
Modeling undefined behaviour semantics for
checking equivalence across compiler

optimizations

Manjeet Dahiya and Sorav Bansal

Indian Institute of Technology Delhi,
{dahiya, sbansal}@cse.iitd.ac.in

Abstract. Previous work on equivalence checking for synthesis and trans-
lation validation has usually verified programs across selected optimiza-
tions, disabling the ones that exploit undefined behaviour. On the other
hand, modern compilers extensively exploit language level undefined
behaviour for optimization. Previous work on equivalence checking for
translation validation and synthesis yields poor results, when such opti-
mizations relying on undefined behaviour are enabled.
We extend previous work on simulation-based equivalence checking, by
adding a framework for reasoning about language level undefined be-
haviour. We implement our ideas in a tool to compare equivalence across
compiler optimizations produced by GCC and LLVM. Testing these com-
piler optimizations on programs taken from the SPEC integer benchmark
suite, we find that modeling undefined behaviour semantics improves suc-
cess rates for equivalence checking by 31 percentage points (from 50%
to 81%) on average, almost uniformly across the two compilers. This
significant difference in success rates confirms the widespread impact of
undefined behaviour on compiler optimization, something that has been
ignored by previous work on equivalence checking. Further, our work
brings insight into the relative significance of the different types of C
undefined behaviour on compiler optimization.

1 Introduction

Programming languages have erroneous conditions in the form of erroneous pro-
gram constructs and erroneous data. Language standards do not impose require-
ments on all such erroneous conditions. The erroneous conditions on which no
requirements have been imposed by the standard, i.e., whose semantics have not
been defined are called undefined behaviour. Since the standard does not impose
any requirements on undefined behaviour, compilers are permitted to generate
code of their choice in presence of the same. In other words, compilers can as-
sume the absence of undefined behaviour in the target program, and are free to
produce code without the checks for undefined behaviour conditions. Further,
they can produce more aggressive optimizations under such assumptions. For
example, the C language standard states that writing to an array past its size
is undefined. Hence, C compiler writers do not need to check the sanity of the



array index during an array access. Moreover, aggressive compilers may even
remove a sanity check if the same has been added by the programmer in her C
program.

C language contains hundreds of undefined behaviours [15]. All modern com-
pilers like GCC, LLVM and ICC are known to extensively exploit undefined be-
haviour while generating optimized code (we provide some evidence in this pa-
per). Further, previous work on optimization-unstable code detection [27] re-
ported that 40% of the 8575 C/C++ Debian Wheezy packages they tested, con-
tain unstable code: unstable code refers to code that may get discarded during
optimization due to the presence of undefined behaviour. Undefined behaviour
is clearly widespread. The need for undefined behaviour has also been widely de-
bated. On one hand, many textbook optimizations rely on undefined behaviour
semantics. For example, consider a simple for loop in C: for (int i=0;
i<=n; ++i). Now if n equals INT MAX, then this loop would never terminate,
and it would be possible for i to be negative inside the loop body (because i
would wrap around after INT MAX). However, several optimizations would like
to depend on the loop termination property, and the loop invariant that i >= 0
inside the loop body. Fortunately, these invariants are valid, because signed inte-
ger overflow is undefined in C (thus yielding the assumption that ++i can never
wrap around, indirectly implying that it is illegal for n to be equal to INT MAX).
On the other hand, programmers are often annoyed by these “counter-intuitive”
optimizations, and some of them go to the extent of disabling certain types of
undefined behaviour through flags provided by the compiler. For example, the
Linux kernel build process disables signed integer overflow and type based strict
aliasing undefined behaviour assumptions in GCC [24,25].

Undefined behaviour semantics and their exploitation by compilers for op-
timization means that the compiler verification tools (e.g., translation valida-
tion) must model these semantics for more precise results. Similarly, synthesis
tools and superoptimizers (e.g., [2]) must model such semantics, while comparing
equivalence of the target program with the candidate synthesized program, for
better optimization opportunity. An equivalence checking algorithm results in a
false negative, i.e., incorrect equivalence failure if it does not model the unde-
fined behaviour. Previous work on simulation-based equivalence checking across
compiler optimizations has primarily been done in the context of translation
validation [11,18,19,22,26,28] across selected compiler optimizations, disabling
the ones that exploit language level undefined behaviour. This prior work yields
poor results when equivalence checks are performed across the optimizations
that exploit undefined behaviour. This paper addresses this issue and makes the
following contributions:

– We extend the simulation relation by adding assumptions at each row of
the simulation relation table, to model language level undefined behaviour
semantics. Equivalence is now computed under these assumptions, i.e., the
original program and the transformed program need to be equivalent only
if the corresponding assumptions are true. If the assumptions are false,



int A[256];
int sum1 = 0; long* sum2;
void sum(int n) {
int* p = A;
for(int i=1;i<n+1;++i) {
sum1 = sum1 + *p;

*sum2 = *sum2 + *p;
p++;

}
}

Fig. 1: An example function. sum2
is allocated by the caller.

p=A
i=1

sum1+=*p4

*sum2+=*p4

i++;p+=4

return

b0

N

Y

b2

b3

i<n+1
b1

(a) Unoptimized

p=A;i=1
r1=sum1
r2=*sum2

r1+=*p4

r2+=*p4

i++;p+=4
return

N

Y

b0'

b1'

b3'

i<=n

sum1=r1
*sum2=r2

b2'

(b) Optimized

Fig. 2: Unoptimized and optimized, abstracted
versions of the program in Fig. 1.

the programs are still considered equivalent even if their implementations
diverge. We call this the extended simulation relation.

