HawkEye: Efficient Fine-grained
OS Support for Huge Pages

Ashish Panwar
Indian Institute of Science
ashishpanwar@iisc.ac.in

Abstract

Effective huge page management in operating systems is
necessary for mitigation of address translation overheads.
However, this continues to remain a difficult area in OS de-
sign. Recent work on Ingens [55] uncovered some interesting
pitfalls in current huge page management strategies. Using
both page access patterns discovered by the OS kernel and
fine-grained data from hardware performance counters, we
expose problematic aspects of current huge page manage-
ment strategies. In our system, called HawkEye/Linux, we
demonstrate alternate ways to address issues related to per-
formance, page fault latency and memory bloat; the primary
ideas behind HawkEye management algorithms are async
page pre-zeroing, de-duplication of zero-filled pages, fine-
grained page access tracking and measurement of address
translation overheads through hardware performance coun-
ters. Our evaluation shows that HawkEye is more perfor-
mant, robust and better-suited to handle diverse workloads
when compared with current state-of-the-art systems.

CCS Concepts - Software and its engineering — Op-
erating systems; Virtual memory;

Keywords Virtual memory; huge pages; hardware counters

ACM Reference Format:

Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye:
Efficient Fine-grained OS Support for Huge Pages. In 2019 Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS °19), April 13-17, 2019, Providence, RI, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3297858.3304064

1 Introduction

Modern applications with large memory footprints have put
address translation overheads in general-purpose processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPLOS 19, April 13-17, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304064

Sorav Bansal
Indian Institute of Technology Delhi
sbansal@iitd.ac.in

K. Gopinath
Indian Institute of Science
gopi@iisc.ac.in

into focus [32, 49, 59, 61, 63]. Modern architectures imple-
menting large multi-level TLBs and page-walk caches, all
supporting multiple page sizes [35, 40], require careful OS de-
sign to determine suitable page sizes for different workloads
[47, 55, 57, 64]. The problem becomes more severe with vir-
tual machines where two layers of address translation cause
additional MMU overheads [34, 46, 62].

Despite robust hardware support available across architec-
tures [15], huge pages have provided unsatisfactory perfor-
mance on important applications [6, 9, 10, 12, 23-25]. These
performance issues are often due to inadequate OS-based
huge page management algorithms [5, 7, 11].

OS-based huge page management algorithms need to bal-
ance complex trade-offs between address translation over-
heads (aka MMU overheads), memory bloat, page fault la-
tency, fairness and the overheads of the algorithm itself. In
this paper, we discuss some subtleties related to huge pages
and expose important weaknesses of current approaches,
and propose a new set of algorithms to address them. We
begin with a brief overview of the three representative state-
of-the-art systems: Linux, FreeBSD, and a recent research
paper by Kwon et al., i.e., Ingens [55].

Linux: Linux’s transparent huge page (THP) employs huge
pages through two mechanisms: (1) either it allocates a huge
page at the time of page fault if contiguous memory is avail-
able, or (2) it promotes base pages to huge pages, by option-
ally compacting memory [39], in a background kernel thread
called khugepaged. Linux triggers background promotion
when fragmentation is high and huge pages are difficult
to allocate at the time of page fault. While promoting huge
pages, khugepaged selects processes in first-come-first-serve
(FCFS) order and promotes all huge pages in a process before
selecting the next process. For security, a page is zeroed syn-
chronously (except for copy-on-write pages) before getting
mapped into the user process’ page table.

FreeBSD: FreeBSD supports multiple huge page sizes [57].
Unlike Linux, FreeBSD reserves a contiguous region of phys-
ical memory in the page fault handler but defers the promo-
tion of baseline pages until all base pages in a huge page sized
region are allocated by the application. If the reserved mem-
ory region is only partially mapped, its unused pages are
returned back to the page allocator when memory pressure
increases. This way, FreeBSD manages memory contiguity
more efficiently than Linux, at the potential expense of a

https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3297858.3304064

higher number of page faults and higher MMU overheads
due to multiple TLB entries, one per baseline page.

Ingens: In the Ingens paper [55], the authors point out pit-
falls in the huge page management policies of both Linux and
FreeBSD and present a policy that is better at handling the as-
sociated trade-offs. In summary: (1) Ingens uses an adaptive
strategy to balance address translation overhead and mem-
ory bloat: it uses conservative utilization-threshold based
huge page allocation to prevent memory bloat under high
memory pressure but relaxes the threshold to allocate huge
pages aggressively under no memory pressure, to try and
achieve the best of both worlds. (2) To avoid high page fault
latency associated with synchronous page-zeroing, Ingens
employs asynchronous huge page allocation with a dedi-
cated kernel thread. (3) To maintain fairness across multiple
processes, Ingens treats memory contiguity as a resource
and employs a share-based policy to allocate huge pages
fairly.

The Ingens paper highlights that current OSs deal with
huge page management issues through “spot fixes”, and mo-
tivates the need for a principled approach. While Ingens
proposes a more sophisticated strategy than previous work,
we show that its static configuration based and heuristic-
driven approaches are suboptimal: conflicting performance
objectives and inadequate knowledge of MMU overheads
of running applications can limit its effectiveness. Several
aspects of an OS-based huge page management system can
thus benefit from a dynamic data-driven approach.

This paper presents HawkEye, an automated OS-level
solution for huge page management. HawkEye proposes
a set of simple-yet-effective algorithms to: (1) balance the
tradeoffs between memory bloat, address translation over-
heads, and page fault latency, (2) allocate huge pages to
applications with highest expected performance improve-
ment due to the allocation, and (3) improve memory sharing
behaviour in virtualized systems. We also show that the
actual address-translation overheads, as measured through
performance counters, can be sometimes quite different from
the expected/estimated overheads. To demonstrate this, we
also evaluate a variant of HawkEye that relies on hardware
performance counters for making huge page allocation deci-
sions, and compare results. Our evaluation involves work-
loads with a diverse set of requirements vis-a-vis huge page
management, and demonstrates that HawkEye can achieve
considerable performance improvement over existing sys-
tems while adding negligible overhead (= 3.4% single-core
overhead in the worst-case).

2 Motivation

In this section, we discuss different tradeoffs involved in OS-
level huge page management and how current solutions han-
dle them. We also provide a glimpse of the results achieved
through HawkEye which is discussed in detail in §3.

out-of-memo: success
48 Y =
40 it
@ 32 2 W
G] ~ - P3 N
524 R >
(%]
16 -
8 wsf =——Linux Ingens ----- HawkEye
0
HONULO A AN N AN MADNNMA 0NN WN
O MO NTONTST AT 0N AN ANDNDOANOD O
HANNNOT TN O OMN00NDNOO T ANANMS T N
S=8S838333a

Time (seconds)
Figure 1. Resident Set Size (RSS) of Redis server across 3
phases: P1 (insert), P2(delete) and P3(insert).

2.1 Address Translation Overhead vs. Memory Bloat

One of the most important tradeoffs associated with huge
pages is between address translation overheads and memory
bloat. While Linux’s synchronous huge page allocation is
aimed at minimizing MMU overheads, it can often lead to
memory bloat when an application uses only a fraction of
the allocated huge page. FreeBSD promotes only after all
base pages in a huge page region are allocated. FreeBSD’s
conservative approach tackles memory bloat but sacrifices
performance by delaying the mapping of huge pages.

Ingens’ strategy is adaptive, in that it promotes huge pages
aggressively to minimize MMU overheads when memory
fragmentation is low. To measure fragmentation, it uses the
Free Memory Fragmentation Index (FMFI [50]): when FMFI
< 0.5 (low fragmentation), Ingens behaves like Linux, pro-
moting allocated pages to huge pages at the first available
opportunity; when FMFI > 0.5 (high fragmentation), Ingens
uses a conservative utilization-based strategy (i.e., promote
only after a certain fraction of base pages, say 90%, are al-
located) to mitigate memory bloat. While Ingens appears
to capture the best of both Linux and FreeBSD, we show
that this adaptive policy is far from a complete solution be-
cause memory bloat generated in the aggressive phase remains
unrecovered. This property is also true for Linux and we
demonstrate this problem through a simple experiment with
the Redis key-value store [38] running on a 48GB memory
system (see Figure 1).

We execute a client to generate memory bloat and measure
the interaction of different huge page policies with Redis.
For exposition, we divide our workload into three phases:
(P1) The client inserts 11 million key-value pairs of size
(10B, 4KB) for an in-memory dataset of 45GB. (P2) The client
deletes 80% randomly selected keys leaving Redis with a
sparsely populated address space. (P3) After some time gap,
the client tries to insert 17K (10B, 2MB) key-value pairs so
that the dataset again reaches 45GB. While this workload is
used for clear exposition of the problem, it resembles real-
istic workload patterns that involve a mix of allocation and
deallocation, and leave the address space fragmented. An
ideal system should recover elegantly from memory bloat to
avoid disruptions under high memory pressure.

