
CAR: Clock with Adaptive Replacement

Sorav Bansal† and Dharmendra S. Modha‡
†Stanford University,‡IBM Almaden Research Center

Emails: sbansal@stanford.edu, dmodha@us.ibm.com

Abstract— CLOCK is a classical cache replacement policy
dating back to 1968 that was proposed as a low-complexity
approximation toLRU. On every cache hit, the policyLRU
needs to move the accessed item to the most recently used
position, at which point, to ensure consistency and correctness,
it serializes cache hits behind a single global lock.CLOCK
eliminates thislock contention, and, hence, can support high
concurrency and high throughput environments such as vir-
tual memory (for example, Multics, UNIX, BSD, AIX) and
databases (for example, DB2). Unfortunately,CLOCK is still
plagued by disadvantages ofLRU such as disregard for
“frequency”, susceptibility to scans, and low performance.

As our main contribution, we propose a simple and elegant
new algorithm, namely,CLOCK with Adaptive Replacement
(CAR), that has several advantages overCLOCK: (i) it is
scan-resistant; (ii) it is self-tuning and it adaptively and
dynamically captures the “recency” and “frequency” features
of a workload; (iii) it uses essentially the same primitives
as CLOCK, and, hence, is low-complexity and amenable to
a high-concurrency implementation; and (iv) it outperforms
CLOCK across a wide-range of cache sizes and workloads.
The algorithmCAR is inspired by the Adaptive Replacement
Cache (ARC) algorithm, and inherits virtually all advantages
of ARC including its high performance, but does not serialize
cache hits behind a single global lock. As our second contri-
bution, we introduce another novel algorithm, namely, CAR
with Temporal filtering (CART), that has all the advantages of
CAR, but, in addition, uses a certain temporal filter to distill
pages with long-term utility from those with only short-term
utility.

I. I NTRODUCTION

A. Caching and Demand Paging

Modern computational infrastructure is rich in exam-
ples of memory hierarchies where a fast, but expensive
main (“cache”) memory is placed in front of a cheap,
but slow auxiliary memory. Caching algorithms manage
the contents of the cache so as to improve the overall
performance. In particular, cache algorithms are of
tremendous interest in databases (for example, DB2),
virtual memory management in operating systems (for
example, LINUX), storage systems (for example, IBM
ESS, EMC Symmetrix, Hitachi Lightning), etc., where
cache is RAM and the auxiliary memory is a disk
subsystem.

In this paper, we study the generic cache replacement
problem and will not concentrate on any specific appli-
cation. For concreteness, we assume that both the cache
and the auxiliary memory are managed in discrete,
uniformly-sized units called “pages”. If a requested

page is present in the cache, then it can be served
quickly resulting in a “cache hit”. On the other hand,
if a requested page is not present in the cache, then it
must be fetched from the auxiliary memory resulting
in a “cache miss”. Usually, latency on a cache miss
is significantly higher than that on a cache hit. Hence,
caching algorithms focus on improving the hit ratio.

Historically, the assumption of “demand paging” has
been used to study cache algorithms. Under demand
paging, a page is brought in from the auxiliary memory
to the cache only on a cache miss. In other words, de-
mand paging precludes speculatively pre-fetching pages.
Under demand paging, the only question of interest is:
When the cache is full, and a new page must be inserted
in the cache, which page should be replaced? The best,
offline cache replacement policy is Belady’sMIN that
replaces the page that is used farthest in the future [1].
Of course, in practice, we are only interested in online
cache replacement policies that do not demand any prior
knowledge of the workload.

B. LRU: Advantages and Disadvantages

A popular online policy imitatesMIN by replacing
the least recently used (LRU) page. So far,LRU and
its variants are amongst the most popular replacement
policies [2], [3], [4]. The advantages ofLRU are that it
is extremely simple to implement, has constant time and
space overhead, and captures “recency” or “clustered lo-
cality of reference” that is common to many workloads.
In fact, under a certain Stack Depth Distribution (SDD)
assumption for workloads,LRU is the optimal cache
replacement policy [5].

The algorithmLRU has many disadvantages:

D1 On every hit to a cache page it must be moved
to the most recently used (MRU) position.
In an asynchronous computing environment
where multiple threads may be trying to move
pages to the MRU position, the MRU position
is protected by a lock to ensure consistency
and correctness. This lock typically leads to
a great amount of contention, since all cache
hits are serialized behind this lock. Such con-
tention is often unacceptable in high perfor-
mance and high throughput environments such
as virtual memory, databases, file systems, and
storage controllers.

D2 In a virtual memory setting, the overhead of
moving a page to theMRU position–on every
page hit–is unacceptable [3].

D3 While LRU captures the “recency” features of
a workload, it does not capture and exploit the
“frequency” features of a workload [5, p. 282].
More generally, if some pages are often re-
requested, but the temporal distance between
consecutive requests is larger than the cache
size, thenLRU cannot take advantage of such
pages with “long-term utility”.

D4 LRU can be easily polluted by a scan, that
is, by a sequence of one-time use only page
requests leading to lower performance.

C. CLOCK

Frank Corbat́o (who later went on to win the ACM
Turing Award) introducedCLOCK [6] as a one-bit
approximation toLRU:

“In the Multics system a paging algorithm has
been developed that has the implementation
ease and low overhead of the FIFO strategy
and is an approximation to the LRU strategy.
In fact, the algorithm can be viewed as a
particular member of a class of algorithms
which embody for each page a shift register
memory length ofk. At one limit of k = 0,
the algorithm becomes FIFO; at the other limit
ask → ∞, the algorithm is LRU. The current
Multics system is using the value ofk = 1,
. . .”

CLOCK removes disadvantages D1 and D2 ofLRU.
The algorithmCLOCK maintains a “page reference bit”
with every page. When a page is first brought into the
cache, its page reference bit is set to zero. The pages
in the cache are organized as a circular buffer known
as aclock. On a hit to a page, its page reference bit
is set to one. Replacement is done by moving aclock
hand through the circular buffer. The clock hand can
only replace a page with page reference bit set to zero.
However, while the clock hand is traversing to find the
victim page, if it encounters a page with page reference
bit of one, then it resets the bit to zero. Since, on a page
hit, there is no need to move the page to theMRU posi-
tion, no serialization of hits occurs. Moreover, in virtual
memory applications, the page reference bit can be
turned on by the hardware. Furthermore, performance
of CLOCK is usually quite comparable toLRU. For
this reason, variants ofCLOCK have been widely used
in Multics [6], DB2 [7], BSD [8], AIX, and VAX/VMS
[9]. The importance ofCLOCK is further underscored
by the fact that major textbooks on operating systems
teach it [3], [4].