– We discuss the assumptions produced by different types of undefined be-
haviour semantics and experimentally determine the types of undefined be-
haviour that are most consequential to compiler-based optimization.

– To model aliasing based undefined behaviour, which we find is heavily ex-
ploited by compilers for optimization, we present an algorithm to compute
aliasing information at the IR/assembly level. Computation of aliasing infor-
mation at the assembly level is necessary because the programs emitted by
the compilers are in assembly. The aliasing information computed through
this algorithm is used for generating undefined behaviour assumptions for
the extended simulation relation.

We test our ideas by comparing equivalence across unoptimized and opti-
mized implementations of programs derived from the SPEC CPU Integer bench-
mark suite. The equivalence tests are performed at function granularity, i.e., an
unoptimized implementation of a C function (treated as the program specifica-
tion) is compared against an optimized implementation of a C function. The
optimized implementations are generated using GCC and LLVM with -O2 flag.
The optimizations enabled by -O2, are commonly enabled by almost all software.
Our overall success rate for equivalence checking across these optimizations is
81%, i.e., we successfully generate an equivalence proof, in the form of a prov-
able simulation relation, for 81% of the equivalence checks. The success rate
drops to 50% if the undefined behaviour modeling is removed. Our results em-
phatically confirm the importance of modeling undefined behaviour for checking
equivalence for validation and synthesis of compiler optimizations.

2 Motivating example

Fig. 1 shows a C program which computes the sum of the first n elements of
a global array A and stores the result in a global variable sum1 and at an address



sum2. We have deliberately used two different types of accumulators (sum1 and

*sum2) and i<n+1 in the for loop, to demonstrate three different types of
C undefined behaviour in the same example. Fig. 2a, 2b show the abstracted
unoptimized and optimized versions of the same program compiled by gcc -O0
and -O2 respectively. The original programs are in x86 assembly, and many other
optimizations are present in the optimized version; for exposition and brevity,
we have abstracted them into a C like syntax and only the undefined behaviour
related optimizations are shown.

The first optimization we discuss through this example, is a peephole op-
timization involving substitution of the check i<n+1 by a faster check i<=n,
avoiding the need to compute n+1. However, as such, the substitution may not
seem correct because the two programs are not equivalent when n=INT MAX. For
n=INT MAX, the loop of unoptimized program takes zero iterations (INT MAX+1
wraps around to a negative number INT MIN), while that of the optimized pro-
gram loops forever (because i will always be ≤INT MAX). Interestingly however,
it is legal and common for C compilers to perform this optimization. This trans-
formation is legal due to the signed integer overflow (SIO) assumption, that
forms a part of the C undefined behaviour semantics. As per this assumption,
signed integer arithmetic shall not1 overflow (i.e., it is an illegal program if it
causes signed integer arithmetic to overflow), and hence, the compiler need not
worry about the case when overflow takes place.

The second interesting optimization in this example is the register allocation
of sum1 and *sum2 to registers r1 and r2 respectively, throughout the exe-
cution of the loop. These registers containing the accumulated sum values, are
written back to their respective memory locations at loop exit. Again, as such,
these transformations may not seem correct: it is possible for the pointer p, which
can belong to [A,A+4*n) to alias with either (or both) of &sum1 and sum2, in
which case, the values stored at p may get modified as the loop executes, mak-
ing register allocation of sum1 and *sum2 incorrect. It is however legal (and
common) for C compilers to perform such register allocations. This is due to
undefined behaviour related to the following aliasing assumptions: 1) Type based
strict aliasing assumptions (TBSA): Pointers of different types (e.g., long* and
int*) shall not alias with each other (with the exception of char*). 2) Out-
of-bounds variable access assumptions (OBVA): A program shall not access a
memory location beyond the region of an object (variable). In our example, the
TBSA assumptions guarantee that sum2 (of type long*) and p (of type int*)
cannot alias. Similarly sum2 cannot alias with &sum1 (of type int*). Further,
the OBVA assumptions guarantee that p cannot point beyond the object A, i.e.,
p must belong to [A, A+4*256). This implies that p cannot alias with &sum1,
as sum1 and A are distinct regions. With these assumptions, it is indeed legal
to register-allocate sum1 and *sum2 throughout the loop execution.

The programs in Fig. 2a, 2b can be shown to be equivalent only if the un-
defined behaviour assumptions are modeled and used in the simulation-based
proof. In this paper, we contribute algorithms to model and use these undefined

1 Phrasing is taken from the C standard.



behaviour assumptions in a simulation-based proof, and show their effectiveness
for computing equivalence across compiler transformations on a general purpose
code. Sec. 3 discusses the notion of the extended simulation relation that uses
undefined behaviour assumptions to correctly decide equivalence in the presence
of undefined behaviour. Sec. 4 discusses algorithms to generate these undefined
behaviour assumptions, for use in the extended simulation relation.

3 Extended simulation relation (with assumptions)

A simulation relation [18, 19] between two programs can be used to establish
equivalence across the two programs. It has been used extensively in previous
work on equivalence checking and translation validation [11, 18, 19, 21, 28]. A
simulation relation is a witness of the equivalence between two programs. Given
a valid simulation relation, proving equivalence is straight-forward; however the
construction of a simulation relation is undecidable in general. We leverage previ-
ous work on automatic construction of a simulation relation across two programs,
where the second program is the compiler-optimized version of the first program.
In addition, we extend previous work to model and use undefined behaviour
assumptions, to allow equivalence computation in the presence of undefined be-
haviour semantics. Equivalence is now conditional on these assumptions, i.e., the
equivalence proof may fail if these assumptions are discounted.