In phase P2, when Redis releases pages back to the OS
through madvise system call [16], the corresponding huge
page mappings are broken by the kernel and the resident-set
size (RSS) reduces to around 11GB. At this point, the ker-
nel’s khugepaged thread promotes the regions containing
the deallocated pages back to huge pages. As more allo-
cations happen in phase P3, Ingens promotes huge pages
aggressively until the RSS reaches 32GB (or fragmentation is
low); after that, Ingens employs conservative promotion to
avoid any further bloat. This is evident in Figure 1 where the
rate of RSS growth decreases, compared to Linux. However
both Linux and Ingens reach memory limit (out-of-memory
OOM exception is thrown) at significantly lower memory
utilization. While Linux generates a bloat of 28GB (i.e., only
20GB useful data), Ingens generates a bloat of 20GB (i.e.,
28GB useful data). Although Ingens tries to prevent bloat at
high memory utilization, it is unable to recover from bloat
generated at low memory utilization.

We note that it is possible to avoid memory bloat in In-
gens by configuring it to use only conservative promotion.
However, as also explained in the Ingens paper, this strategy
risks losing performance due to high MMU overheads in
low memory pressure situations. An ideal strategy should
promote huge pages aggressively but should also be able
to recover from bloat in an elegant fashion. Figure 1 shows
HawkEye’s behaviour for this workload, which is able to
effectively recover from memory bloat, even with an aggres-
sive promotion strategy.

2.2 Page fault latency vs. Number of page faults

The OS often needs to clear (zero) a page before mapping it
into the process address space to prevent insecure informa-
tion flow. Clearing a page is significantly more expensive for
huge pages: in Linux on our experimental system, clearing
a base page takes about 25% of total page fault time which
increases to 97% for huge pages! High page fault latency
often leads to high user-perceived latencies, jeopardizing
performance for interactive applications. Ingens avoids this
problem by allocating only base pages in the page fault han-
dler and relegating the promotion task to an asynchronous
thread khugepaged. It prioritizes the promotion of recently
faulted regions over older allocations.

While Ingens reduces page allocation latency, it nullifies
an important advantage of huge pages, namely fewer page
faults for access patterns exhibiting high spatial locality [26].
Several applications that allocate and initialize a large mem-
ory region sequentially exhibit this type of access pattern and
their performance degrades due to higher number of page
faults if only base pages are allocated. We demonstrate the
severity of this problem through a custom microbenchmark
that allocates a 10GB buffer, touching one byte in every base
page and later frees the buffer. Table 1 shows the cumulative
performance summary for 10 runs of this workload.

. async .
Event sync page-zeroing promotion no page-zeroing
Linux Linux Ingens Linux | Linux
4KB 2MB 90% 4KB 2MB
Page faults 26.2M 51.5K 26.2M 26.2M | 51.5K
Total page fault time (secs) | 92.6 23.9 92.8 69.5 0.7
Avg page fault time (us) 3.5 465 3.5 2.65 13
System time (secs) 102 24 104 79 1.3
Total time (secs) 106 24.9 116 83 44

Table 1. Page faults, allocation latency and performance for
a microbenchmark with ~100GB memory allocation.

Linux with THP support (Linux-2MB with sync page-
zeroing in Table 1) reduces the number of page faults by
more than 500X over Linux without THP support (Linux-
4KB) and leads to more than 4x performance improvement
for this workload, despite being 133X worse on average page
fault latency (465us vs. 3.5us). Ingens considerably reduces
latency compared to Linux-2MB but does not reduce the
number of page faults for this workload because asynchro-
nous promotion is activated only after 90% base pages are
allocated from a region; copying these pages to a contiguous
memory block takes more time than the time taken by this
workload to generate the remaining 10% page faults in the
same region. Consequently, the overall performance of this
workload degrades in Ingens due to excessive page faults.
If it were possible to allocate pages without having to zero
them at page fault time, we could achieve bothlow page fault
latency and fewer page faults resulting in higher overall per-
formance over all existing approaches (last two columns in
Table 1). HawkEye implements rate-limited asynchronous
page pre-zeroing (§3.1) to achieve this in the common case.

2.3 Huge page allocation across multiple processes

Under memory fragmentation, the OS must allocate huge
pages among multiple processes fairly. Ingens authors tack-
led this problem by defining fairness through a proportional
huge page promotion metric wherein they consider “memory
contiguity as a resource” and try and be equitable in dis-
tributing it (through huge pages) among applications. Ingens
penalizes applications that have been allocated huge pages
but are not accessing them frequently (i.e., have idle huge
pages). Idleness of a page is estimated through the access-bit
present in the page table entries which is maintained by the
hardware and periodically cleared by the OS. Ingens employs
an idleness penalty factor whereby an application is penalized
for its idle, or cold, huge pages during the computation of
the proportional huge page promotion metric.

Ingens’ fairness policy has an important weakness — two
processes may have similar huge page requirements but one
of them (say P1) may have significantly higher TLB pressure
than the other (say P2). This can happen, for example, if P1’s
accesses are spread across many base pages within its huge
page regions, while P2’s accesses are concentrated in one
(or a few) base pages within its huge page regions. In this
scenario, promotion of huge pages in P1 is more desirable
than P2 but Ingens would treat them equally.

Number of applications

Benchmark Suite

Total TLB sensitive applications
SPEC CPU2006_int | 12 4 (mcf, astar, omnetpp, xalancbmk)
SPEC CPU2006_fp 19 3 (zeusmp, GemsFDTD, cactusADM)
PARSEC 13 2 (canneal, dedup)
SPLASH-2 10 0
Biobench 9 2 (tigr, mummer)
NPB 9 2 (cg, bt)
CloudSuite 7 2 (graph-analytics, data-analytics)
Total 79 15

Table 2. Number of TLB sensitive applications in popular
benchmark suites.

Table 2 provides some empirical evidence that different
applications usually behave quite differently vis-a-vis huge
pages. For example, less than 20% of the applications in pop-
ular benchmark suites experience noticeable performance
improvement (> 3%) with huge pages.

We posit that instead of considering “memory contiguity
as a resource” and granting it equally among processes, it
is more effective to consider “MMU overheads as a system
overhead” and try and ensure that it is distributed equally
across processes. A fair algorithm should attempt to equalize
MMU overheads across all applications, e.g., if two processes
P1 and P2 experience 30% and 10% MMU overheads resp.,
then huge pages should be allocated to P1 until its overhead
also reaches 10%. In doing so, it should be acceptable if P1
has to be allocated more huge pages than P2. Such a policy
would additionally yield the best overall system performance
by helping the most afflicted processes first.

Further, in Ingens, huge page promotion is triggered in re-
sponse to a few page-faults in the aggressive (non-fragmented)
phase. These huge pages are not necessarily frequently ac-
cessed by the application; yet they contribute to a process’s
allocation quota of huge pages. Under memory pressure,
these idle huge pages lower the promotion metric of a pro-
cess, potentially preventing the OS from allocating more
huge pages to it. This would increase MMU overheads if the
process had other hot (frequently accessed) memory regions
that required huge page promotion. This behaviour where
previously-allocated cold huge pages can prevent an appli-
cation from being allocated huge pages for its hot regions
seems sub-optimal and avoidable.

Finally, within a process, Linux and Ingens promote huge
pages through a sequential scan from lower to higher VAs.
This approach is unfair to processes whose hot regions lie in
the higher VAs. Because different applications would usually
contain hot regions in different parts of their VA spaces (see
Figure 6), this scheme is likely to cause unfairness in practice.

2.4 How to capture address translation overheads?

It is common to estimate MMU overheads based on working-
set size (WSS) [56]: bigger WSS should entail higher MMU
and performance overheads. We find that this is often not
true for modern hardware where access patterns play an im-
portant role in determining MMU overheads, e.g., sequential

% TLB-misses | % cycles speedu;
Workload | RSS wss (native-4KB) 4KBy 2MB nati‘E’e viﬂual
bt.D 10GB | 7-10 GB 0.45 6.4 1.31 1.05 1.15
sp.D 12GB | 8-12 GB 0.48 4.7 0.25 1.01 1.06
luD 8GB 8 GB 0.06 33 0.18 1.0 1.01
mg.D 26GB 24 GB 0.03 1.04 | 0.04 1.01 1.11
cg.D 16GB | 7-8 GB 28.57 39 0.02 1.62 2.7
ft.D 78 GB | 7-35 GB 0.21 3.9 2.14 1.01 1.04
ua.D 9.6 GB | 5-7 GB 0.01 0.8 0.03 1.01 1.03

Table 3. Memory characteristics, address translation over-
heads and speedup huge pages provide over base pages for
NPB workloads.

Performance Counter

C1 | DTLB_LOAD_MISSES_ WALK_DURATION
C2 | DTLB_STORE_MISSES_WALK_DURATION
C3 | CPU_CLK_UNHALTED

MMU Overhead = ((C1 + C2) * 100) / C3

Table 4. Methodology used to measure MMU Overhead [54].

access patterns allow prefetching to hide TLB miss latencies.
Further, different TLB miss requests can experience high
latency variations: a translation may be present anywhere
in the multi-level page walk caches, multi-level regular data
caches or in main memory. For these reasons, WSS is often
not a good indicator of MMU overheads. Table 3 demon-
strates this with the NPB benchmark suite [30]: a workload
with large WSS (e.g., mg.D) can have low MMU overheads
compared to one with a smaller WSS (e.g., cg.D).