D. Adaptive Replacement Cache

A recent breakthrough generalization ofLRU,
namely, Adaptive Replacement Cache (ARC), removes
disadvantages D3 and D4 ofLRU [10], [11]. The algo-
rithm ARC is scan-resistant, exploits both the recency
and the frequency features of the workload in a self-
tuning fashion, has low space and time complexity, and
outperformsLRU across a wide range of workloads and
cache sizes. Furthermore,ARC which is self-tuning has
performance comparable to a number of recent, state-
of-the-art policies even when these policies are allowed
the best, offline values for their tunable parameters [10,
Table V].

E. Our Contribution

To summarize,CLOCK removes disadvantages D1
and D2 ofLRU, while ARC removes disadvantages D3
and D4 ofLRU. In this paper, as our main contribution,
we present a simple new algorithm, namely, Clock with
Adaptive Replacement (CAR), that removes allfour
disadvantages D1, D2, D3, and D4 ofLRU. The basic
idea is to maintain two clocks, say,T1 and T2, where
T1 contains pages with “recency” or “short-term utility”
and T2 contains pages with “frequency” or “long-
term utility”. New pages are first inserted inT1 and
graduate toT2 upon passing a certain test of long-term
utility. By using a certain precise history mechanism
that remembers recently evicted pages fromT1 and
T2, we adaptively determine the sizes of these lists
in a data-driven fashion. Using extensive trace-driven
simulations, we demonstrate thatCAR has performance
comparable toARC, and substantially outperforms both
LRU and CLOCK. Furthermore, likeARC, the algo-
rithm CAR is self-tuning and requires no user-specified
magic parameters.

The algorithmsARC andCAR consider two consec-
utive hits to a page as a test of its long-term utility. At
upper levels of memory hierarchy, for example, virtual
memory, databases, and file systems, we often observe
two or more successive references to the same page
fairly quickly. Such quick successive hits are not a
guarantee of long-term utility of a pages. Inspired by
the “locality filtering” principle in [12], we introduce
another novel algorithm, namely, CAR with Temporal
filtering (CART), that has all the advantages ofCAR,
but, imposes a more stringent test to demarcate between
pages with long-term utility from those with only short-
term utility.

We expect thatCAR is more suitable for disk, RAID,
storage controllers, whereasCART may be more suited
to virtual memory, databases, and file systems.

F. Outline of the Paper

In Section II, we briefly review relevant prior art. In
Sections III and IV, we present the new algorithmsCAR
and CART, respectively. In Section V, we present re-
sults of trace driven simulations. Finally, in Section VI,
we present some discussions and conclusions.

II. PRIOR WORK

For a detail bibliography of caching and paging work
prior to 1990, see [13], [14].

A. LRU and LFU: Related Work

The Independent Reference Model (IRM) captures
the notion of frequencies of page references. Under the
IRM, the requests at different times are stochastically
independent.LFU replaces the least frequently used
page and is optimal under theIRM [5], [15] but has
several drawbacks: (i) Its running time per request is
logarithmic in the cache size. (ii) It is oblivious to
recent history. (iii) It does not adapt well to variable
access patterns; it accumulates stale pages with past
high frequency counts, which may no longer be useful.

The last fifteen years have seen development of a
number of novel caching algorithms that have attempted
to combine “recency” (LRU) and “frequency” (LFU)
with the intent of removing one or more disadvantages
of LRU. Chronologically,FBR [12], LRU-2 [16], 2Q
[17], LRFU [18], [19], MQ [20], andLIRS [21] have
been proposed. For a detailed overview of these algo-
rithms, see [19], [20], [10]. It turns out, however, that
each of these algorithms leaves something to be desired,
see [10]. The cache replacement policyARC [10] seems
to eliminate essentially all drawbacks of the above
mentioned policies, is self-tuning, low overhead, scan-
resistant, and has performance similar to or better than
LRU, LFU, FBR, LRU-2, 2Q, MQ, LRFU, andLIRS–
even when some of these policies are allowed to select
the best, offline values for their tunable parameters–
without any need for pre-tuning or user-specified magic
parameters.

Finally, all of the above cited policies, including
ARC, use LRU as the building block, and, hence,
continue to suffer from drawbacks D1 and D2 ofLRU.

B. CLOCK: Related Work

As already mentioned, the algorithmCLOCK was
developed specifically for low-overhead, low-lock-
contention environment.

Perhaps the oldest algorithm along these lines was
First-In First-Out (FIFO) [3] that simply maintains a
list of all pages in the cache such thathead of the
list is the oldest arrival andtail of the list is the most
recent arrival.FIFO was used in DEC’s VAX/VMS [9];

however, due to much lower performance thanLRU,
FIFO in its original form is seldom used today.

Second chance (SC) [3] is a simple, but extremely
effective enhancement to FIFO, where a page reference
bit is maintained with each page in the cache while
maintaining the pages in a FIFO queue. When a page
arrives in the cache, it is appended to the tail of the
queue and its reference bit set to zero. Upon a page
hit, the page reference bit is set to one. Whenever a
page must be replaced, the policy examines the page at
the head of the FIFO queue and replaces it if its page
reference bit is zero otherwise the page is moved to
the tail and its page reference bit is reset to zero. In
the latter case, the replacement policy reexamines the
new page at the head of the queue, until a replacement
candidate with page reference bit of zero is found.

A key deficiency of SC is that it keeps moving
pages from the head of the queue to the tail. This
movement makes it somewhat inefficient.CLOCK is
functionally identical toSC except that by using a
circular queue instead ofFIFO it eliminates the need
to move a page from the head to the tail [3], [4], [6].
Besides its simplicity, the performance ofCLOCK is
quite comparable toLRU [22], [23], [24].

While CLOCK respects “recency”, it does not
take “frequency” into account. A generalized version,
namely,GCLOCK, associates a counter with each page
that is initialized to a certain value. On a page hit, the
counter is incremented. On a page miss, the rotating
clock hand sweeps through the clock decrementing
counters until a page with a count of zero is found
[24]. A analytical and empirical study ofGCLOCK
[25] showed that “its performance can be either better
or worse thanLRU”. A fundamental disadvantage of
GCLOCK is that it requires counter increment on every
page hit which makes it infeasible for virtual memory.

There are several variants ofCLOCK, for example,
the two-handed clock [9], [26] is used by SUN’s Solaris.
Also, [6] considered multi-bit variants ofCLOCK as
finer approximations toLRU.