The relevant assumptions are computed at each program point of the un-
optimized program specification. These assumptions are based on a best-effort
static analysis of the program: for example, if the program involves arithmetic
on a signed integer variable, then the corresponding no signed integer overflow
assumption is inferred at that program point. Some assumptions can be inferred
directly from program syntax, while others may require a deeper static analysis.
In general, the sophistication of the static analysis required to infer the unde-
fined behaviour assumptions, ought to match the sophistication of the analyses
used by the optimizer. SIO and TBSA assumptions are examples of assumptions
that can be inferred through straight-forward syntactic analysis of the program,
while the OBVA assumptions usually require a deeper alias analysis, the kind
used by modern compilers for optimization. We discuss this latter analysis in
Sec. 4. In this section, we assume that such assumptions are already available
at the respective program locations, and we discuss their effect on the required
simulation relation.

Let ProgA be the unoptimized program specification and ProgB be the op-
timized implementation. ProgA specification also includes a map from the pro-
gram locations to the corresponding undefined behaviour assumptions (Assum).
An extended simulation relation is represented as a table, where each row is a
tuple ((LA, LB), Assum[LA], P ) such that LA and LB are program locations in
ProgA and ProgB respectively, Assum[LA] is the set of assumptions in ProgA at
point LA, and P is a set of invariants on the live program variables at locations
LA and LB . A tuple ((LA, LB), Assum[LA], P ) represents that the invariants P



Location Assumption Invariants (P )

(b0,b0’) True nA = nB , AA = AB ,&sum1A = &sum1B , sum2A =
sum2B ,MA =∆ MB

(b1,b1’) (nA 6= INT MAX) ∧
(&sum1A 6= pA) ∧
(sum2A 6= pA) ∧
(sum2A 6= &sum1A)

sl4(MA,&sum1A) = r1B ,
sl4(MA, sum2A) = r2B , nA = nB , iA = iB ,
AA = AB , pA = pB ,&sum1A = &sum1B ,
sum2A = sum2B ,MA =∆∪{&sum1A,sum2A} MB

(b3,b3’) True MA =∆ MB

Init: nA = nB , AA = AB ,&sum1A = &sum1B , sum2A = sum2B ,MA =∆ MB

Fig. 3: Extended simulation relation for the programs in Fig. 2. (b0, b0’) and (b3,
b3’) are the entry and exit rows respectively. AA and &sum1A are the base addresses
of the globals A and sum1 respectively in ProgA. sl4(M,addr) represents 4 bytes of
data read in memory (M) at address addr. =∆ represents equivalent memories except
at ∆; ∆ represents the stack region. Init represents equivalence of inputs.

hold whenever the two programs are at LA and LB respectively, assuming all the
undefined behaviour assumptions at all ProgA program points (Assum) hold.

An extended simulation relation is valid if the invariants at each location pair
are inductively provable from invariants and undefined behaviour assumptions at
the predecessor location pairs. Notice that the undefined behaviour assumptions
do not need to be proven. Invariants at the entry location (pair of entry locations
of the two programs) represent the equivalence of program inputs (Init); the base
case of this inductive proof. Finally, if we can thus inductively prove equivalence
of the return values at exit location (pair of exits of the two programs), we
have established the programs to be equivalent. For C functions, the return
values include the state of the heap and global variables. Formally, an extended
simulation relation is valid if:

Init⇔ invariants(EntryA,EntryB)

∀
(L

′
A,L

′
B)→(LA,LB)

Assum[L
′

A] ∧ invariants
(L

′
A,L

′
B)
⇒

(L
′
A,L

′
B)→(LA,LB)

invariants(LA,LB)

Here invariants(LA,LB) represents the conjunction of invariants in the extended
simulation relation for the location pair (LA, LB), Init is the input equivalence
condition at the entry of the two programs, L

′

A and L
′

B are predecessors of
LA and LB in programs ProgA and ProgB respectively, and ⇒

(L
′
A,L

′
B)→(LA,LB)

represents implication over the paths L
′

A → LA and L
′

B → LB in programs
ProgA and ProgB respectively.

Fig. 3 shows an extended simulation relation which establishes the equiv-
alence across the programs in Fig. 2a and 2b. The exit row of this extended
simulation relation denotes equivalence of memory states (modulo stack and lo-
cal variables) at exit, representing the equivalence of globals variables {sum1,
A} and values at pointer sum2 and the remaining unused heap. This simula-
tion relation is only provable when the undefined behaviour assumptions are



Type of undefined behaviour Description

Signed integer overflow (SIO) Signed integer arithmetic cannot overflow

Type based strict aliasing (TBSA) Pointers of different types cannot alias (barring ex-
ceptions like char *)

Dereferenced addresses not null An address that has been dereference cannot be zero

Shift operand bounds If a value X is shifted left/right by another value S,
then S ≥ 0 and S < numbits(X) (numbits(X) is the
number of bits used to represent X)

Type alignment A value X of type T must be aligned to the size of T

No divide by zero The divisor of a division operation cannot be zero

Table 1: Examples of types of C undefined behaviour that can be modeled through
syntactic analysis of the program.

used in the inductive proof. For example, without the assumptions, the invari-
ant sl4(MA,&sum1A) = r1B of the second row is not provable on edge (b1, b1’)
→ (b1, b1’) (sl4 represents the memory-read of four bytes; see Fig. 3 caption).