It is not clear to us how an OS can reliably capture MMU
overheads: these are dependent on complex interactions be-
tween applications and the underlying hardware architec-
ture, and we show that the actual address translation over-
heads of a workload can be quite different from what can be
estimated through its memory access pattern (e.g., working-
set size). Hence, we propose directly measuring TLB over-
heads through hardware performance counters when avail-
able (see Table 4 for methodology). This approach enables
a more efficient solution at the cost of portability as the re-
quired performance counters may not be available on all plat-
forms (e.g., most hypervisors have not yet virtualized TLB-
related performance counters). To overcome this challenge,
we present two variants of our algorithm/implementation in
HawkEye/Linux, one where the MMU overheads are mea-
sured through hardware performance counters (HawkEye-
PMU), and another where MMU overheads are estimated
through the memory access pattern (HawkEye-G). We com-
pare both approaches in §4.

3 Design and Implementation

Figure 2 shows our high-level design objectives. Our solution
is based on four primary observations: (1) high page fault
latency for huge pages can be avoided by asynchronously
pre-zeroing free pages; (2) memory bloat can be tackled
by identifying and de-duplicating zero-filled baseline pages
present within allocated huge pages; (3) promotion decisions
should be based on finer-grained access tracking of huge
page sized regions, and should include recency, frequency,

Low Memory Pressure [High Memory Pressure]

1. Fewer Page Faults 1. High Memory Efficiency
2. Low-latency Allocation 2. Efficient Huge Page Promotion
3. High Performance 3. Fairness

Figure 2. Design objectives in HawkEye.

and access-coverage (i.e., how many baseline pages are ac-
cessed inside a huge page) measurements; and (4) fairness
should be based on estimation of MMU overheads.

3.1 Asynchronous page pre-zeroing

We propose that page zeroing of available free pages should
be performed asynchronously in a rate-limited background
kernel thread to eliminate high latency allocation. We call
this scheme async pre-zeroing. Async pre-zeroing is a rather
old idea and had been discussed extensively among kernel
developers in early 2000s [1, 2, 14, 41]'. Linux developers
opined that async pre-zeroing is not an overall performance
win for two main reasons. We think that it is time to revisit
these opinions.

First, the async pre-zeroing thread might interfere with
primary workloads by polluting the cache [1]. In particu-
lar, async pre-zeroing suffers from the “double cache miss”
problem because it causes the same datum to be accessed
twice with a large re-use distance: first for pre-zeroing, and
then for the actual access by the application. These extra
cache misses are expected to degrade overall performance
in general. However, these problems are partially solvable
on modern hardware that support memory writes with non-
temporal hints: non-temporal hints instruct the hardware to
bypass caches during memory load/store instructions [43].
We find that using non-temporal hints during pre-zeroing
significantly reduces both cache contention and the double
cache miss problem.

Second, there was no consensus or empirical evidence to
demonstrate the benefits of page pre-zeroing for real work-
loads [1, 42]. We note that the early discussions on page
pre-zeroing were evaluating trade-offs with baseline 4KB
pages. Our experiments corroborate the kernel developers’
observation that despite reducing the page fault overhead
by 25%, pre-zeroing does not necessarily enable high per-
formance with 4KB pages. At the same time, we also show
that it enables non-negligible performance improvements
(e.g., 14X faster VM boot-time) with huge pages, due to much
higher reduction (97%) in page fault overheads. Since huge
pages (and huge-huge pages) are supported by most general-
purpose processors today [15, 27], pre-zeroing pages is an
important optimization that is worth revisiting.

Pre-zeroing offers another advantage for virtualized sys-
tems: it increases the number of zero pages in the guest’s
physical address (GPA) space enabling opportunities for

!Windows and FreeBSD implement async pre-zeroing in a limited fashion [4,
19]. However, their huge page policies do not allow high latency allocations.
This idea is more relevant for Linux due to its synchronous huge page
allocation behaviour.

content-based page-sharing at the virtualization host. We
evaluate this aspect in §4.

To implement async pre-zeroing, HawkEye manages free
pages in the Linux buddy allocator through two lists: zero
and non-zero. Pages released by applications are first added
to the non-zero list while the zero list is preferentially used
for allocation. A rate-limited thread periodically transfers
pages from non-zero to zero lists after zero-filling them
using non-temporal writes. Because pre-zeroing involves se-
quential memory accesses, non-temporal store instructions
provide performance similar to regular (caching) store in-
structions, but without polluting the cache [3]. Finally, we
note that for copy-on-write or filesystem-backed memory
regions, pre-zeroing may sometimes be unnecessary and
wasteful. This problem is avoidable by preferentially allo-
cating pages for these memory regions from the non-zero
list.

Overall, we believe that async pre-zeroing is a compelling
idea for modern workload requirements and modern hard-
ware support. In our evaluation, we provide some early evi-
dence to corroborate this claim with different workloads.

3.2 Managing bloat vs. performance

We observe that the fundamental tension between MMU
overheads and memory bloat can be resolved. Our approach
stems from the insight that most allocations in large-memory
workloads are typically “zero-filled page allocations”; the re-
maining are either filesystem-backed (e.g., through mmap)
or copy-on-write (COW) pages. However, huge pages in
modern scale-out workloads are primarily used for “anony-
mous” pages that are initially zero-filled by the kernel [54],
e.g., Linux supports huge pages only for anonymous mem-
ory. This property of typical workloads and Linux allows
automatic recovery of bloat under memory pressure.

To state our approach succinctly: we allocate huge pages
at the time of first page-fault; but under memory pressure,
to recover unused memory, we scan existing huge pages to
identify zero-filled baseline pages within them. If the number
of zero-filled baseline pages inside a huge page is significant
(i.e., beyond a threshold), we break the huge page into its
constituent baseline pages and de-duplicate the zero-filled
baseline pages to a canonical zero-page through standard
COW page management techniques [37]. In this approach,
it is possible for applications’ in-use zero-pages to also get
de-duplicated. While this can result in a marginally higher
number of COW page faults in rare situations, this does not
compromise correctness.

To trigger recovery from memory bloat, HawkEye uses
two watermarks on the amount of allocated memory in
the system: high and low. When the amount of allocated
memory exceeds high (85% in our prototype), a rate-limited
bloat-recovery thread is activated which executes period-
ically until the allocated memory falls below low (70% in
our prototype). At each step, the bloat-recovery thread

115.5

distance (bytes)
&
N

Figure 3. Average distance to the first non-zero byte in base-
line (4KB) pages. First four bars represent the average of all
workloads in the respective benchmark suite.

chooses the application whose huge page allocations need to
be scanned (and potentially demoted) based on the estimated
MMU overheads of that application: the application with the
lowest estimated MMU overheads is chosen first for scanning.
This strategy ensures that the application that least requires
huge pages is considered first — this is consistent with our
huge page allocation strategy (§2.3).

While scanning a baseline page to verify if it is zero-filled,
we stop on encountering the first non-zero byte in it. In
practice, the number of bytes that need to be scanned per
in-use (not zero-filled) page before a non-zero byte is en-
countered is very small: we measured this over a total of 56
diverse workloads, and found that the average distance of the
first non-zero byte in a 4KB page is only 9.11 (see Figure 3).
Hence, only ten bytes need to be scanned on average per
in-use application page. For bloat pages however, all 4096
bytes need to be scanned. This implies that the overheads
of our bloat-recovery thread are largely proportional to
the number of bloat pages in the system, and not to the total
size of the allocated memory. This is an important property
that allows our method to scale to large memory systems.

We note that our bloat-recovery procedure has many
similarities with the standard de-duplication kernel threads
used for content-based page sharing for virtual machines
[67], e.g., the kernel same-page merging (ksm) thread in
Linux. Unfortunately, in current kernels, the huge page man-
agement logic (e.g., khugepaged) and the content-based page
sharing logic (e.g., ksm) are unconnected and can often inter-
act in counter-productive ways [51]. Ingens and SmartMD
[52] proposed coordinated mechanisms to avoid such con-
flicts: Ingens demotes only infrequently-accessed huge pages
through ksm while SmartMD demotes pages based on access-
frequency and repetition rate (i.e., the number of shareable
pages within a huge page). These techniques are useful for in-
use pages and our bloat-recovery proposal complements
them by identifying unused zero-filled pages, which can
execute much faster than typical same-page merging logic.

3.3 Fine-grained huge page promotion

An efficient huge page promotion strategy should try to
maximize performance with a minimal number of huge page

o N | © g

order of promotion

-

cold-regions hot-regions

E

access map

access map

access map

Figure 4. A sample representation of access_map for three
processes A, B and C.

promotions. Current systems promote pages through a se-
quential scan from lower to higher VAs which is inefficient
for applications whose hot regions are not in lower VA space.
Our approach makes promotion decisions based on memory
access patterns. First we define an important metric used in
HawkEye to improve the efficiency of huge page promotions.
Access-coverage denotes the number of base pages that are
accessed from a huge page sized region in short intervals.
We sample the page table access bits at regular intervals and
maintain the exponential moving average (EMA) of access-
coverage across different samples. More precisely, we clear
the page table access bits and test the number of set bits
after 1 second to check how many pages are accessed. This
process is repeated once every 30 seconds.

The access-coverage of a region potentially indicates its
TLB space requirement (number of base page entries required
in the TLB), which we use to estimate the profitability of
promoting it to a huge page. A region with high access-
coverage is likely to exhibit high contention on TLB and
hence likely to benefit more from promotion.

