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Abstract
Equivalence checking is an important building block for program synthesis and veri-

fication. Design of an equivalence checker is dependent on the application; program syn-

thesis tools like superoptimizers demand that the underlying equivalence checker should

perform the required equivalence checks in a black-box manner, i.e., without requiring

the knowledge of the individual constituent transformation passes. This thesis presents

techniques for black-box equivalence checking across compiler optimizations and across

power environments.

In the first part, we present a technique for black-box equivalence checking across

compiler optimizations. Unlike previous work on translation validation, our technique

works across multiple composed transformations and does not employ a pass-by-pass

approach. Our technique supports undefined behaviour related optimizations, and we are

the first to handle undefined behaviour related optimizations in equivalence checking for

programs with loops. We test our checker with the optimizations produced by multiple

modern compilers, and our results are comparable to that of previous work on translation

validation, albeit in a black-box setting.

In the second part, we discuss equivalence checking across power environments. In-

termittent programs, which are transiently powered, keep checkpointing the program state

to a persistent memory, and on power failures, the programs resume from the last executed

checkpoint. An intermittent program is usually automatically generated by instrumenting

a given continuous program (continuously powered). The behaviour of the continuous

program should be equivalent to that of the intermittent program under all possible power

failures. We present a technique to automatically verify the correctness of an intermittent

program with respect to its continuous counterpart. We present a model of intermittence

to capture all possible scenarios of power failures and an algorithm to automatically find

a proof of equivalence between a continuous and an intermittent program.
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Chapter 1

Introduction

Equivalence checking is a fundamental problem in Computer science. The problem is

undecidable and is as old as computing itself. Besides its theoretical significance, equiv-

alence checking has important applications in the areas of compiler verification and pro-

gram synthesis.

In the setting of compiler verification, equivalence checking is employed to verify

the correctness of the transformations performed by the compilers, also called translation

validation [39, 52]. Compilers perform a fixed set of transformations, which are usually

correct-by-construction. However, bugs in compiler implementation could generate in-

correct transformation instances and translation validation can catch the same. While the

application of equivalence checking for translation validation is optional for compilers,

it is an essential and an important building block of a class of synthesis tools that are

given programs as the specification, e.g., superoptimizer [8, 2]. A synthesis tool like su-

peroptimizer generates many different transformations, and it needs some mechanism to

know whether a proposed synthesized transformation is correct with respect to the original

program, and it relies on an equivalence checker to know the same.

For an input program, a synthesis tool searches for the output program with respect

to some given optimization criteria like a lesser runtime or a smaller code size, etc. The

synthesis tool generates (e.g., by enumeration or other heuristic-based search algorithms)

25



26 Introduction

many possible proposed programs, based on the required criteria, and discharges the cor-

rectness check to the equivalence checker. If a proposed program is equivalent to the

input program, the synthesis tool considers it as a potential optimized output program,

otherwise, it looks for other better solutions. By the design of synthesis techniques like

superoptimization, the proposed programs are usually not equivalent to the input program

like in the correct-by-construction approach of compilers. This necessitates the use of an

equivalence checker within a synthesis tool. Thus, an equivalence checker is indispensable

to a synthesis tool.

Further, the capability and the performance of a synthesis tool are dependent on that of

the underlying equivalence checker. Because the problem of equivalence checking is un-

decidable in general, incorrect failures are inevitable, i.e., the equivalence checker cannot

be both sound and complete. An incorrect equivalence failure (i.e., a false negative due

to incompleteness) results in a potentially missed optimization by the synthesis tool, but

an incorrect equivalence success (i.e., a false positive due to unsoundness) by the equiva-

lence checker results in an incorrect translation by the synthesis tool. For the application

to program synthesis, false positives by an equivalence checker are unacceptable, and we

would like to minimize false negatives for better results. Evidently, the capability and

the correctness of a synthesis tool are dependent on the capability and the correctness

of the underlying equivalence checker. Moreover, the performance of a synthesis tool is

also dependent on that of the equivalence checker. This signifies the importance of an

equivalence checker in a synthesis tool.

Previous work on program equivalence checking has been done in the context of trans-

lation validation, with the goal to verify the correctness of a translation. This prior work

has largely employed a pass-by-pass based approach [39, 24], where each pass is verified

separately by the equivalence checker, and/or worked with a set of handpicked transforma-

tions [39, 24, 52]. A pass-by-pass approach simplifies the verification process by dividing

a big step into smaller and simpler steps, and the result is obtained by composing the re-

sults of the individual steps. While this meets the objective of translation validation and
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is an efficient approach for the same, however, these are unsuitable simplifications for a

synthesis tool, where the nature and sequence of transformations are unknown.