4 Modeling undefined behaviour assumptions

We now discuss how to obtain the undefined behaviour assumptions for the
simulation relation. We first generate these assumptions on the unoptimized
program specification ProgA, for each location, through static analysis of the
program. At the time of the construction of the simulation relation, for every
row (LA, LB), the assumptions corresponding to LA are added in the simulation
relation. In other words, the undefined behaviour assumptions are inferred for
the unoptimized program, and used during the construction and proof of the
simulation relation.

The algorithm to infer the undefined behaviour assumptions, depends on the
type of the undefined behaviour. For example, the assumptions for many types
of undefined behaviour can be inferred purely syntactically — see Table 1 for
some examples. Such syntactic analysis and modeling of undefined behaviour
has also been used previously for the verification of manually written peephole
optimizations in LLVM [17].

The OBVA undefined behaviour assumptions, is an example of an undefined
behaviour that requires a relatively deeper static alias analysis. This is because
the production quality compilers typically implement a similar alias analysis
for better optimization opportunity. The static alias analysis provides a may-
alias relation between program pointers and program variables. The program
variables include all the global and local variables defined by the programmer.
Further, to model aliasing in heap and stack, we include two special “variables”,
called “stack” and “heap”. Thus, a pointer value in the program may alias with



one or more of the user-defined variables, and/or with the stack/heap2. Based
on this analysis, we infer assumptions indicating that a program pointer must
point within the memory regions belonging to the variables with which it may
alias:

aliasing assumptionsp ⇔
∨

v∈{u:may alias(p,u)}

(p ≥ vbegin ∧ p < vend)

Here p represents a pointer value, v is a program variable p, and [vbegin, vend)
represents the region of memory occupied by variable v. Further, invariants en-
coding the mutual-disjointness of regions associated with each program variable,
and for the stack and heap, are added through conditions on the respective vbegin
and vend values.

In our running example of Fig. 1, the alias analysis infers that p may alias
with only the array variable A. Further, because A and sum1 are different vari-
ables, their memory regions are mutually disjoint, thus implying that p cannot
alias with sum1.

This alias analysis, to infer the variables with which a program pointer may
alias, is similar to the previous work on alias analysis for assembly code [4]. The
alias analysis need not be precise, but needs to be sound, i.e., the may-alias
relation for a pointer p must be include all variables that a pointer may actually
alias with (over-approximation). We next describe the two analyses used by us
to infer the may-alias relation.

4.1 May-alias analysis

To compute the may-alias relation, we first compute two relations, linearly-
related and may-depend-on between program pointers and program variables
(including stack and heap). The linearly-related relation indicates the variable
with which a program pointer is linearly-related, i.e., based-on. In other words,
if a program pointer is at an offset from the address of a program variable then
it is linearly-related with that program variable. For example, a pointer p=v+10
or p=v+i (for some arbitrary variable i) are both linearly related to the variable
address v. On the other hand, p=*v is not linearly related to v (even though
p may depend on v, as we discuss later). In our running example of Fig. 1, p
is linearly-related with A. The C type system guarantees that a pointer may be
linearly-related with at most one program variable3. Also, if a program pointer p
is linearly-related to a program variable A, then p may alias with A, and cannot
alias with any other variable (including stack/heap). A pointer can at most be
linearly-related with one variable.

In addition to the linearly-related relation, we compute another relation
called “may-depend-on”. This relation indicates the variables on which a pro-
gram pointer may depend on, i.e., the variables whose address may potentially

2 While a stack is not a part of the program’s language level semantics, it gets intro-
duced by the compiler in the assembly implementation.

3 A violation of this type-system, through type-punning for example, falls into the
realm of undefined behaviour.



influence the value of this program pointer. If the address of a variable may
not influence the value of a pointer, then that pointer may be assumed to not
alias with the aforementioned variable. Note that linearly related(p, v) implies
may depend on(p, v).

The may-alias relation between a pointer p and program variable v is com-
puted in terms of the linearly-related and may-depend-on relations as follows:

may alias(p, v)⇔ may depend on(p, v) ∧
∧

w∈(V−v)

(¬linearly related(p, w))

Here V is the set of all program variables. In other words, we assume that
a pointer p may alias with a variable v if it may depend on v, and it is not
linearly-related to any other variable w 6= v in V 4.

4.2 Computing linearly-related and may-depend-on relations

Computing both linearly-related and may-depend-on relations involves a for-
ward dataflow analysis on the program’s control flow graph. These relations are
initialized at program entry with conservative assumptions, and they are com-
puted at each intermediate program location by analyzing transfer functions of
the incoming control-flow edges. In our setting, each program represents a C
function body, and the calling conventions of the compiler are used to initialize
the relations at the entry node, i.e., we assume that the function arguments may
depend on any of the global variables and/or the heap, but may not depend on
the stack and local variables of the function. Further, we assume that the func-
tion arguments are not linearly-related to any global variable. Together, these
assumptions at program entry specify that the function arguments may alias
with all the program’s global variables and the heap, but may not alias with the
function’s stack/local variables.

The linearly-related analysis across a control-flow edge involves a simple syn-
tactic analysis of the expression trees of the transfer function on that edge. This
syntactic analysis involves inference rules of the type:

linearly related(p, v)⇒ linearly related(p⊕X, v)

i.e., if p is known to be linearly-related to v, then p⊕X (for any expression X
that may potentially depend on other variables w 6= v) is also linearly-related to
v. “⊕” represents the addition and subtraction operators; we further generalize
these rules to operations involving bitwise masking of lower-order bits of a pointer
(a common operation in compiled code). If these inference rules cannot decide
a pointer p to be linearly-related to a variable v, then we conservatively assume
that p is not linearly-related to v (over-approximation). At all internal nodes
(except the start node), we initially assume all pointers to be linearly-related to
all variables (>), and refine the relations iteratively till a fixed point is reached.