HawkEye implements access-coverage based promotion
using a per-process data structure, called access_map, which
is an array of buckets: a bucket contains huge page regions
with similar access-coverage. On x86 with 2MB huge pages,
the value of access-coverage is in the range of 0-512. In our
prototype, we maintain ten buckets in the access_map which
provides the necessary resolution across access-coverage val-
ues at relatively low overheads: regions with access-coverage
of 0-49 are placed in bucket 0, regions with access-coverage
of 50 — 99 are placed in bucket 1, and so on. Figure 4 shows
an example state of the access_map of three processes A, B
and C. Regions can move up or down in their respective ar-
rays after every sampling period, depending on their newly
computed EMA-based access-coverage. If a region moves
up in access_map, it is added to the head of its bucket. If a
region moves down, it is added to the tail. Within a bucket,
pages are promoted from head to tail. This strategy helps in
prioritizing recently accessed regions within an index.

HawkEye promotes regions from higher to lower indices
in access_map. Notice that our approach captures both re-
cency and frequency of accesses: a region that has not been

accessed or accessed with low access-coverage in recent
sampling periods is likely to shift towards a lower index
in access_map or towards the tail in its current index. Pro-
motion of cold regions is thus automatically deferred to
prioritize hot regions.

We note that HawkEye’s access_map is somewhat similar
to population_map and access_bitvector used in FreeBSD
and Ingens resp.; these data structures are primarily used to
capture utilization or page access related metadata at huge
page granularity. HawkEye’s access_map additionally pro-
vides the index of hotness of memory regions and enables
fine-grained huge page promotion.

3.4 Huge page allocation across multiple processes

In our access-coverage based strategy, regions belonging to
a process with the highest expected MMU overheads are
promoted before others. This is also consistent with our
notion of fairness §2.3, as pages are promoted first from
regions/processes with high expected TLB pressure (and
consequently high expected MMU overheads).

Our HawkEye variant that does not rely on hardware
performance counters (i.e., HawkEye-G), promotes regions
from the non-empty highest access-coverage index in all pro-
cesses. It is possible that multiple processes have non-empty
buckets in the (globally) highest non-empty index. In this
case, round-robin is used to ensure fairness among such
processes. We explain this further with an example. Con-
sider three applications A, B and C with their VA regions
arranged in the access_map as shown in Figure 4. HawkEye-
G promotes regions in the following order in this example:

A1,B1,C1,C2,B2,C3,C4,B3,B4,A2,C5,A3

Recall however that MMU overheads may not necessarily
be correlated with our access-coverage based estimation,
and may depend on other more complex features of the
access pattern (§2.4). To capture this in HawkEye-PMU, we
first choose the process with the highest measured MMU
overheads, and then choose regions from higher to lower
indices in selected process’s access_map. Among processes
with similar highest MMU overheads, round-robin is used.

3.5 Limitations and discussion

We briefly outline a few issues that are related to huge page
management but are currently unhandled in HawkEye.

1) Thresholds for identifying memory pressure: We mea-
sure the extent of memory pressure with statically configured
values for low and high watermarks (i.e., 70% and 85% of
total system memory) while dealing with memory bloat. Any
strategy that relies on static thresholds faces the risk of being
conservative or overly aggressive when memory pressure
consistently fluctuates. An ideal solution should adjust these
thresholds dynamically to prevent unintended system behav-
ior. The approach proposed by Guo et. al. [51] in the context
of memory deduplication for virtualized environments is
relevant in this context.

2) Huge page starvation: While we believe our approach
of allocating huge pages based on MMU overheads optimizes
the system as a whole, unbounded huge page allocations to
a single process can be thought of as a starvation problem
for other processes. An adverserial application can also po-
tentially monopolize HawkEye to get more huge pages or
prevent other applications from getting a fair share of huge
pages. Preliminary investigations show that our approach is
reasonable even if the memory footprint of workloads differ
by more than an order of magnitude. However, if limiting
huge page allocations is still desirable, it seems reasonable to
integrate a policy with existing resource limiting/monitoring
tools, such as Linux’s cgroups [18].

3) Other algorithms: We do not discuss some parts of the
management algorithms, such as rate limiting khugepaged
to reduce promotion overheads, demotion based on low uti-
lization to enable better sharing through same-page merging,
and techniques for minimizing the overhead of page-table
access-bit tracking and compaction algorithms. Much of this
material has been discussed and evaluated extensively in
the literature [32, 55, 59, 68], and we have not contributed
significantly new approaches in these areas.

4 Evaluation

We now evaluate our algorithms in more detail. Our exper-
imental platform is an Intel Haswell-EP based E5-2690 v3
server system running CentOS v7.4, on which 96GB mem-
ory and 48 cores (with hyperthreading enabled) running at
2.3GHz are partitioned on two sockets: we bind each work-
load to a single socket to avoid NUMA effects. The L1 TLB
contains 64 and 8 entries for 4KB and 2MB pages respectively
while the L2 TLB contains 1024 entries for both 4KB and
2MB pages. The size of L1, L2 and shared L3 cache is 768KB,
3MB and 30MB resp. A 96GB SSD-backed swap partition
is used to evaluate performance in an overcommitted sys-
tem. We evaluate HawkEye with a diverse set of workloads
ranging from HPC, graph algorithms, in-memory databases,
genomics and machine learning [24, 30, 33, 36, 45, 53, 65, 66].
HawkEye is implemented in Linux kernel v4.3.

We evaluate (a) the improvements due to our fine-grained
promotion strategy based on access-coverage in both per-
formance and fairness for single, multiple homogeneous, and
multiple heterogeneous workloads; (b) the bloat-vs-performance
tradeoft; (c) the impact of low latency page faults; (d) cache
interference caused by asynchronous pre-zeroing thread; and
() the impact of memory efficiency enabled by asynchronous
page pre-zeroing.

Performance advantages of fine-grained huge page pro-
motion: We first evaluate the effectiveness of our access-
coverage based promotion strategy. For this, we measure the
time required for our algorithm to recover from a fragmented
state with high address translation overheads to a state with

% speedup
24 1200

Time saved (ms)

1007 1011
18 [
12
6 175158
o 23 g 25 36
0 ik = |
Graph500 XSBench cg.D Graph500 XSBench cg.D

OLinux EIngens @ HawkEye-PMU & HawkEye-G
Figure 5. Performance speedup and time saved per huge

page promotion over baseline pages.

Execution Time (Seconds)

Workload Linux-4KB Linux-2MB Ingens HawkEye-PMU HawkEye-G

Graph500-1 2270 2145(1.06) 2243(1.01) 1987(1.14) 2007(1.13)
Graph500-2 2289 2252(1.02) 2253(1.02) 1994(1.15) 2013(1.14)
Graph500-3 2293 2293(1.0) 2299(1.00) 2012(1.14) 2018(1.14)
"7 Average 2284 2230(1.02) 2265(1.01) 1998(1.14) 2013(1.13)
XSBench-1 2427 2415(1.0) 2392(1.01) 2108(1.15) 2098(1.15)
XSBench-2 2437 2427(1.0) 2415(1.01) 2109(1.15) 2110(1.15)
XSBench-3 2443 2455(1.0) 2456(1.00) 2133(1.15) 2143(1.14)
"7 Average | 2436 2432(1.0) 2421(1.00) 2117(1.15) 2117(1.15)

Table 5. Execution time of 3 instances of Graph500 and
XSBench when executed simultaneously. Values in parenthe-
ses represent speedup over baseline pages.

low address translation overheads. Recall that HawkEye pro-
motes pages based on access-coverage while previous ap-
proaches promote pages in VA order (from low VAs to high).
We fragment the memory initially by reading several files in
memory; our test workloads are started in the fragmented
state and we measure the time taken for the system to re-
cover from high MMU overheads. This experimental setup
simulates expected realistic situations where the memory
fragmentation in the system fluctuates over time. Without
promotion, our test workloads would keep incurring high
address translation overheads; however HawkEye is quickly
able to recover from these overheads through appropriate
huge page allocations. Figure 5 (left) shows the performance
improvement obtained by HawkEye (over a strategy that
never promotes the pages) for three workloads: Graph500,
XSBench and cg.D. These workloads allocate all their re-
quired memory in the beginning, i.e., in the fragmented state
of the system. For these workloads, the speedups due to
effective huge page management through HawkEye are as
high as 22%. Compared to Linux and Ingens, access-coverage
based huge page promotion strategy of HawkEye improves
performance by 13%, 12% and 6% over both Linux and Ingens.

To understand this more clearly, Figure 6 shows the access
pattern, MMU overheads and the number of allocated huge
pages over time for Graph50@ and XSBench. We find that
hot-spots in these applications are concentrated in the high
VAs and any sequential-scanning based promotion is likely
to be sub-optimal. The second and third columns corrobo-
rate this observation: for example, both HawkEye variants
take ~300 seconds to eliminate MMU overheads of XSBench
while Linux and Ingens have high overheads even after 1000
seconds.