In contrast with a fixed set of transformations in compilers, the synthesis tools are

search based and the transformations are synthesized. As a result, the nature of a transfor-

mation generated by the synthesis tool is not available to the equivalence checker. That is,

a generated transformation is a black-box to the equivalence checker — this is the basic

reason why the synthesis techniques can discover unconventional optimizations. In other

words, a synthesis tool does not have a fixed ordered set of transformation passes, and a

transformation generated by a synthesis tool may consist of multiple composed passes and

in no particular order. This results in a restriction on the underlying equivalence checker

as the equivalence checker cannot make the simplifications like in the case of translation

validation. The equivalence checker for synthesis has to work without the knowledge of

the transformations performed, and it has to verify multiple composed transformations in

one go. Clearly, the setting for equivalence checking for synthesis is more challenging

than that for translation validation. Stated differently, an equivalence checker suitable for

a synthesis tool can be used for translation validation, while, the converse is not true.

Synthesis tools have not matured like compilers; we do not have substantially built

synthesis tools to use our equivalence checker with. We resort to using compilers as a

proxy for synthesis tools to allow us to bootstrap our equivalence checker independent

of a synthesis tool. However, we simulate the setting of synthesis, i.e., by computing

equivalence across the black-box composed transformations, without using the knowledge

of the nature and sequences of the transformations performed. If we can come up with an

equivalence checker that can verify the black-box transformations produced by modern

compilers, then a future synthesis tool will be capable of producing modern compiler

transformations. This forms the first part of this thesis: we present the study, design, and

implementation of an equivalence checker that works across compiler optimizations in a

black-box setting.

Synthesis techniques are not limited to just the conventional code optimizations. A
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synthesis approach can be used to optimize program instrumentations too. For example, a

synthesis technique can be employed to automatically generate an optimized intermittent

program based on a desired criteria, from an input continuous program. An intermittent

program is one which can work with an intermittent power supply and tolerate power

failures due to the transient nature of the power supply. On the other hand, a continuous

program requires continuous power supply for correct operation. The instrumentation is

added such that the intermittent program keeps checkpointing the intermediate program

state at the checkpoint locations, and in case of a power failure, the intermittent program

resumes from the last checkpointed state. This allows the intermittent program to work

with transiently powered, energy harvesting devices that harvest energy from their sur-

roundings, such as sunlight or RF radio signals. For such a transformation to work, the

behaviour of the intermittent program under all possible power failures should be equiva-

lent to that of the continuous program.

The performance of an intermittent program is dependent on the location and the size

of checkpoints. A synthesis tool in such a setting would search for an optimal placement

of checkpoints and the minimum program state that needs to be checkpointed. Such a

synthesis tool would require an equivalence checker that can tell if the intermittent pro-

gram with the given checkpoints, under all possible power failures, is equivalent to its

continuous counterpart. As shown in this thesis, this problem is also undecidable and the

capability of such a synthesis tool is dependent on the robustness of the underlying equiv-

alence checker. We present a technique to establish equivalence between a continuous and

an intermittent program, and this forms the second part of this thesis.

1.1 Contributions and organization

This thesis makes the following high level contributions:

• A sound and robust algorithm for black-box equivalence checking across modern

compiler optimizations. It can compute equivalence across almost all the optimiza-
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tions of modern compilers, in a black-box manner. Notably, it supports optimiza-

tions related to the undefined behaviour semantics of high-level languages. We are

the first to handle undefined behaviour related optimizations in equivalence check-

ing for programs containing loops. Further, we have evaluated our technique ex-

haustively across multiple optimization levels over multiple compilers.

Chapter 2 presents our black-box equivalence checking algorithm, our technique

to handle the optimizations related to undefined behaviour, the evaluation of our

equivalence checker across compiler optimizations, details on the bugs found, and

a preliminary evaluation of our equivalence checker in the setting of superoptimiza-

tion.

• A sound technique to check equivalence across power environments, i.e., between

a continuous and an intermittent program, which are supplied with continuous and

transient power respectively. The technique establishes that the continuous program

is equivalent to the intermittent program under all possible power failures, for the

given set of checkpoints of the intermittent program. Further, the technique is robust

with respect to the permitted set of checkpoints, in the sense that it can establish

equivalence even when minimal program state is checkpointed.

Chapter 3 presents our technique, and the experiments in the setting of synthesis of

checkpoints, to demonstrate its capability.