III. CAR

A. ARC: A Brief Review

Suppose that the cache can holdc pages. The policy
ARC maintains a cache directory that contains2c

pages–c pages in the cache andc history pages. The
cache directory ofARC, which was referred to asDBL
in [10], maintains two lists:L1 andL2. The first list con-
tains pages that have been seen only once recently, while
the latter contains pages that have been seen at least
twice recently. The listL1 is thought of as “recency”
and L2 as “frequency”. A more precise interpretation
would have been to think ofL1 as “short-term utility”
and L2 as “long-term utility”. The replacement policy

for managingDBL is: Replace theLRU page inL1,
if |L1| = c; otherwise, replace theLRU page inL2.
The policy ARC builds onDBL by carefully selecting
c pages from the2c pages inDBL. The basic idea
is to divide L1 into top T1 and bottomB1 and to
divide L2 into top T2 and bottomB2. The pages in
T1 andT2 are in the cache and in the cache directory,
while the history pages inB1 andB2 are in the cache
directory but not in the cache. The pages evicted from
T1 (resp.T2) are put on the history listB1 (resp.B2).
The algorithm sets a target sizep for the list T1. The
replacement policy is simple: Replace theLRU page in
T1, if |T1| ≥ p; otherwise, replace theLRU page in
T2. The adaptation comes from the fact that the target
sizep is continuously varied in response to an observed
workload. The adaptation rule is also simple: Increasep,
if a hit in the historyB1 is observed; similarly, decrease
p, if a hit in the historyB2 is observed. This completes
our brief description ofARC.

B. CAR

Our policy CAR is inspired byARC. Hence, for
the sake of consistency, we have chosen to use the
same notation as that in [10] so as to facilitate an easy
comparison of similarities and differences between the
two policies.

For a visual description ofCAR, see Figure 1, and
for a complete algorithmic specification, see Figure 2.
We now explain the intuition behind the algorithm.

For concreteness, letc denote the cache size in pages.
The policyCAR maintains four doubly linked lists:T1,
T2, B1, andB2. The listsT1 andT2 contain the pages
in cache, while the listsB1 and B2 maintain history
information about the recently evicted pages. For each
page in the cache, that is, inT1 or T2, we will maintain
a page reference bit that can be set to either one or zero.
Let T 0

1
denote the pages inT1 with a page reference bit

of zero and letT 1

1
denote the pages inT1 with a page

reference bit of one. The listsT 0

1
andT 1

1
are introduced

for expository reasons only–they will not be required
explicitly in our algorithm. Not maintaining either of
these lists or their sizes was a key insight that allowed
us to simplifyARC to CAR.

The precise definition of the four lists is as follows.
Each page inT 0

1
and each history page inB1 has

either been requested exactly once since its most recent
removal fromT1 ∪ T2 ∪ B1 ∪ B2 or it was requested
only once (since inception) and was never removed from
T1 ∪ T2 ∪ B1 ∪ B2.

Each page inT 1

1
, each page inT2, and each history

page inB2 has either been requested more than once
since its most recent removal fromT1∪T2∪B1∪B2, or
was requested more than once and was never removed
from T1 ∪ T2 ∪ B1 ∪ B2.

Intuitively, T 0

1
∪ B1 contains pages that have been

seen exactly once recently whereasT 1

1
∪T2∪B2 contains

pages that have been seen at least twice recently. We
roughly think of T 0

1
∪ B1 as “recency” or “short-term

utility” and T 1

1
∪T2 ∪B2 as “frequency” or “long-term

utility”.
In the algorithm in Figure 2, for a more transparent

exposition, we will think of the listsT1 andT2 as second
chance lists. However,SC and CLOCK are the same
algorithm that have slightly different implementations.
So, in an actual implementation, the reader may wish
to useCLOCK so as to reduce the overhead somewhat.
Figure 1 depictsT1 and T2 as CLOCKs. The policy
ARC employs a strictLRU ordering on the listsT1 and
T2 whereasCAR uses a one-bit approximation toLRU,
that is,SC. The listsB1 andB2 are simpleLRU lists.

We impose the following invariants on these lists:

I1 0 ≤ |T1| + |T2| ≤ c.
I2 0 ≤ |T1| + |B1| ≤ c.
I3 0 ≤ |T2| + |B2| ≤ 2c.
I4 0 ≤ |T1| + |T2| + |B1| + |B2| ≤ 2c.
I5 If |T1| + |T2| < c, thenB1 ∪ B2 is empty.
I6 If |T1| + |B1| + |T2| + |B2| ≥ c, then |T1| +

|T2| = c.
I7 Due to demand paging, once the cache is full,

it remains full from then on.

The idea of maintaining extra history pages is not
new, see, for example, [16], [17], [19], [20], [21], [10].
We will use the extra history information contained in
lists B1 and B2 to guide a continual adaptive process
that keeps readjusting the sizes of the listsT1 and T2.
For this purpose, we will maintain atarget sizep for
the list T1. By implication, the target size for the list
T2 will be c− p. The extra history leads to a negligible
space overhead.

The listT1 may contain pages that are marked either
one or zero. Suppose we start scanning the listT1 from
the head towards the tail, until a page marked as zero
is encountered; letT ′

1
denote all the pages seen by

such a scan, until a page with a page reference bit of
zero is encountered. The listT ′

1
does not need to be

constructed, it is defined with the sole goal of stating
our cache replacement policy.

The cache replacement policyCAR is simple:

If T1 \ T ′

1
containsp or more pages, then

remove a page fromT1, else remove a page
from T ′

1
∪ T2.

For a better approximation toARC, the cache replace-
ment policy should have been: IfT 0

1
containsp or more

pages, then remove a page fromT 0

1
, else remove a page

from T 1

1
∪T2. However, this would require maintaining

the list T 0

1
, which seems to entail a much higher

overhead on a hit. Hence, we eschew the precision, and

0

0

1

0
1

00
0

1

1

0

0

1

0

1

0
1

1 1
0

1

1

0

1

0

0
0

1

0

1

1
0 1

0

1

1

MRU

LRU

MRU

LRU

T

T2

1

B B21

"Frequency""Recency"

TAIL TAIL

HEADHEAD

Fig. 1. A visual description ofCAR. The CLOCKS T1 andT2 contain those pages that are in the cache and the listsB1 and
B2 contain history pages that were recently evicted from the cache. TheCLOCK T1 captures “recency” while theCLOCK T2

captures “frequency.” The listsB1 and B2 are simpleLRU lists. Pages evicted fromT1 are placed onB1, and those evicted
from T2 are placed onB2. The algorithm strives to keepB1 to roughly the same size asT2 and B2 to roughly the same
size asT1. The algorithm also limits|T1| + |B1| from exceeding the cache size. The sizes of theCLOCKs T1 and T2 are
adapted continuously in response to a varying workload. Whenever a hitin B1 is observed, the target size ofT1 is incremented;
similarly, whenever a hit inB2 is observed, the target size ofT1 is decremented. The new pages are inserted in eitherT1 or
T2 immediately behind the clock hands which are shown to rotate clockwise. Thepage reference bit of new pages is set to0.
Upon a cache hit to any page inT1 ∪ T2, the page reference bit associated with the page is simply set to1. Whenever theT1

clock hand encounters a page with a page reference bit of1, the clock hand moves the page behind theT2 clock hand and
resets the page reference bit to0. Whenever theT1 clock hand encounters a page with a page reference bit of0, the page is
evicted and is placed at theMRU position inB1. Whenever theT2 clock hand encounters a page with a page reference bit of
1, the page reference bit is reset to0. Whenever theT2 clock hand encounters a page with a page reference bit of0, the page
is evicted and is placed at theMRU position inB2.

go ahead with the above approximate policy whereT ′

1

is used as an approximation toT 1

1
.