To quantify the cost-benefit analysis of huge page promo-
tions further, we propose a new metric: the average execu-
tion time saved (over using only baseline pages) per huge
page promotion. A scheme that maximizes this metric would
be most effective in reducing MMU overheads. Figure 5
(right) shows that HawkEye performs significantly better
than Linux and Ingens on this metric. The difference between
the efficiency of HawkEye-PMU and HawkEye-G is also evi-
dent: HawkEye-PMU is more efficient as it stops promoting
huge pages when MMU overheads are below a certain thresh-
old (2% in our experiments). In summary, HawkEye-G and
HawkEye-PMU are up to 6.7X and 44X more efficient (for
XSBench) than Linux in terms of time saved per huge page
promotion. For workloads whose access patterns are spread
uniformly over the VA space, HawkEye delivers performance
similar to Linux and Ingens.

Fairness advantages of fine-grained huge page promo-
tion: We next experiment with multiple applications to study
both performance and fairness, first with identical applica-
tions, and then with heterogeneous applications, running
simultaneously.

Identical workloads: Figure 7 shows the MMU overheads
and huge page allocations when 3 instances of Graph500 and
XSBench (in separate runs) are executed concurrently after
fragmenting the system (see Table 5 for execution time).

While Linux creates performance imbalance by promot-
ing huge pages in one process at a time, HawkEye ensures
fairness by judiciously distributing huge pages across all
workload instances. Overall, HawkEye-PMU and HawkEye-
G achieve 1.14x and 1.13X speedup for Graph500 and 1.15%
speedup for XSBench over Linux on average. Unlike Linux,
Ingens promotes huge pages proportionally in all 3 instances.
However, it fails to improve the performance of these work-
loads. In fact, it may lead to poorer performance than Linux.
We explain this behaviour with an example.

Linux selects an address from Graph500-1’s address space
and promotes all pages above it in around 10 minutes. Even
though this strategy is unfair, it improves the performance
of Graph500-1 by promoting its hot-regions. Linux then se-
lects Graph500-2 whose MMU overheads decrease after ~20
minutes. In contrast, Ingens promotes huge pages from lower
VAs in each instance of Graph500. Thus it takes even longer
for Ingens to promote suitable (hot) regions of the respec-
tive processes which leads to 9% performance degradation
over Linux for Graph500. For XSBench, the performance of
both Ingens and Linux is similar (but inferior to HawkEye)
because both fail to promote the application’s hot regions
before the application finishes.

Heterogeneous workloads: To measure the efficacy of dif-
ferent strategies for heterogeneous workloads, we execute
workloads by grouping them into sets where a set contains
one TLB sensitive and one TLB insensitive application. Each

Linux Ingens HawkEye-PMU HawkEye-G ——
512 60% 1000
S k=l
S 384 T 45% m g 800 oW
2 E ‘ & o HawkEye-G
2 < Cold Region--->} g ||4 £ 600 o ye-&
S 256 & 30% 1 o
% =) z w0 HawkEye-PMU
g 1 Z 15% o0
0 0% 0
0.5GB 1GB 1.5GB 2GB 300 600 900 1200 1500 300 600 900 1200 1500
Virtual Address Space Time (seconds) Time (seconds)
(a) Graph500
512 60% 2000
- 384 % 452 g 1500 G
z g . & 0
g 25 & 30% 1$=_ s 1000 ey
2 =} 3 2
S 128 E 15% \) HawkEye- PMU
g \ HawkEye-PMU, HawkEye-G
0 0%
1GB 2GB 3GB 4GB 5GB 6GB 300 600 900 1200 1500 1800 2100 2400 300 600 900 1200 1500 1800 2100 2400
Virtual Address Space Time (seconds) Time (seconds)
(b) XSBench

Figure 6. Access-coverage in application VA, MMU overhead and huge page promotions for Graph500 and XSBench. HawkEye
is more efficient in promoting huge pages due to fine-grained decision making.

Graph500-1 —— Graph500-2 Graph500-3 —
2 1000 2 1000 2 1000 2 1000
S 800 S 800 s 800 S 800
A 600 A 600 A~ 600 A 600
[} [} L [}
s 400 > o e 400 W e 400 S 400 22
T 200 3 T 200 i 200 T 200
FH* 0 - FH* 0 0 FH* 0
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Time (minutes) Time (minutes) Time (minutes) Time (minutes)
'g, 50% 'g, 50% 'g, 50% 'g, 50%
2 40% ‘ 2 40% . 2 40% 2 40%
2 30% . I 2 30% .‘ 2 30% 2 30%
20% ! g 20% A 20% g 20%
S 10% S 10% S 10% S 10%
E 0% E 0% E 0% Labunhathenn wn seumnin wa o, E 0% P
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Time (Minutes) Time (minutes) Time (minutes) Time (minutes)
XSBench-1 —— XSBench-2 XSBench-3 ——
» 2000 » 1200 » 1200 » 1200
5 5 & 5
81500 s 900 2 900 2 900
A \ A . s A
o 1000 o 600 o 600 o 600
g‘) %‘) 1.2 2 %D %‘) \ 2.2
£ 500 53 £ 300 > T 300) = 300
* 0 L * 0k ** o == * 0
10 20 30 40 50 100 20 30 40 50 100 20 30 40 50 10 20 30 40 50
Time (Minutes) Time (Minutes) Time (Minutes) Time (Minutes)
2 60% 2 60% 2 60%
o o o
£ 45% £ 45% < 45%
| R g
& 30% 1,2,3 & 30% 1,2,3 & 30%
2 15% r 2 15% 2 15% 1,2,3
= 0% = 0% = 0%
100 20 30 40 50 100 20 30 40 50 30 40 50 100 20 30 40 50

Time (Minutes)

(a) Linux-2MB

Time (Minutes)

(b) Ingens

Time (Minutes)

(c) HawkEye-PMU

Time (Minutes)

(d) HawkEye-G

Figure 7. Huge page promotions and their impact on TLB overhead over time for Linux, Ingens and HawkEye for three
instances of Graph500 and XSBench each.

set is executed twice, after fragmenting the system, to as-
sess the impact of huge page policies on the order of ex-
ecution. For the TLB insensitive workload, we execute a
lightly loaded Redis server with 1KB-sized 40M keys servic-
ing 10K requests per-second. Figure 8 shows the performance

speedup over 4KB pages. The (Before) and (After) configura-
tions show whether the TLB sensitive workload is launched
before Redis or after. Because Linux promotes huge pages
in process launch order, the two configurations (Before) and
(After) are intended to cover its two different behaviours.
Ingens and HawkEye are agnostic to process creation order.

75

OLinux glIngens

@ HawkEye-G

60

= HawkEye-PMU
==

% speedup

Graph500 lbm_s SVM
Before

cactusADM tigr

XSBench cg.D

XSBenc [¢

cactusADM tigr Graph500 Ibm_s SVM

After

«Q
o

Figure 8. Performance speedup over baseline pages of TLB sensitive applications when they are executed alongside a lightly

stressed Redis server in different orders.

OHawkEye-Host BHawkEye-Guest mHawkEye-Both

Normalized Performance

5\]\h \/\533“0“ 09'0

Figure 9. Performance compared to Linux in a virtualized
system when HawkEye is applied at the host, guest and both
layers.

The impact of execution order is clearly visible for Linux.
In the (Before) case, Linux with THP support improves per-
formance over baseline pages by promoting huge pages in
TLB sensitive applications. However, in the (After) case, it
promotes huge pages in Redis resulting in poor performance
for TLB sensitive workloads. While the execution order does
not matter in Ingens, its proportional huge page promotion
strategy favors large memory workloads (Redis in this case).
Further, our client requests randomly selected keys which
makes the Redis server access all its huge pages uniformly.
Consequently, Ingens promotes most huge pages in Redis
leading to suboptimal performance of TLB sensitive work-
loads. In contrast, HawkEye promotes huge pages based on
MMU overhead measurements (HawkEye-PMU) or access-
coverage based estimation of MMU overheads (HawkEye-G).
This leads to 15-60% performance improvement over 4KB
pages irrespective of the order of execution.

Performance in virtualized systems: For a virtualized
system, we use the KVM hypervisor running with Ubuntu16.04
and fragment the system prior to running the workloads.
Evaluation is presented for three different configurations,
i.e., when HawkEye is deployed at the host, guest and both
the layers. Each of these configurations requires running the
same set of applications differently (see Table 6 for details).

Figure 9 shows that HawkEye provides 18-90% speedup
compared to Linux in virtual environments. Notice that in
some cases (e.g., cg.D), performance improvement is higher
in a virtualized system compared to bare-metal. This is due to
high MMU overheads involved in traversing nested page ta-
bles while servicing TLB misses of guest applications, which
presents higher opportunities to be exploited by HawkEye.

Details
HawkEye-Host Two VMs eacfh with 24 vCPUs and 48GB memory.
VM-1 runs Redis. VM-2 runs TLB sensitive workloads.
S~ Single VM with 48 vCPUs and 80GB memory
running Redis and TLB sensitive workloads

HawkEve-Both Two VMs each with 24 vCPUs. VM-1 (30GB) runs Redis.
wikye VM-2 (60GB) runs both Redis and TLB sensitive workloads

Table 6. Experimental setup for configurations used to eval-
uate a virtualized system.

