similarly, consider a CPU exe-
cuting in the code cache. The translated code for an in-
struction could have multiple instructions and could po-
tentially be using temporary memory locations (scratch
space) to store intermediate values (e.g., our translation
of the indirect branch instruction uses two scratch space
locations). An interrupt/exception in the middle of the
translated code could result in race conditions on ac-
cesses to this scratch space. We call these reentrancy
problems.

In previous work, reentrancy problems were simpli-
fied because their designs ensured precise exceptions
and interrupts. An interrupt or exception was serviced

5System calls depend on register values, but they are implemented
as software exceptions in user mode, and we are discussing hardware
exceptions/interrupts received in kernel mode; interrupts/exceptions
received in user mode are irrelevant to our design as DBT doesnot
influence user-mode behaviour.

restore guest registers/stack
restore guest flags (interrupts may get enabled)
jmp *%per_cpu:tx-nextpc-loc

Figure 5: The code to exit the dispatcher and enter
the code cache attx-nextpc (which is the value stored in
tx-nextpc-loc). As discussed later,tx-nextpc-loc is a per-
cpu location accessed using the per-cpu segment.

only after the state of the system reached a native in-
struction boundary; this meant that a handler (or a dis-
patcher call made by it) never observed intermediate
state. Our design is different, and we discuss the result-
ing challenges and their solutions.

Firstly, we disallow interrupts and exceptions inside
dispatcher execution. Exceptions are disallowed by de-
sign; none of the dispatcher instructions are expected to
generate exceptions, and page faults are absent because
all kernel code pages are expected to be mapped. We
also never interpret kernel code within the dispatcher.
Interrupts are disallowed by clearing the interrupt flag
(usingcli instruction) before entering the dispatcher.
To avoid clobber, the kernel’s interrupt flag is saved on
dispatcher entry and restored on dispatcher exit. (Notice
the clearing of interrupt flag in Figures 2 and 3).

At dispatcher exit (code cache entry), the kernel’s
flags need to be restored inside the dispatcher before
branching to the code cache. This presents a catch-
22 situation: restoring kernel flags could cause inter-
rupts to be enabled and thus to preserve reentrancy, there
should not be any accesses to a dispatcher memory lo-
cation after that; and yet we need some space to store
tx-nextpc (the code cache address to jump to). Fig-
ure 5 shows the code at dispatcher exit. Notice that
at the last indirect branch in this code,tx-nextpc
cannot be stored in a register (because the registers are
supposed to hold the kernel’s values at this point), and
cannot be stored on stack (because the stack should
not be any different from what the kernel expects it to
be). tx-nextpc is instead stored at a per-CPU loca-
tion calledtx-nextpc-loc (a per-CPU location in
the kernel is a location that has separate values for each
CPU; we discuss the need fortx-nextpc-loc to be
per-CPU later in our discussion on concurrency). This
code at dispatcher exit is non-reentrant because an in-
terrupt after guest flags are restored and before the last
indirect branch to*tx-nextpc-loc executes, could
clobbertx-nextpc-loc.

To solve this problem, we save and restore
tx-nextpc-loc at interrupt entry and exit respec-
tively. Thus, this one dispatcher memory location has
special status. The translation of the first block of
all interrupt/exception handlers is augmented to save
tx-nextpc-loc to stack, and the translation of the
last code block before returning from an interrupt (iden-

tified by the presence of theiret instruction) is aug-
mented to restoretx-nextpc-loc from stack. Be-
cause some of the interrupt state on stack is pushed
by hardware (e.g., code segment, program counter, and
flags), simply adding anotherpush instruction at inter-
rupt entry (to savetx-nextpc-loc) will not work, as
that will destroy the interrupt frame layout on stack. On
Linux, we identified a redundant location in the stack’s
interrupt frame structure, and used it to save and restore
tx-nextpc-loc on interrupt entry and return respec-
tively6. If a redundant stack location cannot be identi-
fied, the interrupt frame pushed by hardware could be
“shifted-down” by one word at interrupt entry (by emit-
ting appropriate code on the interrupt entry path), thus
creating space above to savetx-nextpc-loc. On
interrupt return,tx-nextpc-loc could be restored
from this location, before “shifting-up” the hardware’s
interrupt frame and executingiret. Alternatively, if
modifications to guest’s source code are possible, an ex-
tra field could be added to the interrupt frame structure
for this purpose.