4 As discussed earlier, the C type system ensures that if p is linearly-related to a
variable w, then p cannot alias with any other variable v 6= w.



As discussed earlier, at the start node, we assume that none of the function
arguments are linearly-related to any of the variables. This information on linear-
relations flows from the program entry to all intermediate program locations,
through transfer functions. The meet operator for this linearly-related dataflow
analysis is intersection, i.e., a pointer is linearly-related to a variable only if it is
linearly-related on all possible program paths.

Similarly, the may-depend-on analysis across a control-flow edge also involves
a syntactic analysis on the expression trees of the corresponding transfer func-
tion. The syntactic analysis involves inference rules of the type:

may depend on(p, v)⇒ may depend on(OP (. . . , p, . . .), v)

i.e., if p may depend on v, then any value derived from p (through any operation
OP that uses p as an argument) may also depend on v. At the entry node,
we conservatively assume that the function arguments may depend on any of
the global variables or on the heap. At all intermediate nodes, we initialize
by assuming that the pointers do not depend on any of the variables (>). At
each iteration, we refine this may-depend-on relation at every node by analyzing
the expression trees of the transfer function of each incoming edge. The meet
operator for the may-depend-on relation is union, i.e., a pointer may depend on
a variable if it depends on that variable on any program path.

Unlike compilers, our alias analysis needs to work for assembly code where
pointer arithmetic is much more common. The linearly-related relation is in-
tended to capture such pointer arithmetic. Also, the modeling of stack is unique
to assembly code. Our algorithm, which over-approximately computes the may-
alias relation through linearly-related and may-depend-on relations, is sound and
efficient (polynomial in the size of the program and quite fast in practice), and
captures the common patterns in compiled code. A more expensive analysis can
potentially yield more precise may-alias relations.

5 Inferring the simulation relation

Automatic construction of the simulation relation has been well studied in prior
work [5,11,18,19,21,28]. Much previous work attempts to first discover a corre-
spondence between program locations across the two programs (correlation (LA,
LB)) in a first pass, and then attempts to find invariants (P ) over the locations
in a best-effort second pass. In contrast, our algorithm is inspired from Co-
VaC [28], where the search for correlation is performed simultaneously with the
search for the invariants, resulting in a more flexible and robust system. There
are important improvements which we make over CoVaC, detailed in Sec. 7. We
succinctly outline here, our correlation algorithm to automatically construct a
provable simulation; a more detailed discussion is available in [3].

Our algorithm incrementally constructs a joint transfer function graph (JTFG)
representing the partial simulation relation computed so far. A JTFG is a graph
with nodes and edges. A JTFG node (LA, LB) represents a pair of program nodes
LA and LB (indicating that ProgA is at LA and ProgB is at LB). Similarly, a



Function CorrelateEdges(jtfg, edgesB)
if edgesB is empty then

return LiveValuesAtExitAreEquivalent(jtfg)
end
edgeB ← RemoveFirst(edgesB)
edgesA ← GetEdgesTillUnroll(ProgA,edgeB ,µ)
foreach edgeA in edgesA do

jtfg’ = AddEdge(jtfg, edgeA, edgeB)
PredicatesGuessAndCheck(jtfg’)
if IsConsistent(jtfg’) ∧ CorrelateEdges(jtfg’, edgesB) then

return true
end

end
return false

Algorithm 1: Algorithm to construct the JTFG (simulation relation). edgesB is a list
of edges in ProgB in depth-first search order. The AddEdge() function returns a new
JTFG jtfg’, formed by adding the edge to the old JTFG jtfg.

JTFG edge (L
′

A, L
′

B) → (LA, LB), represents a pair of transitions L
′

A → LA

and L
′

B → LB in ProgA and ProgB respectively. Thus, a transition across a
JTFG edge encodes transitions in the two programs respectively. Each JTFG
node (LA, LB) contains invariants relating the live variables at locations LA and
LB in the two programs respectively. To model undefined behaviour, the JTFG
nodes further encode the undefined behaviour assumptions. Recall that these
assumptions have already been computed through static analysis for locations
in ProgA; the assumptions at location LA in ProgA appear in all JTFG nodes
containing LA.

A JTFG is consistent if for each JTFG edge, its edge conditions (edgecond) of
the two individual constituent program control-flow edges (belonging to ProgA
and ProgB resp.) are equivalent. An edge condition represents the condition
under which that edge is taken, as a function of the live variables at the source
location of that edge. This heuristic notion of consistency is a significant de-
parture from the CoVaC algorithm, and is instrumental in realizing a robust
correlation algorithm (more details in Sec. 7).

The algorithm for constructing a consistent JTFG is presented in Algo-
rithm 1. The JTFG is initialized with a single node, representing the pair of
entry locations of the two programs. The CorrelateEdges() function picks
one ProgB edge, say edgeB , at a time and tries to identify paths in the un-
optimized program (ProgA) that have an equivalent path condition to edgeB ’s
edge condition. Several candidate paths are attempted up to an unroll factor µ
(GetEdgesTillUnroll()). All candidate paths must originate from a ProgA
location that has already been correlated with the source location of edgeB .
The path condition of a path is formed by appropriately composing the edge
conditions of the edges belonging to that path. The edge edgeB is chosen in
depth-first search order from ProgB , and also dictates the order of incremen-



tal construction of the JTFG. The equivalence of the edge condition of ProgB
with the path condition of ProgA is computed based on the invariants inferred
so far at the already correlated JTFG nodes. These invariants, inferred at each
step of the algorithm, are computed through a Houdini-style [7] guess-and-check
procedure. The guesses are synthesized from a grammar, through syntax-guided
synthesis of invariants [1] (PredicatesGuessAndCheck). The unroll factor µ
allows equivalence computation across transformations involving loop unrolling.