Configuration

Bloat vs. performance: We next study the relationship be-
tween memory bloat and performance; we revisit an experi-
ment similar to the one summarized in §2.1. We populate a
Redis instance with 8M (10B key, 4KB value) key-value pairs
and then delete 60% randomly selected keys (see Table 7).
While Linux-4KB (no THP) is memory efficient (no bloat),
its performance is low (7% lower throughput than Linux-
2MB, i.e., with THP). Linux-2MB delivers high performance
but consumes more memory which remains unavailable to
the rest of system even when memory pressure increases.
Ingens can be configured to balance the memory vs. perfor-
mance tradeoff. For example, Ingens-90% (Ingens with 90%
utilization threshold) is memory efficient while Ingens-50%
(Ingens with 50% utilization threshold) favors performance
and allows more memory bloat. In either case, it is unable
to recover from bloat that may have already been gener-
ated (e.g., during its aggressive phase). By switching from
aggressive huge page allocations under low memory pres-
sure to memory conserving strategy at runtime, HawkEye is
able to achieve both low MMU overheads and high memory
efficiency depending on the state of the system.
Fast page faults: Table 8 shows the performance of different
strategies; for the workloads chosen for these experiments,
their performance depends on the efficiency of the OS page
fault handler. We measure Redis throughput when 2MB-
sized values are inserted. SparseHash [13] is a hash-map
library in C++ while HACC-I0 [8] is a parallel IO benchmark
used with an in-memory file system. We also measure the
spin-up time of two virtual machines: KVM and a Java Virtual
Machine (JVM) where both are configured to allocate all
memory during initialization.

Performance benefits of async page pre-zeroing with base
pages (HawkEye-4KB) are modest: in this case, the other page

Kernel Self-tuning Memory Size Throughput
Linux-4KB No 16.2GB 106.1K
Linux-2MB No 33.2GB 113.8K
“Ingens-90% 1 No ~ 1 163GB 106.8K
Ingens-50% No 33.1GB 113.4K
HawkEye (no mem. pressure) ~ Yes 33.2GB 113.6K
HawkEye (mem. pressure) Yes 16.2GB 105.8K

Table 7. Redis memory consumption and throughput.

OS Configuration

Workload Linux | Linux | Ingens ? HawkEye | HawkEye

4KB | 2MB 90% 4KB 2MB
Redis (45GB) 233 437 192 236 551
SparseHash (36GB) 50.1 17.2 51.5 46.6 10.6
HACC-IO (6GB) 6.5 45 6.6 6.5 4.2
JVM Spin-up (36GB) 37.7 18.6 52.7 29.8 1.37
KVM Spin-up (36GB) | 40.6 9.7 41.8 30.2 0.70

Table 8. Performance implications of asynchronous page
zeroing. Values for Redis represent throughput (higher is
better); all other values represent time in seconds (lower is
better).

40

@ with caching-stores @ with nt-stores

30
20

fﬁ_mmmlﬂw

NPB PARSEC Graph500 cactusADM PageRank omnetpp
Figure 10. Performance overhead of async pre-zeroing with
and without caching instructions. The first two bars (NPB
and Parsec) represent the average of all workloads in the
respective benchmark suite.

% overhead

fault overheads (apart from zeroing) dominate performance.
However, page-zeroing cost becomes significant with huge
pages. Consequently, HawkEye with huge pages (HawkEye-
2MB) improves the performance of Redis and SparseHash
by 1.26x and 1.62x over Linux. The spin-up time of virtual
machines is purely dominated by page faults. Hence we
observe a dramatic reduction in the spin-up time of VMs
with async pre-zeroing of huge pages: 13.8x and 13.6X over
Linux. Notice that without huge pages (only base pages),
this reduction is only 1.34Xx and 1.26x. All these workloads
have high spatial locality of page faults and hence the Ingens
strategy of utilization-based promotion has a negative impact
on performance due to a higher number of page faults.

Async pre-zeroing enables memory sharing in virtual-
ized environments: Finally, we note that async pre-zeroing
within VMs enables memory sharing across VMs: the free
memory of a VM returns to the host through pre-zeroing in
the VM and same-page merging at the host. This can have
the same net effect as ballooning, as the free memory in a
VM gets shared with other VMs. In our experiments with
memory over-committed systems, we have confirmed this
behaviour: the overall performance of an overcommitted
system, where the VMs are running HawkEye, matches the

O Linux Linux-Ballooning = HawkEye

Normalized Performance

PageRank Redis MongoDB cC Memcached SP.D

Node 0 Node 1
Figure 11. Performance normalized to the case of no bal-

looning in an overcommitted virtualized system.

performance achieved through para-virtual interfaces like
memory balloon drivers. For example, in an experiment in-
volving a mix of latency-sensitive key-value stores and HPC
workloads (see Figure 11) with a total peak memory consump-
tion of around 150GB (1.5X of total memory), HawkEye-G
provides 2.3X and 1.42X higher throughput for Redis and
MongoDB along with significant tail latency reduction. For
PageRank, performance degrades slightly due to a higher
number of COW page faults due to unnecessary same-page
merging. These results are very close to the results obtained
when memory ballooning is enabled on all VMs. We believe
that this is a potential positive of our design and may offer
an alternative method to efficiently manage memory in over-
committed systems. It is well-known that balloon-drivers
and other para-virtual interfaces are riddled with compatibil-
ity problems [29], and a fully-virtual solution to this problem
would be highly desirable. While our experiments show early
promise in this direction, we leave an extensive evaluation
for future work.

Performance overheads of HawkEye: We evaluated Hawk-
Eye with non-fragmented systems and with several work-
loads that don’t benefit from huge pages, and find that the
performance with HawkEye is very similar to performance
with Linux or Ingens in these scenarios, confirming that
HawkEye’s algorithms for access-bit tracking, asynchronous
huge page promotion and memory de-duplication add negli-
gible overheads over existing mechanisms in Linux. However,
the async pre-zeroing thread requires special attention as it
may become a source of noticeable performance overhead
for certain types of workloads, as discussed next.
Overheads of async pre-zeroing: A primary concern with
async pre-zeroing is its potential detrimental effect due to
memory and cache interference (§3.1). Recall that we em-
ploy memory stores with non-temporal hints to avoid these
effects. To measure the worst-case cache effects of async
pre-zeroing, we run our workloads while simultaneously
zero-filling pages on a separate core sharing the same L3
cache (i.e., on the same socket) at a high rate of 0.25M pages
per second (1GBps) with and without non-temporal mem-
ory stores. Figure 10 shows that using non-temporal hints
significantly brings down the overhead of async pre-zeroing
(e.g., from 27% to 6% for omnetpp): the remaining overhead
is due to additional memory traffic generated by the pre-
zeroing thread. Further we note that this experiment presents

Workload MMU Time (seconds)
Overhead | 4KB | HawkEye-PMU | HawkEye-G
random(4GB) 60% 582 | 328(1.77x) 413(1.41x)
sequential(4GB) <1% 517 535 532
Total 1099 | 863(1.27X) 945(1.16X)
cgD(16GB) 39% 1952 | 1202(1.62x) | 1450(1.35x)
mg.D(24GB) <1% 1363 1364 1377
Total 3315 | 2566(1.29x) | 2827(1.17)

Table 9. Comparison between HawkEye-PMU and
HawkEye-G. Values in parentheses represent speedup over
baseline pages.

a highly-exaggerated behavior of async pre-zeroing on worst-
case workloads. In practice, the zeroing thread is rate-limited
(e.g., at most 10k pages per second), and the expected cache-
interference overheads would be proportionally smaller.
Comparison between Hawk-PMU and HawkEye-G: Even
though HawkEye-G is based on simple and approximated
estimations of TLB contention, it is reasonably accurate in
identifying TLB sensitive processes and memory regions
in most cases. However, HawkEye-PMU performs better
than HawkEye-G in some cases. Table 9 demonstrates two
such examples where four workloads, all with high access-
coverage but different MMU overheads, are executed in two
sets: each set contains one TLB sensitive and one TLB insensi-
tive workload. The 4KB column represents the case where no
huge pages are promoted. As discussed earlier (§2.4), MMU
overheads depend on the complex interaction between the
hardware and access pattern. In this case, despite having
high access-coverage in VA regions, sequential and mg.D
have negligible MMU overheads (i.e., they are TLB insen-
sitive). While HawkEye-PMU correctly identifies the pro-
cess with higher MMU overheads for huge page allocation,
HawkEye-G treats them similarly (due to imprecise estima-
tions) and may allocate huge pages to the TLB insensitive
process. Consequently, HawkEye-PMU may perform up to
36% better than HawkEye-G. Bridging this gap between the
two approaches in a hardware independent manner is an
interesting future work.

5 Related Work

MMU overheads have been a topic of much research in re-
cent years and several solutions have been proposed includ-
ing solutions that are architecture-based, OS-based and/or
compiler-based [28, 34, 49, 56, 58, 62-64].