Next, we consider reentrancy problems due to in-
terruption in the middle of a translation in the code
cache. To address this, we need to ensure that accesses
to scratch space (used in translated code) are reentrant.
We mandate that any extra scratch space required by a
translation rule should be allocated on the kernel’s thread
stack. Thepush andpop instructions are used to create
and reclaim space on stack. Because a kernel follows the
stack abstraction (i.e., no value above the stack pointer is
clobbered on an interrupt), this ensures reentrant scratch
space behaviour. Because typical space allocation for
kernel stacks (8KB on Linux) is comfortably more than
its utilization, there is no danger of stack overflow due
to the small extra space used by our translator.

Finally, accesses to the jumptable need to be reentrant.
In Figure 3 which shows the translated code of an indi-
rect branch, consider a situation where the thread exe-
cuting this translation gets interrupted after it has deter-
mined thatnextpc exists in the jumptable and before
it reads the value oftx-nextpc from its location. If
the interrupt handler gets to run in between, its transla-
tion could cause addition of new entries to the jumptable,
potentially replacing the mapping betweennextpc and
tx-nextpc (that has already been read). Now, when
the interrupted thread resumes, it would read an incor-
recttx-nextpc (because it had previously determined
thatnextpc exists in the table although it has been re-
placed now), causing a failure. We fix this problem by

6On Linux, the interrupt frame field to save and restore the%ds
segment selector is redundant, because the value in%ds register is
never overwritten by an interrupt/exception handler. Thus, we translate
the instructions that save and restore%ds to instructions that save and
restoretx-nextpc-loc instead.

cmp %reg1, %reg2
jcc .edge0
cmp %reg3, %reg4
jcc .edge1
mov %reg3, %reg2
jmp .edge2

.edge0: save_registers_and flags
clear interrupts
set nextpc
jump to dispatcher

.edge1: ... (similar to .edge0)

.edge2: ... (similar to .edge0)

Figure 6: The translated (pseudo) code generated for a code
block involving multiple conditional branches (jcc).

clearing the interrupt flag before executing the jumpt-
able lookup logic, and restoring it before branching to
tx-nextpc, as shown in Figure 3. This was the most
subtle issue we encountered in our design.

To avoid concurrency issues arising from execution
by multiple CPUs simultaneously, we maintain CPU-
private data structures: the dispatcher executes on a
CPU-private stack, all temporary variables are stored
on the stack, and per-CPU jumptables for indirect
branches are used. The dispatcher code is also reen-
trant and thread-safe (no global variables). The spe-
cial tx-nextpc-loc variable is also maintained per-
CPU. The only inter-CPU synchronization required is
for mutual exclusion during addition of blocks to the
shared code cache7.

4.2 Code Cache Layout

Figure 6 shows an example of a code block with multi-
ple conditional branches. Notice thatjcc instructions
initially point to the corresponding “edge” code (code
which setsnextpc and branches to the dispatcher). On
the first execution of this edge code, the target of thejcc
instruction is replaced to point to a code cache address
(direct branch chaining). After direct branch chaining,
the code cache layout looks very similar to the native
code layout, differing only at block termination points.

We experimentally found that the extra edge code in-
troduced for each block results in poorer spatial locality
for the instruction cache. This edge code is executed
only once at the first execution of the corresponding
branch, but shares the same cache lines as frequently ex-
ecuted code. We fix this situation by allocating space for
the edge code from a separate memory pool. This allows
better icache locality for frequently executed code in the

7The cost of this synchronization is small because additionsto the
code cache are relatively rare in steady state. This synchronization
could have been avoided by using multiple per-CPU code caches but
that results in poor icache performance as also discussed inSection 4.2.

code cache. In our experiments, we observed a notice-
able performance improvement after this optimization.

We also found that multiple code copies resulting
from CPU-private code caches result in poor icache be-
haviour. For this reason, we use a shared code cache
among CPUs. This does not result in concurrency issues
because instructions in code cache are read-only, except
the one-time patching of branch instructions for direct
branch chaining.

4.3 Function call/return optimization

Our design eliminates most DBT overheads; the biggest
remaining overhead is that of indirect branch handling.
Each indirect branch is translated into code to first gen-
eratenextpc, then lookup the jumptable in assembly,
and finally, if the jumptable misses, branch to the dis-
patcher. Even if the jumptable always hits, 2-3x slow-
downs are still observed on code containing a high per-
centage of indirect branches. The most common type of
indirect branches are function returns (ret instruction
on x86). We optimize by using identity translations for
call andret instructions. In doing so, we let a func-
tion call push a code cache address to the stack; at func-
tion return, the thread simply returns to the pushed code
cache address. This optimization works because after
the kernel has fully booted, the return address on stack
is only accessed using bracketed call/return instructions.
We find that this optimization yields significant improve-
ments.