Chapter 2

Equivalence checking across compiler

optimizations

Modern compilers are overwhelmingly complex, e.g., GCC has over 14.5 million lines of

code [41] and hundreds of optimization passes. We find that the transformations produced

by these compilers are much varied and compositions of these optimization passes result

in strongly differing control flow graphs. Furthermore, the presence of language level un-

defined behaviour allows them to produce even more aggressive optimizations. Previous

work on optimization-unstable code detection [52] reported that 40% of the 8575 C/C++

Debian Wheezy packages they tested, contain unstable code that may get discarded during

the optimization because of the presence of undefined behaviour.

Our goal is to design an equivalence checker that can compute equivalence across the

optimizations produced by modern compilers. In contrast to previous work on translation

validation [39, 24, 52], which assumed a certain set of compiler optimizations, we consider

the compiler as a black-box, i.e., we do not assume the knowledge of the exact set or

order of the transformations produced by the compiler. Further, we perform equivalence

check across multiple composed optimizations, unlike the pass-by-pass approach taken by

previous work [39, 24].

We present the design and an implementation of an equivalence checker that computes

31
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equivalence across modern compiler optimizations. Our algorithm meets the requirements

of the synthesis tools and can verify the transformations produced by multiple modern

compilers. Our contributions towards this goal are:

• A new algorithm to determine the proof of equivalence across programs. The al-

gorithm is robust with respect to modern compiler transformations and in a black-

box manner, can handle almost all composed transformations performed by modern

compilers.

• New insights in equivalence checking, the most important being handling of lan-

guage level undefined behaviour based optimizations. Previous work had disabled

these optimizations, yet we find that these optimizations are very commonly used in

compilers. For example, our equivalence checking success rates increase by 15%-

52%, through modeling some important classes of undefined behaviour.

• Comprehensive experiments: we evaluate our implementation across black-box op-

timizations produced by four modern compilers, namely GCC, LLVM (clang),

ICC (Intel’s C Compiler), and CompCert (ccomp). Our tool can automatically

generate proofs of equivalence, across O2/O3 compiler transformations, for 74% of

the functions in C programs belonging to the SPEC benchmark suite across all four

compilers. These results are comparable (and, in some cases, better) to the success

rates achieved by previous translation validation tools which operated in simplified

settings (not black-box). This is a first of its kind experimental setup for evaluating

an equivalence checker. We also test our equivalence checker for synthesis, by us-

ing it within a preliminary superoptimizer supporting loops, and present its initial

results.

Section 2.1 discusses the notion of a simulation relation in the context of computing

equivalence between unoptimized and optimized implementations of a C program. Sec-

tion 2.2 presents our equivalence checking algorithm. Section 2.3 discusses the details of

modeling undefined behaviour semantics, and Section 2.5 presents the results.
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2.1 Simulation relation as the basis of equivalence

Two programs are equivalent if for all equal and legal inputs, the two programs have iden-

tical observables. We compute equivalence for C programs at function granularity. The

inputs in case of C functions are the formal arguments and the memory (minus stack, i.e.,

the memory without considering the stack) at the function entry, and the observables are

the return values and the memory (minus stack) at the exit. Two functions are equivalent

if for the same input arguments and memory (minus stack), the functions return identi-

cal return values and memory state (minus stack). Equivalence is defined only for legal

inputs, i.e., all inputs for which the program behaviour is well defined.

A simulation relation is a structure to establish equivalence between two programs. It

has been used extensively in previous work on translation validation [39, 59, 48, 24, 42].

A simulation relation is a proof (or witness) of the equivalence between two programs, and

is represented as a table with two columns: Correlation and Invariants. Given two pro-

grams ProgA and ProgB, the correlation is a pair (LA, LB) such that LA and LB are PCs

(program counter or location) in the two programs, and the invariants (I) are predicates in

terms of the variables (i.e., states) at these respective PCs. A row ((LA, LB), I) of a sim-

ulation relation encodes that the invariants I hold whenever the two programs are at LA

and LB respectively. A simulation relation is valid if it is inductively provable. For a valid

simulation relation, the invariants at each correlated location should be provable from the

invariants at the predecessor correlated locations (inductive case). Further, the invariants

at the entry location (pair of entry points of the two programs) must be provable using

the input equivalence condition (base case). If the equivalence of the required observables

is provable at the exit location (pair of exits of two programs) using the invariants of the

simulation relation, we can conclude that the programs are equivalent.