Hardware Support: Most proposals for hardware support
aim to reduce TLB-miss frequency or accelerate TLB-miss
processing. Large multi-level TLBs and support for multiple
page sizes to minimize the number of TLB-misses is already
common in general-purpose processors today [15, 20, 21, 40].
Further, modern processors employ page-walk-caches to
avoid memory lookups in the TLB-miss path [31, 35]. POM-
TLB services a TLB miss using a single memory lookup and
further leverages regular data caches to speed up address
translation [63]. Direct segments [32, 46] were proposed to
completely avoid TLB-miss processing cost through special

segmentation hardware. OS-level challenges of memory frag-
mentation have also been considered in hardware designs:
CoLT, or Coalesced-Large-reach TLBs [61], were initially pro-
posed to increase TLB reach using base pages, based on the
observation that OSs naturally provide contiguous mappings
at smaller granularity. This approach was further extended
to page-walk caches and huge pages [35, 40, 60]. Techniques
to support huge pages in non-contiguous memory have also
been proposed [44]. Hardware optimizations are important
but complementary to HawkEye.
Software Support: FreeBSD’s huge page management is
largely influenced by previous work on superpages [57].
Carrefour-LP [47] showed that ad-hoc usage of huge pages
can degrade performance in NUMA systems due to addi-
tional remote memory accesses and traffic imbalance across
node interconnects, and proposed hardware-profiling based
techniques to overcome these problems. Anti-fragmentation
techniques for clustering pages based on mobility type of
pages proposed by Gorman et al. [48] have been adopted
by Linux to support the allocation of huge pages in long-
running systems. Illuminator [59] highlighted critical draw-
backs of Linux’s fragmentation mitigation techniques and
their implications on performance and latency, and proposed
techniques to solve these problems. Mechanisms of dealing
with physical memory fragmentation and NUMA systems
are important but orthogonal problems, and their proposed
solutions can be adopted to improve the robustness of Hawk-
Eye. Compiler or application hints can also be used to assist
OSs in prioritizing huge page mapping for certain parts of
the address space [27, 56], for which an interface is already
provided by Linux through the madvise system call [16].
An alternative approach for supporting huge pages has
also been explored via 1ibhugetlbfs [22] where the user
is provided more control on huge page allocation. However,
such an approach requires manual intervention for reserv-
ing huge pages in advance and considers each application
in isolation. Windows and OS X support huge pages only
through this reservation-based approach to avoid issues asso-
ciated with transparent huge page management [17, 55, 59].
We believe that insights from HawkEye can be leveraged to
improve huge page support in these important systems.

6 Conclusions

To summarize, transparent huge page management is es-
sential but complex. Effective and efficient algorithms are
required in the OS to automatically balance the tradeoffs and
provide performant and stable system behavior. We expose
some important subtleties related to huge page management
in existing proposals, and propose a new set of algorithms
to address them in HawkEye.

References

[1] 2000. Clearing pages in the idle loop. https://www.mail-archive.com/
freebsd-hackers@freebsd.org/msg13993.html.

https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html

(2]
(3]
(4]

——
DN DN
- S
=2

(28]

2000. Linux: Page Zeroing Strategy. https://yarchive.net/comp/linux/
page,eroingstrategy.html.

2007. Memory part 5: What programmers can do. https://lwn.net/
Articles/255364/.

2010. Mysteries of Windows Memory Management Revealed:
Part Two. https://blogs.msdn.microsoft.com/tims/2010/10/29/pdc10-
mysteries-of-windows-memory-management-revealed-part-two/.
2012. khugepaged eating 100% CPU. https://bugzilla.redhat.com/
showpug.cgi?id=879801.

2012. Recommendation to disable huge pages for Hadoop.
https://developer.amd.com/wordpress/media/2012/10/
Hadoopruningguide-Version5.pdf.

2014. Arch Linux becomes unresponsive from khugepaged.
http://unix.stackexchange.com/questions/161858/arch-linux-
becomes-unresponsive-from-khugepaged.

2014. CORAL Benchmark Codes. https://asc.lInl.gov/CORAL-
benchmarks/#hacc.

2014. Recommendation to disable huge pages for NuoDB.
http://www.nuodb.com/techblog/linux-transparent-huge-pages-
jemalloc-and-nuodb.

2014. Why TokuDB Hates Transparent HugePages.
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-
transparent-hugepages/.

2015. The Black Magic Of Systematically Reducing Linux OS Jit-
ter. http://highscalability.com/blog/2015/4/8/the-black-magic-of-
systematically-reducing-linux-os-jitter.html.

2015. Tales from the Field: Taming Transparent Huge Pages on
Linux. https://www.perforce.com/blog/151016/tales-field-taming-
transparent-huge-pages-linux.

2016. C++ associative containers. https://github.com/sparsehash/
sparsehash.

2016. Remove PG_ZERO and zeroidle (page-zeroing) entirely. https:
//news.ycombinator.com/item?id=12227874.

2017. Hugepages. https://wiki.debian.org/Hugepages.

2017. MADVISE: Linux Programmer’s Manual. http://man7.org/linux/
man-pages/man2/madvise.2.html.

2018. Large-Page Support in Windows. https://docs.microsoft.com/
en-gb/windows/desktop/Memory/large-page-support.

2019. CGROUPS: Linux Programmer’s Manual. http://man7.org/linux/
man-pages/man7/cgroups.7.html.

2019. FreeBSD: Pre-Faulting and Zeroing Optimizations.
https://www.freebsd.org/doc/enyS.1SO8859- 1/articles/vm-design/
prefault-optimizations.html.

2019. Intel Haswell. http://www.7-cpu.com/cpu/Haswell.html.
2019. Intel Skylake. http://www.7-cpu.com/cpu/Skylake.html.
2019. Libhugetlbfs: Linux man page. https:/linux.die.net/man/7/
libhugetlbfs.

2019. Recommendation to disable huge pages for MongoDB. https:
//docs.mongodb.com/manual/tutorial/transparent-huge-pages/.
2019. Recommendation to disable huge pages for Redis. http://redis.io/
topics/latency.

2019. Recommendation to disable huge pages for VoltDB. https:
//docs.voltdb.com/AdminGuide/adminmemmgt.php.

2019. Transparent Hugepage Support. https://www.kernel.org/doc/
Documentation/vm/transhuge.txt.

Mohammad Agbarya, Idan Yaniv, and Dan Tsafrir. 2018. Memomania:
From Huge to Huge-Huge Pages. In Proceedings of the 11th ACM In-
ternational Systems and Storage Conference (SYSTOR ’18). ACM, New
York, NY, USA, 112-112. https://doi.org/10.1145/3211890.3211918
Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017.
Do-It-Yourself Virtual Memory Translation. In Proceedings of the
44th Annual International Symposium on Computer Architecture (ISCA
’17). ACM, New York, NY, USA, 457-468. https://doi.org/10.1145/
3079856.3080209

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

Nadav Amit, Dan Tsafrir, and Assaf Schuster. 2014. VSwapper: A
Memory Swapper for Virtualized Environments. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS °14). ACM, New York, NY,
USA, 349-366. https://doi.org/10.1145/2541940.2541969

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L.
Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS
Parallel Benchmarks;Summary and Preliminary Results. In Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing
’91). ACM, New York, NY, USA, 158-165. https://doi.org/10.1145/
125826.125925

Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation
Caching: Skip, Don’T Walk (the Page Table). In Proceedings of the
37th Annual International Symposium on Computer Architecture (ISCA
’10). ACM, New York, NY, USA, 48-59. https://doi.org/10.1145/
1815961.1815970

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA ’13). ACM, New York, NY, USA, 237-248.
https://doi.org/10.1145/2485922.2485943

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The
GAP Benchmark Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619
http://arxiv.org/abs/1508.03619

Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. 2008. Accelerating Two-dimensional Page Walks for Vir-
tualized Systems. In Proceedings of the 13th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS XIII). ACM, New York, NY, USA, 26-35.
https://doi.org/10.1145/1346281. 1346286

Abhishek Bhattacharjee. 2013. Large-reach Memory Management
Unit Caches. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY,
USA, 383-394. https://doi.org/10.1145/2540708.2540741

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (PACT "08). ACM,
New York, NY, USA, 72-81. https://doi.org/10.1145/1454115.1454128
Daniel Bovet and Marco Cesati. 2005. Understanding The Linux Kernel.
Oreilly & Associates Inc.

Josiah L. Carlson. 2013. Redis in Action. Manning Publications Co.,
Greenwich, CT, USA.

Jonathan Corbet. 2010. Memory compaction. https://lwn.net/Articles/
368869/.

Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address
Translation for Architectures with Multiple Page Sizes. In Proceed-
ings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, New York, NY, USA, 435-448. https://doi.org/10.1145/
3037697.3037704

Cort Dougan, Paul Mackerras, and Victor Yodaiken. 1999. Opti-
mizing the Idle Task and Other MMU Tricks. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation
(OSDI *99). USENIX Association, Berkeley, CA, USA, 229-237. http:
//dl.acm.org/citation.cfm?id=296806.296833

Niall Douglas. 2011. User Mode Memory Page Allocation: A Sil-
ver Bullet For Memory Allocation? CoRR abs/1105.1811 (2011).
arXiv:1105.1811 http://arxiv.org/abs/1105.1811

Ulrich Drepper. 2007. What Every Programmer Should Know About
Memory.

Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami G.
Melhem. 2015. Supporting superpages in non-contiguous physical
memory. 2015 IEEE 21st International Symposium on High Performance

https://yarchive.net/comp/linux/page_zeroing_strategy.html
https://yarchive.net/comp/linux/page_zeroing_strategy.html
https://lwn.net/Articles/255364/
https://lwn.net/Articles/255364/
https://blogs.msdn.microsoft.com/tims/2010/10/29/pdc10-mysteries-of-windows-memory-management-revealed-part-two/
https://blogs.msdn.microsoft.com/tims/2010/10/29/pdc10-mysteries-of-windows-memory-management-revealed-part-two/
https://bugzilla.redhat.com/show_bug.cgi?id=879801
https://bugzilla.redhat.com/show_bug.cgi?id=879801
https://developer.amd.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
https://developer.amd.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://unix.stackexchange.com/questions/161858/arch-linux-becomes-unresponsive-from-khugepaged
http://unix.stackexchange.com/questions/161858/arch-linux-becomes-unresponsive-from-khugepaged
https://asc.llnl.gov/CORAL-benchmarks/##hacc
https://asc.llnl.gov/CORAL-benchmarks/##hacc
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
https://www.percona.com/blog/2014/07/23/why-tokudb-hates-transparent-hugepages/
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
https://www.perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux
https://www.perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux
https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
https://news.ycombinator.com/item?id=12227874
https://news.ycombinator.com/item?id=12227874
https://wiki.debian.org/Hugepages
http://man7.org/linux/man-pages/man2/madvise.2.html
http://man7.org/linux/man-pages/man2/madvise.2.html
https://docs.microsoft.com/en-gb/windows/desktop/Memory/large-page-support
https://docs.microsoft.com/en-gb/windows/desktop/Memory/large-page-support
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.freebsd.org/doc/en_US.ISO8859-1/articles/vm-design/prefault-optimizations.html
https://www.freebsd.org/doc/en_US.ISO8859-1/articles/vm-design/prefault-optimizations.html
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Skylake.html
https://linux.die.net/man/7/libhugetlbfs
https://linux.die.net/man/7/libhugetlbfs
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/
http://redis.io/topics/latency
http://redis.io/topics/latency
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://doi.org/10.1145/3211890.3211918
https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1145/2541940.2541969
https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2485922.2485943
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/1454115.1454128
https://lwn.net/Articles/368869/
https://lwn.net/Articles/368869/
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1145/3037697.3037704
http://dl.acm.org/citation.cfm?id=296806.296833
http://dl.acm.org/citation.cfm?id=296806.296833
http://arxiv.org/abs/1105.1811
http://arxiv.org/abs/1105.1811

(45

=

(46

—

(47

—

(48]

(49]

(50]

(51]

(52]

(53]

[54

=

[55]

Computer Architecture (HPCA) (2015), 223-234.

M. Franklin, D. Yeung, n. Xue Wu, A. Jaleel, K. Albayraktaroglu, B.
Jacob, and n. Chau-Wen Tseng. 2005. BioBench: A Benchmark Suite of
Bioinformatics Applications. In IEEE International Symposium on Per-
formance Analysis of Systems and Software, 2005. ISPASS 2005.(ISPASS),
Vol. 00. 2-9. https://doi.org/10.1109/ISPASS.2005.1430554

Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift.
2014. Efficient Memory Virtualization: Reducing Dimensionality of
Nested Page Walks. In Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-47). IEEE Computer
Society, Washington, DC, USA, 178-189. https://doi.org/10.1109/
MICRO.2014.37

Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,
Alexandra Fedorova, and Vivien Quéma. 2014. Large Pages May
Be Harmful on NUMA Systems. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference (USENIX ATC’14).
USENIX Association, Berkeley, CA, USA, 231-242. http://dl.acm.org/
citation.cfm?id=2643634.2643659

Mel Gorman and Patrick Healy. 2008. Supporting Superpage Alloca-
tion Without Additional Hardware Support. In Proceedings of the 7th
International Symposium on Memory Management (ISMM °08). ACM,
New York, NY, USA, 41-50. https://doi.org/10.1145/1375634.1375641
Mel Gorman and Patrick Healy. 2012. Performance Characteristics of
Explicit Superpage Support. In Proceedings of the 2010 International
Conference on Computer Architecture (ISCA’10). Springer-Verlag, Berlin,
Heidelberg, 293-310. https://doi.org/10.1007/978-3-642-24322-634
Mel Gorman and Andy Whitcroft. 2006. The What, The Why and the
Where To of Anti-Fragmentation. In Linux Symposium. 141.

Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. 2015.
Proactively Breaking Large Pages to Improve Memory Overcom-
mitment Performance in VMware ESXi. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’15). ACM, New York, NY, USA, 39-51. https:
//doi.org/10.1145/2731186.2731187

Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, and John C. S. Lui.
2017. SmartMD: A High Performance Deduplication Engine with
Mixed Pages. In Proceedings of the 2017 USENLX Conference on Usenix
Annual Technical Conference (USENIX ATC ’17). USENIX Association,
Berkeley, CA, USA, 733-744. http://dl.acm.org/citation.cfm?id=
3154690.3154759

John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1-17. https:
//doi.org/10.1145/1186736.1186737

Vasileios Karakostas, Osman S. Unsal, Mario Nemirovsky, Adrian
Cristal, and Michael M. Swift. 2014. Performance analysis of the
memory management unit under scale-out workloads. 2014 IEEE In-
ternational Symposium on Workload Characterization (IISWC) (2014),
1-12.

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, Berkeley, CA, USA, 705-721. http://dl.acm.org/
citation.cfm?id=3026877.3026931

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Joshua Magee and Apan Qasem. 2009. A Case for Compiler-driven
Superpage Allocation. In Proceedings of the 47th Annual Southeast
Regional Conference (ACM-SE 47). ACM, New York, NY, USA, Article
82, 4 pages. https://doi.org/10.1145/1566445.1566553

Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. 2002. Prac-
tical, Transparent Operating System Support for Superpages. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 89-104. https://doi.org/10.1145/
844128.844138

Ashish Panwar, Naman Patel, and K. Gopinath. 2016. A Case for

Protecting Huge Pages from the Kernel. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (APSys °16). ACM, New York,

NY, USA, Article 15, 8 pages. https://doi.org/10.1145/2967360.2967371
Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 679-692.
https://doi.org/10.1145/3173162.3173203

Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H.
Loh. 2014. Increasing TLB reach by exploiting clustering in page trans-
lations. 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA) (2014), 558-567.

Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek
Bhattacharjee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceed-
ings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-45). IEEE Computer Society, Washington,
DC, USA, 258-269. https://doi.org/10.1109/MICRO.2012.32

Binh Pham, Jan Vesely, Gabriel H. Loh, and Abhishek Bhattacharjee.
2015. Large Pages and Lightweight Memory Management in Virtual-
ized Environments: Can You Have It Both Ways?. In Proceedings of the
48th International Symposium on Microarchitecture (MICRO-48). ACM,
New York, NY, USA, 1-12. https://doi.org/10.1145/2830772.2830773
Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. 2017.
Rethinking TLB Designs in Virtualized Environments: A Very Large
Part-of-Memory TLB. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY,
USA, 469-480. https://doi.org/10.1145/3079856.3080210

Indira Subramanian, Clifford Mather, Kurt Peterson, and Balakrishna
Raghunath. 1998. Implementation of Multiple Pagesize Support in
HP-UX.. In USENIX Annual Technical Conference. 105-119.

John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
[n. d.]. XSBench - The Development and Verification of a Performance
Abstraction for Monte Carlo Reactor Analysis. In PHYSOR 2014 - The
Role of Reactor Physics toward a Sustainable Future. Kyoto.

Koji Ueno and Toyotaro Suzumura. 2012. Highly Scalable Graph Search
for the Graph500 Benchmark. In Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’12). ACM, New York, NY, USA, 149-160. https://doi.org/
10.1145/2287076.2287104

Carl A. Waldspurger. 2002. Memory Resource Management in VMware
ESX Server. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 181-194. https:
//doi.org/10.1145/844128.844146

Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards Practi-
cal Page Coloring-based Multicore Cache Management. In Proceedings
of the 4th ACM European Conference on Computer Systems (EuroSys
’09). ACM, New York, NY, USA, 89-102. https://doi.org/10.1145/
1519065.1519076

https://doi.org/10.1109/ISPASS.2005.1430554
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/MICRO.2014.37
http://dl.acm.org/citation.cfm?id=2643634.2643659
http://dl.acm.org/citation.cfm?id=2643634.2643659
https://doi.org/10.1145/1375634.1375641
https://doi.org/10.1007/978-3-642-24322-6_24
https://doi.org/10.1145/2731186.2731187
https://doi.org/10.1145/2731186.2731187
http://dl.acm.org/citation.cfm?id=3154690.3154759
http://dl.acm.org/citation.cfm?id=3154690.3154759
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://dl.acm.org/citation.cfm?id=3026877.3026931
http://dl.acm.org/citation.cfm?id=3026877.3026931
https://doi.org/10.1145/1566445.1566553
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/2967360.2967371
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/2287076.2287104
https://doi.org/10.1145/2287076.2287104
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/1519065.1519076
https://doi.org/10.1145/1519065.1519076

	Abstract
	1 Introduction
	2 Motivation
	2.1 Address Translation Overhead vs. Memory Bloat
	2.2 Page fault latency vs. Number of page faults
	2.3 Huge page allocation across multiple processes
	2.4 How to capture address translation overheads?

	3 Design and Implementation
	3.1 Asynchronous page pre-zeroing
	3.2 Managing bloat vs. performance
	3.3 Fine-grained huge page promotion
	3.4 Huge page allocation across multiple processes
	3.5 Limitations and discussion

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