Because this optimization uses the identity transla-
tion for ret, all calls mustpush only code cache ad-
dresses. This poses a special challenge for calls with
indirect operands. Indirect calls of the type “call

*REG” and “call *MEM” are supported on the x86 ar-
chitecture. Without the call/ret optimization, handling
of these instructions is straightforward: the target ad-
dress (nextpc) is obtained at runtime, the jumptable is
searched, and if the jumptable hits, the address of thena-
tive return address is pushed to the stack, and a branch
totx-nextpc is executed. If the jumptable misses, the
code still pushes the native return address to stack, sets
nextpc and then exits to the dispatcher; the dispatcher
convertsnextpc to tx-nextpc and jumps to it.

With our call/ret optimization, this translation of indi-
rect calls becomes more difficult. First,nextpc is ob-
tained at runtime from the operands of the indirect call
instruction, and the jumptable is indexed to try and ob-
tain tx-nextpc. If the jumptable hits, the address of
the code cache addresscorresponding to thenative re-
turn address(let’s call thistx-retaddr) needs to be
pushed to stack. The code at the native return address
may not have been translated yet, and sotx-retaddr
may not even be known at this point. To handle this, on

set nextpc
obtain tx-nextpc from jumptable
if not found, jump to .miss
call tx-nextpc
<<jmp tx-retaddr>>

.miss: call dispatcher-entry
<<jmp tx-retaddr>>

Figure 7: The translation code for an indirect call instruc-
tion of the type “call *MEM” or “ call *REG”, with call/ret
optimization. The “<<jmp tx-retaddr>>” line represents the
full direct branch chaining code (as shown in Figure 2), replacing
tx-retaddr for tx-nextpc (and retaddr for nextpc).

the jumptable hit path, we emit a “call tx-nextpc”
instruction immediately followed by an extra uncondi-
tional direct branch totx-retaddr (see Figure 7).
This extra unconditional direct branch totx-retaddr
is supplemented by code to branch to the dispatcher if
tx-retaddr is not known (similar to how it is done
for any other direct branch through “direct branch chain-
ing”). A “ <<jmp tx-retaddr>>” line in Figure 7
represents the full direct branch chaining code (as shown
in Figure 2) for branching totx-retaddr.

If the jumptable misses fornextpc, the dispatcher
is burdened with having to pushtx-retaddr to stack
before branching totx-nextpc. We handle this case
by using acall instruction to exit to the dispatcher (in-
stead of using thejmp instruction), thus pushing the ad-
dress of the code cache instruction following thecall
instruction to stack. The dispatcher proceeds as before,
convertingnextpc to tx-nextpc and then jumping
to it. A future execution of theret instruction will
return control to the instruction following the call-into-
dispatcher instruction. At this location, we emit a direct
unconditional branch totx-retaddr using the same
direct branch chaining paradigm, as used for a jumpt-
able hit (see Figure 7).

Note that this call/ret optimization allows code cache
addresses to live on globally visible kernel stacks. This
global visibility of code cache addresses is acceptable
in our design, but will fail if used with previous designs
which allow code cache replacement.

4.4 Translator Switchoff and Cache Re-
placement

Our design creates more complications at switchoff. Be-
cause we store code cache addresses in kernel stacks,
we must wait for all such addresses to be removed be-
fore overwriting the code cache. To ensure this, we it-
erate over the kernel’s list of threads, replacing PC val-
ues on each thread’s stack to their translated/native val-
ues at switchon/switchoff respectively. At switchon, if
the translated value of a PC does not already exist, the
translation is generated before replacing the value. The

PC values are identified by following the stack’s frame
pointers.

Finally, we discuss code cache replacement. As dis-
cussed previously, we do not allow code cache blocks
to get replaced in normal operation. It is possible to hit
the code cache space limit if translation blocks are fre-
quently created and later invalidated (e.g., due to module
loading and unloading). If we hit the code cache space
limit, we switchoff the translator and switch it back on
to wipeout the code cache to create fresh space. We only
need to ensure that no kernel code is executed between
the switchoff and switchon; this is done by pausing all
CPUs at a kernel entry (except the CPU on which the
switchoff/switchon routine is running) till the new cache
is operational. We expect such translator reboots to be
rare in practice.