Formally, a simulation relation is valid if:

Init⇔ invariants
(SEntryA

,SEntryB
)

(EntryA,EntryB)
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∀
(L′

A,L′
B)→(LA,LB)

invariants
(S

L′
A

,S
L′
B

)

(L′
A,L′

B)
⇒(L′

A,L′
B)→(LA,LB) invariants

(SLA
,SLB

)

(LA,LB)

Here invariants
(SLA

,SLB
)

(LA,LB) represents the conjunction of invariants in the simulation rela-

tion in terms of the states SLA
and SLB

of the two programs at the respective locations

LA and LB, Init is the input equivalence condition at the entry of the two programs,

and L′A (L′B) is a predecessor of LA (LB) in the program ProgA (ProgB). Note that

⇒(L′
A,L′

B)→(LA,LB) is a special implication representing implication over the paths L′A →

LA and L′B → LB in programs ProgA and ProgB respectively. It encodes the transfer

functions τL′
A→LA

and τL′
B→LB

of the edges L′A → LA and L′B → LB respectively. Impli-

cation over an edge (X → Y ) is defined as: ISX
X ⇒X→Y I

SY
Y ≡ (SY = τX→Y (SX))∧ ISX

X ⇒

I
SY
Y , or simply ISX

X ⇒ I
τX→Y (SX)
Y . Here IX represents the invariants at the location X .

Consider the example of Figure 2.1 to demonstrate a simulation relation in action. The

figure shows two functions that compute the sum of first n−1 natural numbers, each mul-

tiplied by two. The second program is an optimized version, which avoids multiplication

in the loop body. Note that the programs are equivalent, and one can prove the same by

proposing a simulation relation between the two. Figure 2.2 shows a simulation relation

between the two programs. It has three rows, one each for the entry (b0, b0’), the exit

(b3, b3’) and the loop-node (b1, b1’). The invariants at the entry and the exit represent the

equivalence of the inputs (formal arguments and memory) and the outputs (return values

and memory) respectively. We do not show the invariants relating the memory states, as

the memory states of both the programs remain unmodified. The invariants at the loop-

node are required for the inductive proof of correctness of the simulation relation. The

invariants represent the relations which hold across the two programs, e.g., the invariant

i = j at the loop-node represents that the variable i of the first program at b1 is equivalent

to the variable j of the second program at b1’. Init represents the input equivalence con-

dition, which in this case is nA = nB. The only observable of this function is the return

value, which can be proven from the simulation relation. The given simulation relation

is valid and the invariants at the exit row can prove the equivalence of observables, i.e.,
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sum=0
i=1

sum+=2*i
i++

return sum

b0

N

Y

b2

b3

i<n
b1

(a) Unoptimized

res=0
j=1

res+=j
j++

return 
 2*res

b0’

N

Y

b2’

b3’

j<n
b1’

(b) Optimized

Figure 2.1: Abstracted versions of unoptimized and optimized implementations of programs to

compute double sum of first n− 1 natural numbers. The first program computes
n−1∑
i=1

2 ∗ i whereas,

the second program computes 2 ∗
n−1∑
j=1

j.

Correlation Invariants (I)
(b0,b0’) nA = nB
(b1,b1’) i = j, sum = 2 ∗ res, nA = nB
(b3,b3’) sum = 2 ∗ res

Init: nA = nB

Figure 2.2: Simulation relation for the programs of Figure 2.1. Table shows the invariants at each
correlated location of the two programs. Locations (b0, b0’) and (b3, b3’) are the entry and the
exit rows respectively. Init is the initial condition representing the equivalence of inputs.

sum = 2 ∗ res.

This simulation relation based technique can only prove equivalence across bi-similar

transformations, e.g., it cannot prove equivalence across the loop tiling transformation.

Fortunately, most compiler transformations preserve bi-similarity. Further, our notion of

equivalence does not model constructs like exceptions, interrupts and concurrency. Es-

sentially, we model the semantics of the sequential part of the C programming language,

while comparing well-defined sequential C programs with its compiled output.

As per the C standard, non-termination in C language is undefined if a non-terminating

loop does not produce any observables in the loop body, otherwise, it is well defined [5].
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In the first case, compiler is allowed to produce a code of its choice, and compilers usu-

ally remove the non-terminating loops altogether. A simulation relation based technique

would not work in such a case, unless, we model this undefined behaviour. In the second

case, compilers cannot perform the loop removal, and, a simulation relation based tech-

nique capability is dependent on the capability of the inference algorithm. If the required

invariants and correlation can be inferred, the algorithm will establish the equivalence.