These correlations for each edge (edgeB) are determined recursively to allow
backtracking (see the recursive call to CorrelateEdges()). If at any stage, an
edge (edgeB) cannot be correlated with a path in ProgA, the function returns
with a failure, prompting the caller frame in this recursion stack, to try another
correlation for a previously correlated edge. In theory, this backtracking can
be exponential in the number of edges, but in practice, backtracking is rare,
especially because we prioritize the candidate source paths for correlation, in
increasing order of their unrolling factor. Because most compiler transformations
do not involve unrolling, backtracking is rare in this scenario.

PredicatesGuessAndCheck() synthesizes invariants through the follow-
ing grammar of guessing: G = { ?A ⊕ ?B ,MA =?A∪?B

MB }, where operator
⊕ ∈ {<,>,=,≤,≥} and ?A and ?B represent the program values (represented as
symbolic expressions) appearing in ProgA and ProgB respectively. The guesses
are formed through a Cartesian product of values in ProgA and ProgB using
the patterns in G. Our checking procedure is a fixed point computation which
keeps eliminating the unprovable predicates, until only provable predicates re-
main (similar to Houdini). At each step, for each guessed predicate at each node,
we try to prove it from every predecessor node using the current invariants and
assumptions at the predecessor node (as also described in Sec. 3).

For our running example in Fig. 2a, 2b, the JTFG nodes and edges deter-
mined through our algorithm are {(b0,b0’), (b1,b1’), (b3,b3’)} and {(b0,b0’)
→ (b1,b1’), (b1,b1’) → (b1,b1’), (b1,b1’) → (b3,b3’)} respectively. Further, the
algorithm is able to infer the required invariants (shown in the last column of
Fig. 3) to complete the equivalence proof.

6 Implementation and Experiments

To demonstrate the impact of undefined behaviour assumptions on compiler
optimization, we compute equivalence of C functions across unoptimized (-O0)
and optimized (-O2) x86 binaries produced by compiling C programs through
production compilers, GCC and LLVM with and without undefined behaviour
models. We disable function inlining during compilation, as our prototype im-
plementation cannot reason about inter-procedural optimizations. Even after
disabling inlining, the average speedup across the compiler optimizations on
these programs is 1.72x over clang-O0. To be able to reconstruct the C-level
information, required for modeling undefined behaviour and equivalence check-
ing, we enable a few additional flags during the compilation (namely -g and
-reloc) to generate debug information and relocation headers respectively. We



Al
l

TB
SA SI

O

OB
VA

gzip-gcc

20

40

60

80

100

Eq
ui

va
le

nc
e 

st
at

s 
(%

)

Al
l

TB
SA SI

O

OB
VA

gzip-clang
Al

l

TB
SA SI

O

OB
VA

bzip2-gcc

Al
l

TB
SA SI

O

OB
VA

bzip2-clang

Al
l

TB
SA SI

O

OB
VA

mcf-gcc

Al
l

TB
SA SI

O

OB
VA

mcf-clang

Al
l

TB
SA SI

O

OB
VA

parser-gcc

Al
l

TB
SA SI

O

OB
VA

parser-clang

Passed cyclic Passed acyclic

Fig. 4: For every benchmark-compiler option, success rates are shown for four cases.
First bar shows the pass rate when we model all three undefined behaviours. Rest three
bars show the success rates when a particular type of undefined behaviour among three
(TBSA, SIO, OBVA) is not modeled. Each bar individually shows the contribution to
the pass rates by cyclic (at least one loop) and acyclic functions.

assume that the binaries contain the symbol table (i.e., are unstripped), which
along with relocation headers allow accurate renaming of memory addresses to
global variable symbols. Further the debug information provides the signature
and types of the variables and functions. Both GCC and LLVM support these
compile-time options, and these options have no impact on the runtime of the
executable.

The functions are drawn from four SPEC benchmarks: bzip2 (compres-
sion utility), gzip (compression utility), mcf (combinatorial optimization) and
parser (word processing). The number of global variables in these benchmarks
is 100, 212, 43 and 223 respectively. We compiled each program with both com-
pilers to produce 16 binaries (8 unoptimized and 8 optimized), representing a
total of 1058 pairs of unoptimized and optimized assembly functions (ignoring
the identical glibc functions). Among these pairs, 714 functions had at least
one loop in them. The average number of assembly LOC and C-LOC for these
functions is 112 and 35 respectively. We ignored the functions containing float-
ing point operations (14 functions), as our semantic model for x86 floating point
instructions is incomplete.