5 Implementation and Results

For evaluation, we discuss our implementation, experi-
mental setup, single-core performance, scalability with
number of cores, and DBT applications. We finish with
a design discussion.

5.1 Implementation

Our translator is implemented as a loadable kernel mod-
ule in Linux. The module exports DBT functional-
ity by exposingswitchon() and switchoff()
ioctl calls to the user. Aswitchon() call on
a CPU replaces the current interrupt descriptor ta-
ble (IDT) with its translated counterpart. Similarly,
the switchoff() call reverts to the original IDT.
We also provideinit() and finalize() calls.
The init() call preallocates code cache memory
and initializes the translator’s data structures, and the
finalize() call deallocates memory after ensuring
that there are no code cache addresses in kernel data
structures.

A user level program is used to start and stop the
translator on all CPUs. To start, the program calls
init() in the beginning. To stop, the program calls
finalize() at the end. In both cases, the program
spawnsn threads (wheren is the number of CPUs on the
system), pins each thread to its respective CPU (using
setaffinity() calls), and finally each thread exe-
cutesswitchon()/switchoff() (for start/stop re-
spectively).

For efficiency, we use a two-level jumptable. Lookup
to the first level jumptable does not involve hash colli-
sion handling and is thus faster. The second level jumpt-
able is indexed only if the first level jumptable misses.
The second level uses linear probing for collision han-

dling and allows up to 4 collisions for a hash location.
The most recent access at a location is moved to the front
of the collision chain for faster future accesses.

Our code generator is efficient and configurable. It
takes as input a set of translation rules. The translation
rules are pattern matching rules; patterns can involve
multiple native instructions. Our code generator allows
codification of all well-known instrumentation applica-
tions. Our implementation is stable and we have used it
to translate a Linux machine over several weeks without
error. Our implementation is freely available for down-
load as a tool called BTKERNEL [1].

5.2 Experimental Setup and Benchmarks

We ran our experiments on a server with 2x6 Intel Xeon
X5650 2.67 GHz SMP processor cores, 4GB memory,
and 300GB 15K RPM disk. For experiments involv-
ing network activity, our client ran on a machine with
identical configuration connected through 10Gbps eth-
ernet. We compare DBT slowdowns of our imple-
mentation with the slowdowns reported in DRK and
VMware’s VMM. We could not make direct compar-
isons as we did not have access to DRK; and VMware’s
VMM uses more virtualization mechanisms like shadow
page tables, which make direct comparisons impossible.
Hence, to compare, we use the same workloads as used
in the DRK paper [10] (with identical configurations).

All our benchmarks are kernel-intensive; the perfor-
mance overhead of our system on user-level compute-
intensive benchmarks is negligible, as we only inter-
pose on kernel-level execution. We evaluate on both
compute-intensive and I/O-intensive applications. I/O-
intensive applications result in a large number of inter-
rupts, and are thus expected to expose the gap between
our design and previous approaches. Some of our work-
loads also involve a large number of exceptions/page
faults.

We use programs in lmbench-3.0 and
filebench-1.4.9 benchmark suites as workloads.
We also measure performance forapache-2.2.17
web server withapachebench-2.3 client, using
500K requests and a concurrency level of 200. We
also compare performance overheads during the com-
pilation of a Linux kernel source tree; an example of
a desktop-like application with both compute and I/O
activity.

We plot performance for two variants of our trans-
lator: default (all optimizations are enabled),
no-callret (all except call/ret optimization are en-
abled). We also implement a profiling client (prof)
to count the number of instructions executed, the num-
ber of indirect branches, the number of hits to the
jumptables (first and second level), and the number of

System(s) User(s) Wall(s)
native.1 249 3633 4280
default.1 235 3625 4257
prof-default.1 263 3631 4295
no-callret.1 417 3647 4565
prof-no-callret.1 504 3670 4666
native.12 275 3704 573
default.12 273 3702 555
prof-default.12 304 3698 560
no-callret.12 491 3726 590
prof-no-callret.12 573 3740 594

Table 2: Linux build time for 1 and 12 CPUs

dispatcher entries. The corresponding results are la-
beledprof-default (all optimizations enabled) and
prof-no-callret (all except call/ret optimization
enabled) in our figures. Table 3 lists the profiling statis-
tics obtained using theprof client.