The cache history replacement policy is simple as
well:

If |T1| + |B1| contains exactlyc pages, then
remove a history page fromB1, else remove
a history page fromB2.

Once again, for a better approximation toARC, the
cache history replacement policy should have been: If
|T 0

1
| + |B1| contains exactlyc pages, then remove a

history page fromB1, else remove a history page from
B2. However, this would require maintaining the size of
T 0

1
which would require additional processing on a hit,

defeating the very purpose of avoiding lock contention.
We now examine the algorithm in Figure 2 in detail.
Line 1 checks whether there is a hit, and if so, then

line 2 simply sets the page reference bit to one. Observe
that there is noMRU operation akin toLRU or ARC

involved. Hence, cache hits are not serialized behind
a lock and virtually no overhead is involved. The key
insight is that theMRU operation is delayed until a
replacement must be done (lines 29 and 36).

Line 3 checks for a cache miss, and if so, then line 4
checks if the cache is full, and if so, then line 5 carries
out the cache replacement by deleting a page from either
T1 or T2. We will dissect the cache replacement policy
“ replace()” in detail a little bit later.

If there is a cache miss (line 3), then lines 6-10
examine whether a cache history needs to be replaced.
In particular, (line 6) if the requested page is totally
new, that is, not inB1 or B2, and|T1|+ |B1| = c then
(line 7) a page inB1 is discarded, (line 8) else if the
page is totally new and the cache history is completely
full, then (line 9) a page inB2 is discarded.

Finally, if there is a cache miss (line 3), then lines
12-20 carry out movements between the lists and also

carry out the adaptation of the target size forT1. In
particular, (line 12) if the requested page is totally new,
then (line 13) insert it at the tail ofT1 and set its page
reference bit to zero, (line 14) else if the requested page
is in B1, then (line 15) we increase the target size for
the listT1 and (line 16) insert the requested page at the
tail of T2 and set its page reference bit to zero, and,
finally, (line 17) if the requested page is inB2, then
(line 18) we decrease the target size for the listT1 and
(line 19) insert the requested page at the tail ofT2 and
set its page reference bit to zero.

Our adaptation rule is essentially the same as that in
ARC. The role of the adaptation is to “invest” in the list
that is most likely to give the highest hit per additional
page invested.

We now examine the cache replacement policy (lines
22-39) in detail. The cache replacement policy can only
replace a page with a page reference bit of zero. So, line
22 declares that no such suitable victim page to replace
is yet found, and lines 23-39 keep looping until they
find such a page.

If the size of the listT1 is at leastp and it is not
empty (line 24), then the policy examines the head of
T1 as a replacement candidate. If the page reference bit
of the page at the head is zero (line 25), then we have
found the desired page (line 26), we now demote it from
the cache and move it to theMRU position inB1 (line
27). Else (line 28) if the page reference bit of the page
at the head is one, then we reset the page reference bit
to one and move the page to the tail ofT2 (line 29).

On the other hand, (line 31) if the size of the list
T1 is less thanp, then the policy examines the page
at the head ofT2 as a replacement candidate. If the
page reference bit of the head page is zero (line 32),
then we have found the desired page (line 33), and
we now demote it from the cache and move it to the
MRU position inB1 (line 34). Else (line 35) if the page
reference bit of the head page is one, then we reset the
page reference bit to zero and move the page to the tail
of T2 (line 36).

Observe that while noMRU operation is needed
during a hit, if a page has been accessed and its page
reference bit is set to one, then during replacement such
pages will be moved to the tail end ofT2 (lines 29
and 36). In other words,CAR approximatesARC by
performing a delayed and approximateMRU operation
during cache replacement.

While we have alluded to a multi-threaded environ-
ment to motivateCAR, for simplicity and brevity, our
final algorithm is decidedly single-threaded. A true,
real-life implementation ofCAR will actually be based
on a non-demand-paging framework that uses a free
buffer pool of pre-determined size.

Observe that while cache hits are not serialized, like

CLOCK, cache misses are still serialized behind a
global lock to ensure correctness and consistency of the
lists T1, T2, B1, andB2. This miss serialization can be
somewhat mitigated by a free buffer pool.

Our discussion ofCAR is now complete.

IV. CART

A limitation of ARC andCAR is that two consecutive
hits are used as a test to promote a page from “recency”
or “short-term utility” to “frequency” or “long-term
utility”. At upper level of memory hierarchy, we often
observe two or more successive references to the same
page fairly quickly. Such quick successive hits are
known as “correlated references” [12] and are typically
not a guarantee of long-term utility of a pages, and,
hence, such pages can cause cache pollution–thus re-
ducing performance. The motivation behindCART is to
create a temporal filter that imposes a more stringent test
for promotion from “short-term utility” to “long-term
utility”. The basic idea is to maintain atemporal locality
windowsuch that pages that are re-requested within the
window are of short-term utility whereas pages that are
re-requested outside the window are of long-term utility.
Furthermore, the temporal locality window is itself an
adaptable parameter of the algorithm.

The basic idea is to maintain four lists, namely,T1,
T2, B1, andB2 as before. The pages inT1 andT2 are in
the cache whereas the pages inB1 andB2 are only in
the cache history. For simplicity, we will assume thatT1

andT2 are implemented as Second Chance lists, but, in
practice, they would be implemented asCLOCKs. The
lists B1 and B2 are simpleLRU lists. While we have
used the same notation for the four lists, they will now
be provided with a totally different meaning than that
in eitherARC or CAR.

Analogous to the invariants I1–I7 that were imposed
on CAR, we now impose the same invariants onCART
except that I2 and I3 are replaced, respectively, by:

I2’ 0 ≤ |T2| + |B2| ≤ c.
I3’ 0 ≤ |T1| + |B1| ≤ 2c.

As for CAR andCLOCK, for each page inT1 ∪ T2

we will maintain a page reference bit. In addition, each
page is marked with afilter bit to indicate whether it
haslong-term utility(say, “L”) or only short-term utility
(say, “S”). No operation on this bit will be required
during a cache hit. We now detail manipulation and use
of the filter bit. Denote byx a requested page.

1) Every page inT2 andB2 must be marked as “L”.
2) Every page inB1 must be marked as “S”.
3) A page inT1 could be marked as “S” or “L”.
4) A head page inT1 can only be replaced if its page

reference bit is set to0 and its filter bit is set to
“S”.

INITIALIZATION : Setp = 0 and set the listsT1, B1, T2, andB2 to empty.