We performed experiments to demonstrate the significance of the three types
of undefined behaviour discussed in Sec 2, namely SIO, TBSA, and OBVA as-
sumptions. We estimate the presence of undefined behaviour based optimizations
for each benchmark and compiler option, by performing the equivalence check
twice, for each function, with and without using the undefined behaviour as-
sumption. If an equivalence check for a function pair passes with the undefined
behaviour assumption but fails without the assumption, then we assume that
the compiler has exploited the respective undefined behaviour towards optimiz-
ing the function. The plot in Fig. 4 shows the success rates for each compiler
and each benchmark for four different cases: the first bar represents the suc-



cess rate when all three undefined behaviours are modeled; the second, third
and fourth bars represent the cases when TBSA, SIO and OBVA assumptions
are not modeled respectively. For SIO and TBSA, we employ the compiler flags
fno-strict-overflow and fno-strict-aliasing to differentially esti-
mate the impact of these assumptions. These flags enable/disable the SIO and
TBSA assumptions while performing compiler optimizations. If our equivalence
check passes when these assumptions are disabled by the compiler, but fails
when these assumptions are enabled by the compiler, we assume that the com-
piler is leveraging these assumptions for optimization. For OBVA, we simply
turn on/off our alias analysis (as discussed in Sec. 4) to determine the effect of
OBVA assumptions.

The overall average success rates for equivalence checking across the four
cases are 81%, 76%, 77% and 50%. As expected, the pass rates are lower when
undefined behaviour is not modeled. The drop in success rates, when an un-
defined behaviour is not modeled with respect to the first bar (where all three
types of undefined behaviour are modeled), indicates the impact of the respec-
tive undefined behaviour on compiler optimization. The drop in success rates
due to non-modeling of OBVA assumptions is 31 percentage points. In contrast,
the drop due to non-modeling of SIO and TBSA assumptions is only 4 and
5 percentage points respectively. These experiments confirm (a) the widespread
impact of undefined behaviours on compiler optimizations and (b) throw light on
the relative impact of different types of C undefined behaviour on optimization.

Our experiments also led to the discovery of a GCC bug related to the seman-
tics of fno-strict-aliasing. This flag is used to disable the optimizations
related to TBSA. However, for certain functions, GCC was using TBSA as-
sumptions even while compiling with this flag. The bug was confirmed by GCC
developers [8].

7 Related Work

Modeling of undefined behaviour for verification has previously been studied in
Alive [17], where acyclic peephole optimization patterns of the InstCombine
pass in LLVM are verified. These optimizations could potentially involve unde-
fined behaviour assumptions, and hence modeling of undefined behaviour be-
comes necessary. The typical verification target for Alive is a few lines of opti-
mization pattern representing a single optimization. In contrast, our verification
targets involve concrete programs (with up to 1000s of lines) and containing
multiple composed compiler optimizations. Alive models undefined behaviour
involving undefined values, poison values and instruction attributes like nsw
(signed integer overflow), the kind that can be modeled through a simple syn-
tactic analysis of the LLVM peephole optimization pattern. For example, the
presence of undefined behaviour attributes like nsw, undef, etc., in the opti-
mization pattern directly indicates the undefined behaviour assumptions. Alias-
ing based undefined behaviour involving OBVA requires an alias analysis, and
Alive did not consider this in their work. Our work is directed towards studying



the common transformations in end-to-end compiler optimization, and we find
that undefined behaviour involving OBVA is the most commonly exploited for
optimization in both GCC and LLVM. We believe that our alias analysis can
also benefit Alive (and other equivalence checkers) interested in capturing alias-
ing based undefined behaviour assumptions. Another major difference between
Alive and our work is that Alive verifies acyclic optimization patterns, while we
generalize the ideas to simulation-based equivalence across programs containing
loops.

Our work overlaps with previous work on detection of unstable code, Stack
[27]. Stack classifies unstable code as the code whose semantics are sensitive to
undefined behaviour. The underlying assumption of this work is that if an op-
timizer discards/modifies the (unstable) code due to the presence of undefined
behaviour, the resulting logic may behave differently from what the program-
mer intended. While Stack identifies certain important types of unstable code
through static pattern-matching on LLVM IR, it also leaves out many. Aliasing
based undefined behaviour stands out as an example of undefined behaviour not
considered by Stack. It should be straight-forward to extend Stack by employ-
ing an alias analysis similar to our work. Our simulation-based equivalence proof
construction approach is in contrast with the largely syntactic pattern match-
ing approach adopted by Stack. It would be instructive to study the merits of
applying a semantic procedure like ours, to the detection of unstable code.

Our linearly-related and may-depend-on analyses, resemble previous work on
alias analysis for executable code by Debray et. al. [4]. The authors of this work
noted that alias analysis for executable code requires reasoning about pointer
arithmetic, and hence proposed special modeling for the add and mult opcodes,
as these were the most commonly encountered opcodes for pointer manipulation
on the RISC architecture they considered. However, because their analysis is
syntactic in nature, it introduces imprecisions in common situations involving
store and subsequent load of a pointer to/from memory. In such situations where
a syntactic analysis does not provide enough information, the alias information
would be conservatively widened to ⊥ in their approach. Their empirical evalu-
ations reflect these imprecisions. Our approach works on de-sugared expressions
obtained from machine opcodes, involving standard bitvector and boolean oper-
ators. Also, our memory model allows reasoning about stores followed by loads to
identical locations (without other intervening conflicting stores), thus capturing
the common pattern of pointers getting saved to stack slots for future reference.
This semantic treatment lends robustness to our analysis, and makes it indepen-
dent of the underlying machine ISA. In another related work on alias analysis,
Fernandez and Espasa [6] attempted to remove the imprecisions discussed in [4],
by sacrificing soundness guarantees. Sacrificing soundness is not acceptable in
our setting. The authors of both these previous works on alias analysis for exe-
cutable code were interested in link-time optimizations; unlike us, they do not
describe a model for reasoning about undefined behaviour using this obtained
aliasing information.