5.3 Performance

We first discuss the performance overhead on a single
core. Figures 8, 9, and 12 plot our performance results.
All these workloads intensely exercise the interrupt and
exception subsystem of the kernel. The “fast” kernel op-
erations in Figure 8 exhibit less than 20% overhead, ex-
ceptwrite (35% overhead) andread (25% overhead).
We find 11% improvement inProtection(Prot).
Figure 9 plots the performance of fork operations in
lmbench. Here, we observe 1-1.5% performance im-
provement with DBT. Similarly, Figure 12 plots the per-
formance on communication-related microbenchmarks.
DBT overhead is higher fortcp (69%) andsock
(22%); for others, overhead is less than 15%. DRK ex-
hibited 2-3x slowdowns on all these programs. These
experiments confirm the high performance of our design
on workloads with high interrupt and exception rates.

5.4 Scalability

To further study the scalability and performance of our
translator, we plot performance of different programs
with increasing number of processors. Figures 10 and 11
plot the throughput offilebench programs with in-
creasing number of cores. To eliminate disk bottlenecks,
we used RAMdisk for these experiments. As expected,
the throughput increases with more cores, but our trans-
lation overheads remain constant. This confirms the
scalability of our design (CPU-private structures, min-
imal synchronization). Interestingly, our translator re-
sults in performance improvements of up to 5% for
fileserver on 8 processors. For otherfilebench
workloads, DBT overhead is between 0-10%.

Figure 13 shows the throughput ofapache web-
server, when used withapachebench client over net-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Pgfault Prot fstat install open ovrhead read stat syscall write

T
im

e(
M

ic
ro

se
c)

native
default
prof−default
no−callret
prof−no−callret

Figure 8: lmbench fast operations

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

execve exit sh

T
im

e
(M

ic
ro

s
e

c
)

native
default
prof−default
no−callret
prof−no−callret

Figure 9: lmbench fork operations

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

fsrv.1 fsrv.4 fsrv.8 fsrv.12 wsrv.1 wsrv.4 wsrv.8 wsrv.12

T
h

ro
u

g
h

p
u

t(
o

p
s
/s

)

native
default
prof−default
no−callret
prof−no−callret

Figure 10: filebench on 1, 4, 8, and 12 processors:
fileserver(fsrv) and webserver(wsrv)

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

vmail.1 vmail.4 vmail.8 vmail.12 wpxy.1 wpxy.4 wpxy.8 wpxy.12

T
h

ro
u

g
h

p
u

t(
o

p
s
/s

)
native
default
prof−default
no−callret
prof−no−callret

Figure 11: filebench on 1, 4, 8, and 12 processors:
varmail(vmail) and webproxy(wpxy)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100_fd 100_tcp 250_fd 250_tcp 500_fd 500_tcp Pipe sock

T
im

e
(M

ic
ro

s
e

c
)

native
default
prof−default
no−callret
prof−no−callret

Figure 12: lmbench communication related operations

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

apache.1 apache.2 apache.4 apache.8 apache.12

T
h

ro
u

g
h

p
u

t(
k
b

p
s
)

native
default
prof−default
no−callret
prof−no−callret

Figure 13: Apache on 1, 2, 4, 8, and 12 processors

Without Call Optimization With Call Optimization
Total Indirect Jumptable1 Jumptable2 DispatcherTotal Indirect Jumptable1 Jumptable2 Dispatcher
(x1B) (x1M) (x1K) (x1K) Entries (x1B) (x1M) (x1K) (x1K) Entries

fileserver 56.54 1285.55 1234107 51205 238907 94.51 337.49 330934 6562 17
webserver 62.25 1335.91 1289146 46674 94351 98.50 401.15 393973 7179 12
webproxy 62.19 1337.71 1287155 50389 169203 100.1 406.47 398994 7485 4
varmail 65.07 1395.25 1337528 57503 224263 109.7 448.73 439561 9170 8

linux build 569.1 16038.0 15622945 342962 72153153589.9 626.30 613978 12302 33059
apache 55.65 1650.14 1469932 173057 7158220 59.10 202.18 171743 30445 125
tcp500 0.142 3.316 3311 4 1344 0.268 1.934 1934 1 0
pgfault 5.294 158.631 158617 12 2835 5.836 6.915 6915 1 2

Table 3: Statistics on the total number of instructions executed, number of indirect instructions executed, number of first-level and
second-level jumptable hits, and the number of dispatcher entries with and without call/ret optimization (obtained by prof client). Values
in columns labeled(x1B) are to be multiplied by one billion, labeled(x1M) are to be multiplied by one million and labeled(x1K) are to
be multiplied by one thousand.

work. DBT overheads are always less than 12%. We
observe performance improvement of 17% (for 8 pro-
cessors) and 2.5% (for 1 processor) onapache. DRK
reported 3x overhead for this workload. Table 2 shows
the time taken to build the Linux source tree using
“make -j” with and without translation. The time
spent in kernel while building Linux improves by 5.6%
on one processor, and exhibits near-zero overhead on 12
processors.