CAR(x)
INPUT: The requested pagex.
1: if (x is in T1 ∪ T2) then /* cache hit */
2: Set the page reference bit forx to one.
3: else /* cache miss */
4: if (|T1| + |T2| = c) then

/* cache full, replace a page from cache */
5: replace()

/* cache directory replacement */
6: if ((x is not in B1 ∪ B2) and (|T1| + |B1| = c)) then
7: Discard theLRU page inB1.
8: elseif ((|T1| + |T2| + |B1| + |B2| = 2c) and (x is not in B1 ∪ B2)) then
9: Discard theLRU page inB2.
10: endif
11: endif

/* cache directory miss */
12: if (x is not in B1 ∪ B2) then
13: Insertx at the tail ofT1. Set the page reference bit ofx to 0.

/* cache directory hit */
14: elseif (x is in B1) then
15: Adapt: Increase the target size for the listT1 as:p = min {p + max{1, |B2|/|B1|}, c}
16: Movex at the tail ofT2. Set the page reference bit ofx to 0.

/* cache directory hit */
17: else /* x must be inB2 */
18: Adapt: Decrease the target size for the listT1 as:p = max {p − max{1, |B1|/|B2|}, 0}
19: Movex at the tail ofT2. Set the page reference bit ofx to 0.
20: endif
21: endif

replace()
22: found = 0
23: repeat
24: if (|T1| >= max(1, p)) then
25: if (the page reference bit of head page inT1 is 0) then
26: found = 1;
27: Demote the head page inT1 and make it theMRU page inB1.
28: else
29: Set the page reference bit of head page inT1 to 0, and make it the tail page inT2.
30: endif
31: else
32: if (the page reference bit of head page inT2 is 0), then
33: found = 1;
34: Demote the head page inT2 and make it theMRU page inB2.
35: else
36: Set the page reference bit of head page inT2 to 0, and make it the tail page inT2.
37: endif
38: endif
39: until (found)

Fig. 2. Algorithm for Clock with Adaptive Replacement. This algorithm is self-contained. No tunable parameters are needed as
input to the algorithm. We start from an empty cache and an empty cache directory. Thefirst key point of the above algorithm
is the simplicity of line 2, where cache hits are not serialized behind a lock andvirtually no overhead is involved. Thesecond
key point is the continual adaptation of the target size of the listT1 in lines 16 and 19. Thefinal key point is that the algorithm
requires no magic, tunable parameters as input.

5) If the head page inT1 is of type “L”, then it
is moved to the tail position inT2 and its page
reference bit is set to zero.

6) If the head page inT1 is of type “S” and has page
reference bit set to1, then it is moved to the tail
position inT1 and its page reference bit is set to
zero.

7) A head page inT2 can only be replaced if its page
reference bit is set to0.

8) If the head page inT2 has page reference bit set
to 1, then it is moved to the tail position inT1

and its page reference bit is set to zero.
9) If x 6∈ T1 ∪B1 ∪T2 ∪B2, then set its type to “S.”

10) If x ∈ T1 and|T1| ≥ |B1|, change its type to “L.”
11) If x ∈ T2 ∪ B2, then leave the type ofx

unchanged.
12) If x ∈ B1, thenx must be of type “S”, change its

type to “L.”

When a page is removed from the cache directory, that
is, from the setT1 ∪B1 ∪T2 ∪B2, its type is forgotten.
In other words, a totally new page is put inT1 and
initially granted the status of “S”, and this status is not
upgraded upon successive hits to the page inT1, but
only upgraded to “L” if the page is eventually demoted
from the cache and a cache hit is observed to the page
while it is in the history listB1. This rule ensures that
there are two references to the page that are temporally
separated by at least the length of the listT1. Hence,
the length of the listT1 is the temporal locality window.
The intent of the policy is to ensure that the|T1| pages
in the list T1 are the most recently used|T1| pages. Of
course, this can only be done approximately given the
limitation of CLOCK. Another source of approximation
arises from the fact that a page inT2, upon a hit, cannot
immediately be moved toT1.

While, at first sight, the algorithm appears very
technical, the key insight is very simple: The listT1

contains|T1| pages either of type “S” or “L”, and is
an approximate representation of “recency”. The list
T2 contains remaining pages of type “L” that may
have “long-term utility”. In other words,T2 attempts
to capture useful pages which a simple recency based
criterion may not capture.

We will adapt the temporal locality window, namely,
the size of the listT1, in a workload-dependent, adap-
tive, online fashion. Letp denote the target size for the
list T1. When p is set to the cache sizec, the policy
CART will coincide with the policyLRU.

The policy CART decides which list to delete from
according to the rule in lines 36-40 of Figure 3. We
also maintain a second parameterq which is the target
size for the listB1. The replacement rule for the cache
history is described in lines 6-10 of Figure 3.

Let countersnS andnL denote the number of pages

in the cache that have their filter bit set to “S” and “L”,
respectively. Clearly,0 ≤ nS + nL ≤ c, and, once the
cache is full,nS + nL = c. The algorithm attempts to
keepnS + |B1| andnL + |B2| to roughlyc pages each.

The complete policyCART is described in Figure 3.
We now examine the algorithm in detail.

Line 1 checks for a hit, and if so, line 2 simply sets
the page reference bit to one. This operation is exactly
similar to that of CLOCK and CAR and gets rid of the
the need to performMRU processing on a hit.

Line 3 checks for a cache miss, and if so, then line
4 checks if the cache is full, and if so, then line 5
carries out the cache replacement by deleting a page
from eitherT1 or T2. We dissect the cache replacement
policy “replace()” in detail later.

If there is a cache miss (line 3), then lines 6-10
examine whether a cache history needs to be replaced.
In particular, (line 6) if the requested page is totally
new, that is, not inB1 or B2, |B1| + |B2| = c + 1,
and B1 exceeds its target, then (line 7) a page inB1

is discarded, (line 8) else if the page is totally new and
the cache history is completely full, then (line 9) a page
in B2 is discarded.

Finally, if there is a cache miss (line 3), then lines 12-
21 carry out movements between the lists and also carry
out the adaptation of the target size forT1. In particular,
(line 12) if the requested page is totally new, then (line
13) insert it at the tail ofT1, set its page reference
bit to zero, set the filter bit to “S”, and increment the
counternS by 1. (Line 14) Else if the requested page
is in B1, then (line 15) we increase the target size for
the list T1 (increase the temporal window) and insert
the requested page at the tail end ofT1 and (line 16)
set its page reference bit to zero, and, more importantly,
also changes its filter bit to “L”. Finally, (line 17) if the
requested page is inB2, then (line 18) we decrease the
target size for the listT1 and insert the requested page
at the tail end ofT1, (line 19) set its page reference bit
to zero, and (line 20) update the targetq for the listB1.

The essence of the adaptation rule is: On a hit inB1,
it favors increasing the size ofT1, and, on a hit inB2,
it favors decreasing the size ofT1.