In terms of the correlation algorithm, our approach is perhaps closest to Co-
VaC [28], in that we both construct the JTFG incrementally, and rely on an
invariant-generation procedure, while determining the correlations. There are
important differences however. CoVaC relies on an oracular procedure called In-
vGen; we show a concrete implementation of PredicatesGuessAndCheck().
Further, we differ significantly in our method to identify the correlations. CoVaC
relies on syntactic approach of co-relating types of operations (e.g., memory reads
and writes are different types), and is less general than our semantic treatment
of memory. Also, CoVaC relies on the satisfiability of the conjunction of edge
conditions (viz. branch alignment) in the two programs, which is unlikely to work
across several common transformations that alter the branch structure. CoVaC
was tested on smaller examples across a handful of transformations. In contrast,
our correlation method based on equality of condition of edge (edgecond) is more
general, and we demonstrate this through experiments.

Translation validation infrastructure (TVI) [18] verified five IR passes of com-
pilation of gcc-2.91 and Linux-2.2 by GCC. The passes verified were branch
optimization, common-subexpression elimination (CSE), loop unrolling and in-
version, register allocation, and instruction scheduling. Similarly, value-graph
translation validation for LLVM has been performed in at least two independent
efforts [22, 26], albeit only across a known set of nine selected transformations,
namely, dead-code elimination, global value numbering, constant propagation,
loop-invariant code motion, loop deletion, loop unswitching, dead-store elimina-
tion, partial-redundancy elimination, and basic block placement. Neither of these
approaches model undefined behaviour, or study their significance on compiler
optimization. Overall, our success rates for equivalence checking are comparable
(and often better) to all these previous efforts, albeit in a much more generalized
setting (with almost no assumptions on the transformations that are enabled).
To our knowledge, our experiments are the first to demonstrate the significance
of undefined behaviour on compiler optimization.

There are more approaches to translation validation and equivalence checking
with different settings and goals (e.g., [5,9,10,12–14,16,20,21,23,28,29]). All pre-
vious simulation-based equivalence checkers can also be extended with undefined
behaviour assumptions, to capture a larger set of compiler transformations.

There are hundreds of types of undefined behaviour in C, and some of them
have been bitterly debated in the past [24, 25]. We believe that this approach
to quantifying the impact of different types of undefined behaviour on compiler
optimization, can bring some insight and basis for such debates. For example, our
limited investigations in this work indicate the overwhelming relative significance
of out-of-bounds variable access assumptions (for optimization), compared to
other types of undefined behaviour like signed integer overflow and type based
strict aliasing assumptions. We hope that this work triggers more such studies
across a wider variety of undefined behaviour in future.

References

1. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, 2013



2. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. ASPLOS
XII (2006)

3. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: APLAS ’17 (2017)

4. Debray, S., et al.: Alias analysis of executable code. POPL ’98 (1998)
5. Felsing, D., et al.: Automating regression verification. ASE ’14 (2014)
6. Fernández, M., et al.: Speculative alias analysis for executable code. PACT ’02
7. Flanagan, C., et al.: Houdini, an annotation assistant for esc/java. LNCS (2001)
8. GCC Bugzilla - Bug 68480, https://gcc.gnu.org/bugzilla/show_bug.

cgi?id=68480
9. Hawblitzel, C., et al.: Will you still compile me tomorrow? static cross-version

compiler validation. ESEC/FSE 2013
10. Kanade, A., Sanyal, A., Khedker, U.P.: Validation of gcc optimizers through trace

generation. Softw. Pract. Exper. (2009)
11. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-

ized program equivalence. PLDI ’09 (2009)
12. Lahiri, S., et al.: Differential assertion checking. In: FSE’13
13. Lahiri, S., et al.: Automatic rootcausing for program equivalence failures in bina-

ries. In: Computer Aided Verification (CAV’15) (2015)
14. Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebelo, H.: Symdiff: A language-agnostic

semantic diff tool for imperative programs. In: CAV ’12 (2012)
15. Lee, J., et al.: Taming undefined behavior in llvm. PLDI 2017 (2017)
16. Leung, A., et al.: C-to-verilog translation validation. In: MEMOCODE (2015)
17. Lopes, N.P., et al.: Provably correct peephole optimizations with alive. PLDI 2015
18. Necula, G.C.: Translation validation for an optimizing compiler. PLDI ’00 (2000)
19. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. TACAS ’98 (1998)
20. Poetzsch-Heffter, A., et al.: Towards proof generating compilers. ENTCS (2005)
21. Sharma, R., et al.: Data-driven equivalence checking. OOPSLA ’13 (2013)
22. Stepp, M., et al.: Equality-based translation validator for llvm. CAV’11 (2011)
23. Strichman, O., Godlin, B.: Regression verification - a practical way to verify pro-

grams. In: Verified Software: Theories, Tools, Experiments, vol. 4171 (2008)
24. Torvalds, L.: https://lkml.org/lkml/2007/5/7/213
25. Torvalds, L.: https://gcc.gnu.org/ml/gcc/2002-01/msg00395.html
26. Tristan, J.B., et al.: Evaluating value-graph translation validation for llvm. PLDI11
27. Wang, X., et al.: Towards optimization-safe systems. SOSP ’13 (2013)
28. Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the cross-

product. FM ’08 (2008)
29. Zuck, L., Pnueli, A., Fang, Y., Goldberg, B.: Voc: A methodology for the translation

validation of optimizing compilers 9(3) (2003)

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68480
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68480
https://lkml.org/lkml/2007/5/7/213
https://gcc.gnu.org/ml/gcc/2002-01/msg00395.html

	Modeling undefined behaviour semantics for checking equivalence across compiler optimizations