Fair comparisons with VMware’s VMM are harder,
because VMware’s VMM also implements many other
virtualization mechanisms, namely shadow page tables,
device virtualization, etc. However, we qualitatively
compare our results with those presented in the VMware
paper [2]. The VMware paper reported roughly 36%
overheads for Linux build (compared with -5.6% us-
ing our tool) and 58% overhead forapache (compared
with 12% using our tool).

All our performance results confirm that call/ret op-
timizations result in significant runtime improvements.
Table 3 reports statistics on the number of indirect
branches (that needed jumptable lookups) with/without
the call/ret optimization on a single core. Clearly, the
majority of indirect branches are function returns. We
also present jumptable hit rates (for both levels) and the
number of dispatcher entries for different benchmarks in
the table. These statistics were generated in steady state
configuration, when the code cache has already warmed
up. Without call/ret optimization, the jumptable hit rates
for apache were 99.56% (89.07% first level, 10.48%
second level). With call/ret optimization, the jumptable
hit rates were always above 99.99% (84.94% first level,
15.05% second level). In all our experiments, the num-
ber of dispatcher entries was roughly equal to the num-
ber of jumptable misses.

5.5 Applications

To test functionality, we successfully implemented a
shadow memory client using our translator. Our shadow
memory implementation maintains type information for
each byte in the shadow byte, and this type informa-
tion flows through memory and registers based on in-
struction logic. More rules were added to our transla-
tion rulebook to implement shadow memory functional-
ity. We modified the kernel to reserve space for shadow
memory. We used shadow memory to implement two
analyses, namely addressability-checking and sharing-
statistics. Like previous work [10], we successfully
used addressability checking to ascertain the absence
of double-free errors. It is worth noting that relaxing
transparency does not effect DBT functionality; our plat-
form is equally usable for bug-finding, or any other type
of instrumentation-based analyses. We discuss our sec-
ond analysis (sharing-statistics) in more detail. For each
memory byte, we store in shadow memory its sharing
behaviour. In particular, we distinguish CPU-private
bytes from CPU-shared bytes. We also track the IDs
of the CPUs that accessed that byte and their access type
(read-only/read-write). In future work, we are using this
information to implement efficient multiprocessor VM
record/replay.

To implement fast shadow memory, we allocate a
shadow byte at a constant offset from its corresponding
physical memory byte. All page table updates are inter-
cepted to make appropriate mappings for shadow mem-
ory in virtual address space. The kernel is run translated
and each memory instruction is translated to also update
the corresponding shadow bytes. Each shadow byte con-
tains two bits per CPU representingnot-accessed,
read-only-access, andread-write-access
states (for a maximum of 4 CPUs). On every memory
access, our instrumented code updates the appropriate
bits in the corresponding shadow bytes. Because the in-
strumentation code could clobber CPU flags, we gener-

Num.
proc.

read-
only
private
KB

read-
only
shared
KB

read-
write
private
KB

read-
write
shared
KB

System
time
over-
head

1 119.9 0 394,810 0 2.3x
2 130.9 96.1 392,790 1919 3.2x
4 120.5 93.8 392,650 2302 2.7x

Table 4: Sharing statistics and corresponding performance over-
heads onRadix running on 1, 2, and 4 processors.