Now, we describe the “replace()” procedure. (Lines
23-26) While the page reference bit of the head page in
T2 is 1, then move the page to the tail position inT1,
and also update the target q to control the size ofB1.
In other words, these lines capture the movement from
T2 to T1. When this while loop terminates, eitherT2 is
empty, or the page reference bit of the head page inT2

is set to0, and, hence, can be removed from the cache
if desired.

(Line 27-35) While the filter bit of the head page in
T1 is “L” or the page reference bit of the head page in
T1 is 1, keep moving these pages. When this while loop

terminates, eitherT1 will be empty, or the head page in
T1 has its filter bit set to “S” and page reference bit
set to 0, and, hence, can be removed from the cache
if desired. (Lines 28-30) If the page reference bit of
the head page inT1 is 1, then make it the tail page
in T1. At the same time, ifB1 is very small orT1 is
larger than its target, then relax the temporal filtering
constraint and set the filter bit to “L”. (Lines 31-33) If
the page reference bit is set to0 but the filter bit is set
to “L”, then move the page to the tail position inT2.
Also, change the targetB1.

(Lines 36-40) These lines represent our cache re-
placement policy. IfT1 contains at leastp pages and
is not empty, then remove the head page inT1, else
remove the head page inT2.

Our discussion ofCART is now complete.

V. EXPERIMENTAL RESULTS

In this section, we will focus our experimental sim-
ulations to compareLRU, CLOCK, ARC, CAR, and
CART.

A. Traces

Table I summarizes various traces that we used in
this paper. These traces are the same as those in [10,
Section V.A], and, for brevity, we refer the reader there
for their description. These traces capture disk accesses
by databases, web servers, NT workstations, and a
synthetic benchmark for storage controllers. All traces
have been filtered by up-stream caches, and, hence, are
representative of workloads seen by storage controllers,
disks, or RAID controllers.

Trace Name Number of Requests Unique Pages
P1 32055473 2311485
P2 12729495 913347
P3 3912296 762543
P4 19776090 5146832
P5 22937097 3403835
P6 12672123 773770
P7 14521148 1619941
P8 42243785 977545
P9 10533489 1369543

P10 33400528 5679543
P11 141528425 4579339
P12 13208930 3153310
P13 15629738 2497353
P14 114990968 13814927

ConCat 490139585 47003313
Merge(P) 490139585 47003313

DS1 43704979 10516352
SPC1 41351279 6050363

S1 3995316 1309698
S2 17253074 1693344
S3 16407702 1689882

Merge (S) 37656092 4692924

TABLE I . A summary of various traces used in this paper.
Number of unique pages in a trace is termed its “footprint”.

For all traces, we only considered the read requests.
All hit ratios reported in this paper arecold start. We
will report hit ratios in percentages (%).

B. Results

In Table II, we compareLRU, CLOCK, ARC, CAR,
andCART for the traces SPC1 and Merge(S) for various
cache sizes. It can be clearly seen thatCLOCK has
performance very similar toLRU, and CAR/CART
have performance very similar toARC. Furthermore,
CAR/CART substantially outperformCLOCK.

SPC1
c (pages) LRU CLOCK ARC CAR CART

65536 0.37 0.37 0.82 0.84 0.90
131072 0.78 0.77 1.62 1.66 1.78
262144 1.63 1.63 3.23 3.29 3.56
524288 3.66 3.64 7.56 7.62 8.52

1048576 9.19 9.31 20.00 20.00 21.90

Merge(S)
c (pages) LRU CLOCK ARC CAR CART

16384 0.20 0.20 1.04 1.03 1.10
32768 0.40 0.40 2.08 2.07 2.20
65536 0.79 0.79 4.07 4.05 4.27

131072 1.59 1.58 7.78 7.76 8.20
262144 3.23 3.27 14.30 14.25 15.07
524288 8.06 8.66 24.34 24.47 26.12

1048576 27.62 29.04 40.44 41.00 41.83
1572864 50.86 52.24 57.19 57.92 57.64
2097152 68.68 69.50 71.41 71.71 71.77
4194304 87.30 87.26 87.26 87.26 87.26

TABLE II . A comparison of hit ratios ofLRU, CLOCK, ARC,
CAR, and CART on the traces SPC1 and Merge(S). All hit
ratios are reported in percentages. The page size is4 KBytes
for both traces. The largest cache simulated for SPC1 was
4 GBytes and that for Merge(S) was16 GBytes. It can be
seen thatLRU andCLOCK have similar performance, while
ARC, CAR, andCART also have similar performance. It can
be seen thatARC/CAR/CART outperformLRU/CLOCK.

In Figures 4 and 5, we graphically compare the hit-
ratios of CAR to CLOCK for all of our traces. The
performance ofCAR was very close toARC andCART
and the performance ofCLOCK was very similar to
LRU, and, hence, to avoid clutter,LRU, ARC, and
CART are not plotted. It can be clearly seen that across
a wide variety of workloads and cache sizesCAR
outperformsCLOCK–sometimes quite dramatically.

Finally, in Table III, we produce an at-a-glance-
summary ofLRU, CLOCK, ARC, CAR, and CART
for various traces and cache sizes. Once again, the same
conclusions as above are seen to hold:ARC, CAR, and
CART outperformLRU andCLOCK, ARC, CAR, and
CART have a very similar performance, andCLOCK
has performance very similar toLRU.

INITIALIZATION : Setp = 0, q = 0, nS = nL = 0, and set the listsT1, B1, T2, andB2 to empty.

CART(x)
INPUT: The requested pagex.
1: if (x is in T1 ∪ T2) then /* cache hit */
2: Set the page reference bit forx to one.
3: else /* cache miss */
4: if (|T1| + |T2| = c) then

/* cache full, replace a page from cache */
5: replace()

/* history replacement */
6: if ((x 6∈ B1 ∪ B2) and (|B1| + |B2| = c + 1) and ((|B1| > max{0, q}) or (B2 is empty)))then
7: Remove the bottom page inB1 from the history.
8: elseif ((x 6∈ B1 ∪ B2) and (|B1| + |B2| = c + 1)) then
9: Remove the bottom page inB2 from the history.
10: endif
11: endif

/* history miss */
12: if (x is not in B1 ∪ B2) then
13: Insertx at the tail ofT1. Set the page reference bit ofx to 0, set filter bit ofx to “S”, and nS = nS + 1.

/* history hit */
14: elseif (x is in B1) then
15: Adapt: Increase the target size for the listT1 as:p = min {p + max{1, nS/|B1|}, c}. Move x to the tail ofT1.
16: Set the page reference bit ofx to 0. SetnL = nL + 1. Set type ofx to “L”.