ate code to save/restore flags. We minimize these saves
and restores by performing block-level liveness analy-
sis for flags. We also assume that all stack accesses
(accesses going through registersrsp and rbp) are
CPU-private and thus do not need to be instrumented.
Some translations require temporary registers (i.e., reg-
isters that are not present in the native instruction but are
needed to store temporary values in the translation); we
perform a conservative block-level liveness analysis to
intelligently choose these temporary registers at transla-
tion time. Instructions with repeat prefix are translated to
generate the equivalent code in software. We tested our
implementation extensively by running it for different
workloads and comparing results. Table 4 and Table 5
presents kernel’s byte-level sharing statistics obtained
for Radix (from SPLASH-2 [18]) andfileserver
(from filebench-1.4.9) respectively.Radix has
a large memory footprint and exhibits significant ker-
nel activity due to demand paging. These statistics sug-
gest that a large fraction of kernel’s memory footprint is
CPU-private. We found that generating such statistics at
page granularity using page table manipulation (as op-
posed to byte granularity as done in our shadow mem-
ory implementation), presents significantly different re-
sults due to false sharing within a page. Generating such
statistics through interpretation-based emulators is also
error-prone due to the large perturbation in timing be-
haviour during emulation. The last column in Table 4
and Table 5 lists the performance overhead of our shar-
ing analysis. Our performance overheads are signifi-
cantly lower than the 10x overhead of DRK’s shadow
memory implementation [10]. The improvements are
due to a combination of a faster kernel-level DBT frame-
work and an optimized shadow memory implementa-
tion.

6 Discussion

In summary, our fast DBT design has the following
salient features:

• We avoid back-and-forth translation of inter-
rupted/excepting PCs between native and translated

Num.
proc.

read-
only
private
KB

read-
only
shared
KB

read-
write
private
KB

read-
write
shared
KB

through-
put wrt
native

1 274.4 0 460,436 0 43.6%
2 332.1 696.0 427,513 29,664 63.9%
4 378.8 1020.2 387,916 50,199 89.4%

Table 5: Sharing statistics and corresponding performance over-
heads onFileserver running on 1, 2, and 4 processors.

values, on interrupt entry and return.
• We assume a large enough code cache, so it can fit

all kernel code and does not need cache replace-
ment during normal operation.

• We relax precision requirements on exceptions and
interrupts.

• We maintain temporary DBT state on kernel thread
stacks and use a reentrant dispatcher.

• We use a cache aware layout for the code cache.
• We use identity translations for function call and

return instructions.

Evidently, our DBT design requires knowledge about
guest OS internals, to handle special cases appropriately.
We also require the guest to obey certain invariants:

• The guest should read the interrupted/excepting
PC value (pushed on stack by hardware) mostly
through the return-from-interrupt instruction and
should be otherwise indifferent to it, except special
cases that can be handled specially.

• The guest should not depend on precise exceptions
and interrupts.

• The guest should allow a module to access the ker-
nel’s list of threads and their call stacks, to allow
translation of return address PCs to translated and
native values at switchon and switchoff times re-
spectively.

• The guest must obey the stack discipline.
• After it has booted, the guest must use function re-

turn addresses only through bracketed call/return
instructions, to allow call/ret optimization.

For these reasons, our design is inappropriate for use
in VMMs expected to runany guest OS. Our scheme
can be used however to improve performance forspe-
cific guest operating systems, using a custom guest-side
kernel module in VMMs. Also, our scheme improves
performance for several other DBT applications like in-
strumentation, testing, architecture compatibility, profil-
ing, sandboxing, and dynamic code optimization. On
the other hand, some applications which anticipate un-
conventional guest OS behaviour may not work with our
DBT design. For example, it may not be desirable to use

our framework for certain security-related applications
(e.g., rootkit analysis); such applications may require
full transparency to hide from a malicious program, and
our framework may violate this requirement.

7 Related Work

User-level DBT frameworks are well understood, with
many different systems built on similar techniques: Dy-
namoRio [6], Pin [13], Valgrind [15], vx32 [11], etc.
User-level DBT requires stricter transparency require-
ments, as few assumptions can be made on user program
behaviour. In contrast, we show that it is possible to rely
on typical kernel behaviour to provide design simplicity
and performance for kernel-level DBT.

JIFL [16] is a kernel-level DBT framework that pro-
vides an API to instrument system calls. JIFL does not
instrument interrupt handlers and kernel threads, making
it less comprehensive than our work. Similarly, PinOS
is a whole-system instrumentation framework to instru-
ment a guest running paravirtualized in a Xen hypervi-
sor [9], based on the Pin [13] instrumentation frame-
work. Firstly, running in a virtual machine limits exe-
cution coverage, as only device drivers for virtual de-
vices get executed. An instrumentation framework for
a bare-metal OS (such as ours) can execute drivers for
any device, provided the appropriate hardware is avail-
able. Secondly, Pin uses a call-based model of instru-
mentation and so is much slower. PinOS uses similar
mechanisms as DRK and VMware to ensure precise ex-
ceptions and interrupts. With already high DBT over-
heads (of Pin), the small overhead of extra mechanisms
at interrupts and exceptions (of PinOS) is relatively in-
significant.

We compare the differences and similarities between
our work and VMware’s DBT-based VMM [2, 3]
throughout the paper. Unlike VMware, our approach
can instrument all device drivers (and not just drivers
that get exercised in VM environments), and provides
better interrupt/exception performance. However, our
design requires guest-specific knowledge. We believe
(though do not show) that our techniques can be used
in VMMs to improve performance for specific guests,
through custom guest kernel modules (“guest tools”).
Device passthrough configurations on VMware’s DBT-
based VMMs can also benefit from our techniques to
efficiently interpose on device interrupts.

DRK [10] is perhaps the closest to our work, in our
objectives. Unlike DRK, we also provide dynamic trans-
lator switchoff functionality. The primary difference, of
course, is in our design to handle interrupts and excep-
tions; our design is simpler and more performant.

8 Conclusion

We present a new design for a kernel-level binary trans-
lator that is simpler and performs significantly better
than previous work. We take advantage of guest OS
properties to relax unnecessary transparency require-
ments. We have tested our design in a kernel-level bi-
nary translator that is capable of attaching/detaching to
a running Linux kernel. All workloads perform at near-
native speed, in contrast to previous designs which show
2-4x slowdowns on average. We also observe speedups
of up to 17% over native, on some programs. We expect
the low-overhead translation to enable more kernel-level
DBT applications.

Acknowledgements

We thank our anonymous reviewers for their valuable
feedback which helped in making this paper signifi-
cantly better. We especially thank our shepherd Rebecca
Isaacs for her detailed and constructive suggestions that
greatly helped us in preparing a better camera-ready ver-
sion. We are grateful to the wonderful people on the
FreeBSD, NetBSD, Windows and the BarrelFish mail-
ing lists for their prompt and valuable responses to our
queries. We thank DRK [10] authors for the nice fig-
ure in their paper explaining DBT, from which our Fig-
ure 1 is inspired. The first author is partially supported
through the IBM Graduate Fellowship. This work is
partially supported by NetApp’s Faculty Fellowship pro-
gram.

References

[1] BTK ERNEL: Fast Dynamic Bi-
nary Translation for the Kernel.
https://github.com/piyus/btkernel,
as on September 15, 2013.

[2] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. InASPLOS
’06.

[3] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrah-
manyam. The evolution of an x86 virtual machine moni-
tor. SIGOPS Oper. Syst. Rev., 44(4), Dec. 2010.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system.ACM SIG-
PLAN Notices, 35(5):1–12, 2000.

[5] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mutual
exclusion for uniprocessors. InASPLOS ’92.

[6] D. Bruening. Efficient, Transparent and Comprehensive
Runtime Code Manipulation. PhD thesis, MIT, 2004.

[7] D. Bruening, Q. Zhao, and S. Amarasinghe. Transparent
dynamic instrumentation. InVEE ’12.

[8] E. Bugnion. Binary translator with precise exception syn-
chronization mechanism. US Patent 7516453, filed June
2000.

[9] P. P. Bungale and C.-K. Luk. PinOS: a programmable
framework for whole-system dynamic instrumentation.
In VEE ’07.

[10] P. Feiner, A. D. Brown, and A. Goel. Comprehensive
kernel instrumentation via dynamic binary translation. In
ASPLOS ’12.

[11] B. Ford and R. Cox. Vx32: lightweight user-level sand-
boxing on the x86. InUSENIX ATC’08.

[12] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
execution via program shepherding. InUSENIX Security
’02.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with dy-
namic instrumentation. InPLDI ’05.

[14] S. Nagarakatte, S. Burckhardt, M. M. Martin, and
M. Musuvathi. Multicore acceleration of priority-based
schedulers for concurrency bug detection. InPLDI ’12.

[15] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation.SIGPLAN
Not., 42(6):89–100, June 2007.

[16] M. Olszewski, K. Mierle, A. Czajkowski, and A. D.
Brown. Jit instrumentation: a novel approach to dynam-
ically instrument operating systems. InEuroSys ’07.

[17] D. Song et. al. Bitblaze: A new approach to computer
security via binary analysis. InICISS ’08.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and method-
ological considerations. InISCA ’95.

[19] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and
S. Amarasinghe. Dynamic cache contention detection in
multi-threaded applications. InVEE ’11.

[20] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and
W.-F. Wong. How to do a million watchpoints: ef-
ficient debugging using dynamic instrumentation. In
CC’08/ETAPS’08.