/* history hit */
17: else /* x must be inB2 */
18: Adapt: Decrease the target size for the listT1 as:p = max {p − max{1, nL/|B2|}, 0}. Move x to the tail ofT1.
19: Set the page reference bit ofx to 0. SetnL = nL + 1.
20: if (|T2| + |B2| + |T1| − nS ≥ c) then, Set targetq = min(q + 1, 2c − |T1|), endif
21: endif
22: endif

replace()
23: while (the page reference bit of the head page inT2 is 1)) then
24: Move the head page inT2 to tail position inT1. Set the page reference bit to0.
25: if (|T2| + |B2| + |T1| − nS ≥ c) then, Set targetq = min(q + 1, 2c − |T1|), endif
26: endwhile

/* The following while loop should stop, ifT1 is empty */
27: while ((the filter bit of the head page inT1 is “L”) or (the page reference bit of the head page inT1 is 1))
28: if ((the page reference bit of the head page inT1 is 1)
29: Move the head page inT1 to tail position inT1. Set the page reference bit to0.
30: if ((|T1| ≥ min(p + 1, |B1|)) and (the filter bit of the moved page is “S”))then,

set type ofx to “L”, nS = nS − 1, andnL = nL + 1.
endif

31: else
32: Move the head page inT1 to tail position inT2. Set the page reference bit to0.
33: Setq = max(q − 1, c − |T1|).
34: endif
35: endwhile
36: if (|T1| >= max(1, p)) then
37: Demote the head page inT1 and make it theMRU page inB1. nS = nS − 1.
38: else
39: Demote the head page inT2 and make it theMRU page inB2. nL = nL − 1.
40: endif

Fig. 3. Algorithm for Clock with Adaptive Replacement and Temporal Filtering. This algorithm is self-contained. No tunable
parameters are needed as input to the algorithm. We start from an empty cache and an empty cache history.

1024 4096 16384 65536 262144

1

2

4

8

16

32

64

P1

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

4

8

16

32

64

P2

Cache Size (Number of 512 byte pages)
H

it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

2

4

8

16

32

64

P3

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

4

8

16

32

P4

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

8

16

32

64

P5

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

1

2

4

8

16

32

64

P6

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

2

4

8

16

32

64

P7

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

0.5

1

2

4

8

16

32

64

P8

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

4

8

16

32

64

P9

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

2

4

8

16

32

P10

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

8

16

32

64

P11

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

8

16

32

P12

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

Fig. 4. A plot of hit ratios (in percentages) achieved byCAR andCLOCK. Both thex- andy-axes use logarithmic scale.

1024 4096 16384 65536 262144

4

8

16

32

64

P13

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

8

16

32

P14

Cache Size (Number of 512 byte pages)
H

it
 R

a
ti
o

 (
%

)

CAR

CLOCK

1024 4096 16384 65536 262144

4

8

16

32

64

ConCat(P)

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

LRU

8192 32768 131072 524288

8

16

32

Merge(P)

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

LRU

65536 262144 1048576 4194304

2

4

8

16

32

DS1

Cache Size (Number of 512 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

65536 262144 1048576 4194304

1

2

4

8

16

32

SPC1

Cache Size (Number of 4096 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

65536 131072 262144 523288 1048576

2

4

8

16

32

S1

Cache Size (Number of 4096 byte pages)

H
it
 R

a
ti
o

 (
%

) CAR

CLOCK

65536 131072 262144 524288 1048576

2

4

8

16

32

64

S2

Cache Size (Number of 4096 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

65536 131072 262144 524288 1048576

2

4

8

16

32

64

S3

Cache Size (Number of 4096 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

16384 65536 262144 1048576 4194304

1

2

4

8

16

32

64

Merge(S)

Cache Size (Number of 4096 byte pages)

H
it
 R

a
ti
o

 (
%

)

CAR

CLOCK

Fig. 5. A plot of hit ratios (in percentages) achieved byCAR andCLOCK. Both thex- andy-axes use logarithmic scale.

Workload c (pages) space (MB) LRU CLOCK ARC CAR CART
P1 32768 16 16.55 17.34 28.26 29.17 29.83
P2 32768 16 18.47 17.91 27.38 28.38 28.63
P3 32768 16 3.57 3.74 17.12 17.21 17.54
P4 32768 16 5.24 5.25 11.24 11.22 9.25
P5 32768 16 6.73 6.78 14.27 14.78 14.77
P6 32768 16 4.24 4.36 23.84 24.34 24.53
P7 32768 16 3.45 3.62 13.77 13.86 14.79
P8 32768 16 17.18 17.99 27.51 28.21 28.97
P9 32768 16 8.28 8.48 19.73 20.09 20.75

P10 32768 16 2.48 3.02 9.46 9.63 9.71
P11 32768 16 20.92 21.51 26.48 26.99 27.26
P12 32768 16 8.93 9.18 15.94 16.25 16.41
P13 32768 16 7.83 8.26 16.60 17.09 17.74
P14 32768 16 15.73 15.98 20.52 20.59 20.63

ConCat 32768 16 14.38 14.79 21.67 22.06 22.24
Merge(P) 262144 128 38.05 38.60 39.91 39.90 40.12

DS1 2097152 1024 11.65 11.86 22.52 25.31 21.12
SPC1 1048576 4096 9.19 9.31 20.00 20.00 21.91

S1 524288 2048 23.71 25.26 33.43 33.42 33.62
S2 524288 2048 25.91 27.84 40.68 41.86 42.10
S3 524288 2048 25.26 27.13 40.44 41.67 41.87

Merge(S) 1048576 4096 27.62 29.04 40.44 41.01 41.83

TABLE III . At-a-glance comparison of hit ratios ofLRU, CLOCK, ARC, CAR, andCART for various workloads. All hit ratios
are reported in percentages. It can be seen thatLRU and CLOCK have similar performance, whileARC, CAR, and CART
also have similar performance. It can be seen thatARC, CAR, and CART outperformLRU and CLOCK–sometimes quite
dramatically.

2000000 6000000 10000000 14000000 19776000
0

8192

16384

24576

32768
P4

Virtual Time (Request Number)

T
a
rg

e
t
S

iz
e
 f
o
r

L
is

t
T 1

Fig. 6. A plot of the adaptation parameterp (the target size
for list T1) versus the virtual time for the algorithmCAR. The
trace is P4, the cache size is32768 pages, and the page size
is 512 bytes.

VI. CONCLUSIONS

In this paper, by combining ideas and best features
from CLOCK and ARC we have introduced a policy
CAR that removes disadvantages D1, D2, D3 and D4
of LRU.

CAR removes the cache hit serialization problem
of LRU and ARC.

CAR has a very low overhead on cache hits.
CAR is self-tuning. The policy CAR requires no

tunable, magic parameters. It has one tunable parameter
p that balances between recency and frequency. The
policy adaptively tunes this parameter–in response to
an evolving workload–so as to increase the hit-ratio.
A closer examination of the parameterp shows that
it can fluctuate from recency (p = c) to frequency
(p = 0) and back– all within a single workload. In other
words, adaptation really matters! Also, it can be shown
that CAR performs as well as its offline counterpart
which is allowed to select the best, offline, fixed value
of p chosen specifically for a given workload and a
cache size. In other words, adaptation really works!
See Figure 6 for a graphical demonstration of howp

fluctuates. The self-tuning nature ofCAR makes it very
attractive for deployment in environments where noa
priori knowledge of the workloads is available.

CAR is scan-resistant. A scan is any sequence of
one-time use requests. Such requests will be put on top
of the list T1 and will eventually exit from the cache
without polluting the high-quality pages inT2. More-
over, in presence of scans, there will be relatively fewer
hits in B1 as compared toB2. Hence, our adaptation
rule will tend to further increase the size ofT2 at the
expense ofT1, thus further decreasing the residency
time of scan in evenT1.

CAR is high-performance. CAR outperformsLRU
andCLOCK on a wide variety of traces and cache sizes,
and has performance very comparable toARC.

CAR has low space overhead, typically, less that
1%.

CAR is simple to implement. Please see Figure 2.
CART has temporal filtering. The algorithmCART

has all the above advantages ofCAR, but, in addition,
it employs a much stricter and more precise criterion
to distinguish pages with short-term utility from those
with long-term utility.

It should be clear from Section II-A that a large
number of attempts have been made to improve upon
LRU. In contrast, relatively few attempts have been
made to improve uponCLOCK–the most recent being
in 1978! We believe that this is due to severe constraints
imposed byCLOCK on how much processing can be
done on a hit and its removal of the single global
lock. Genuine new insights were required to invent
novel, effective algorithms that improve uponCLOCK.
We hope thatCAR and CART represents two such
fundamental insights and that they will be seriously
considered by cache designers.

ACKNOWLEDGMENT

We are grateful to Bruce Lindsay and Honesty Young
for suggesting that we look at lock contention, to Frank
Schmuck for pointing out bugs in our previous attempts,
and to Pawan Goyal for urging us to publish this work.
We are grateful to our manager, Moidin Mohiuddin,
for his constant support and encouragement during this
work. The second author is grateful to Nimrod Megiddo
for his collaboration onARC. We are grateful to Bruce
McNutt and Renu Tewari for the SPC1 trace, to Windsor
Hsu for traces P1 through P14, to Ruth Azevedo for
the trace DS1, and to Ken Bates and Bruce McNutt for
traces S1-S3. We are indebted to Binny Gill for drawing
the beautiful and precise Figure 1.

REFERENCES

[1] L. A. Belady, “A study of replacement algorithms for virtual
storage computers,”IBM Sys. J., vol. 5, no. 2, pp. 78–101, 1966.

[2] M. J. Bach,The Design of the UNIX Operating System. Engle-
wood Cliffs, NJ: Prentice-Hall, 1986.

[3] A. S. Tanenbaum and A. S. Woodhull,Operating Systems:
Design and Implementation. Prentice-Hall, 1997.

[4] A. Silberschatz and P. B. Galvin,Operating System Concepts.
Reading, MA: Addison-Wesley, 1995.

[5] J. E. G. Coffman and P. J. Denning,Operating Systems Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[6] F. J. Corbat́o, “A paging experiment with the multics system,”
in In Honor of P. M. Morse, pp. 217–228, MIT Press, 1969.
Also as MIT Project MAC Report MAC-M-384, May 1968.

[7] L. M. Haas, W. Chang, G. M. Lohman, J. McPherson, P. F.
Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J. Carey, and
E. Shekita, “Starburst mid-flight: As the dust clears,”IEEE
Trans. Knowledge and Data Engineering, vol. 2, no. 1, pp. 143–
160, 1990.

[8] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man,The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, 1996.

[9] H. Levy and P. H. Lipman, “Virtual memory management in
the VAX/VMS operating system,”IEEE Computer, pp. 35–41,
March 1982.

[10] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low
overhead replacement cache,” inProc. 2nd USENIX Conference
on File and Storage Technologies (FAST 03), San Franciso, CA,
pp. 115–130, 2003.

[11] N. Megiddo and D. S. Modha, “One up on LRU,”;login – The
Magazine of the USENIX Association, vol. 28, pp. 7–11, August
2003.

[12] J. T. Robinson and M. V. Devarakonda, “Data cache man-
agement using frequency-based replacement,” inProc. ACM
SIGMETRICS Conf., pp. 134–142, 1990.

[13] A. J. Smith, “Bibliography on paging and related topics,”
Operating Systems Review, vol. 12, pp. 39–56, 1978.

[14] A. J. Smith, “Second bibliography for cache memories,”Com-
puter Architecture News, vol. 19, no. 4, 1991.

[15] A. V. Aho, P. J. Denning, and J. D. Ullman, “Principles of
optimal page replacement,”J. ACM, vol. 18, no. 1, pp. 80–93,
1971.

[16] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering,” inProc.
ACM SIGMOD Conf., pp. 297–306, 1993.

[17] T. Johnson and D. Shasha, “2Q: A low overhead high per-
formance buffer management replacement algorithm,” inProc.
VLDB Conf., pp. 297–306, 1994.

[18] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “On the existence of a spectrum of policies that
subsumes the least recently used (lru) and least frequently used
(lfu) policies,” in Proc. ACM SIGMETRICS Conf., pp. 134–143,
1999.

[19] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim, “LRFU: A spectrum of policies that subsumes
the least recently used and least frequently used policies,” IEEE
Trans. Computers, vol. 50, no. 12, pp. 1352–1360, 2001.

[20] Y. Zhou and J. F. Philbin, “The multi-queue replacement algo-
rithm for second level buffer caches,” inProc. USENIX Annual
Tech. Conf. (USENIX 2001), Boston, MA, pp. 91–104, June
2001.

[21] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance,” inProc. ACM SIGMETRICS Conf., 2002.

[22] W. R. Carr and J. L. Hennessy, “WSClock – a simple and
effective algorithm for virtual memory management,” inProc.
Eighth Symp. Operating System Principles, pp. 87–95, 1981.

[23] H. T. Chou and D. J. DeWitt, “An evaluation of buffer manage-
ment strategies for relational database systems,” inProceedings
of the 11th International Conference on Very Large Databases,
Stockholm, Sweden, pp. 127–141, 1985.

[24] A. J. Smith, “Sequentiality and prefetching in databasesystems,”
ACM Trans. Database Systems, vol. 3, no. 3, pp. 223–247, 1978.

[25] V. F. Nicola, A. Dan, and D. M. Dias, “Analysis of the gener-
alized clock buffer replacement scheme for database transaction
processing,” inACM SIGMETRICS, pp. 35–46, 1992.

[26] U. Vahalia,UNIX Internals: The New Frontiers. Prentice Hall,
1996.