In contrast with checking the correctness of a simulation relation, constructing a sim-

ulation relation is harder and is in fact undecidable in the generality of unlimited memory.

The goal of our equivalence checking algorithm is to try and construct a valid simula-

tion relation that can prove the equivalence. The next section presents the details of our

algorithm, which tries to infer a simulation relation that can establish equivalence.

2.2 Black-box equivalence checking algorithm

Significant literature exists on sound equivalence checking of programs in the space of

translation validation and verification [24, 8, 39, 48, 13, 25, 26, 51, 42, 30, 31, 52, 36, 55].

Most of these techniques are based on inferring a simulation relation (or bisimulation

relation in some papers) between the two programs.

Previous work on equivalence checking has proposed different algorithms, to infer

the correlation and invariants, that work in different settings and with different goals.

We propose an algorithm to determine a simulation relation that works across black-box

compiler transformations, which distinguishes our work from all previous work. There

are three broad improvements we make over previous work:

1. A robust algorithm for finding the correlation of program points. The algorithm

incrementally constructs the simulation relation (correlating one edge in each step),

simultaneously inferring the invariants (using a guess-and-check procedure). At

each step, there may be multiple correlation choices and our algorithm backtracks

if it cannot find a valid edge correlation at any step or if the equivalence cannot be
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established with the current correlation. Our algorithm does not make assumptions

about the nature of transformations, and it is the first to be demonstrated to work

across black-box compiler transformations.

2. We present a systematic guess-and-check based inference of invariants without

making assumptions on the transformations performed. Our careful engineering of

the guessing heuristics to balance efficiency and robustness is a novel contribution,

and we evaluate it through experiments. Previous translation validation approaches

made more assumptions on the nature of transformations, and hence would not ap-

ply to our setting. The robustness of our guessing strategy is significant to achieving

good results in our setting.

3. We model language level undefined behaviour semantics. Our prototype can handle

C programs and some common types of undefined behaviour in C language. Previ-

ous work on translation validation disabled transformations that exploit undefined

behaviour (discussed in Section 2.3).

2.2.1 Introducing the algorithm through an example

We describe our algorithm with the help of an example program of Figure 2.3. Figure 2.4a

and Figure 2.4b show the abstracted, unoptimized (A) and optimized (B) versions of the

program in Figure 2.3. The optimized program has been compiled by gcc using -O3

flag. While the programs are in x86 assembly, we have abstracted them into C like syntax

and flow charts for readability and exposition. The program has undergone multiple opti-

mizations like 1) loop inversion, 2) condition inequality (i < n) to condition disequality

(i 6= n) conversion, and 3) usage of conditional move instruction (cmov) to get rid of a

branch. To our knowledge, no previous work can handle this transformation. All of the

previous work fail in proving this transformation correct, either due to one or multiple

optimizations (from the above three).

We now discuss how our algorithm computes a valid simulation relation; a simulation
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int g[144];
void sum_positive(int n)
{
for(int i = 0; i < n; i++)
{

if (g[i] > 0)
sum = sum + g[i];

}
return sum;

}

Figure 2.3: An example function computing sum of positive integers of global array g.

relation is represented using a joint transfer function graph (JTFG), which is constructed

incrementally at each step. A JTFG is a correlation between two transfer function graphs

(TFGs). We represent programs as TFGs; a TFG consists of nodes and edges, where a

node represents program counter (PC) and an edge models the control flow transfer from

one PC to another. A JTFG represents a correlation across nodes and edges of the two

programs (TFGs). A JTFG node represents two PC values, one belonging to the first pro-

gram and the other to the second program. Similarly, a JTFG edge represents one control

flow edge in the first program and its correlated edge in the second program. Further, we

require that for two edges to be correlated in a JTFG, they should have equivalent edge

condition, i.e., if one program makes a certain control transfer (follows an edge), the other

program will make a corresponding control transfer along the respective correlated edge in

the JTFG, and vice-versa. The individual edges of an edge of a JTFG could be composite:

a composite edge (Section 2.2.3) between two nodes is formed by composing a sequence

of edges (into a path), or by combining a disjunction of multiple paths (an example of

a composite edge involving a disjunction of multiple paths is available in the following

discussion). Please refer to Section 2.2.2 and Section 2.2.3 for the definitions of TFG and

JTFG respectively.

Determining the correlation across program points and control transfers is one of the

most involved problems during the construction of a simulation relation. Our algorithm

proceeds as follows. We first fix the program points (PCs) and composite edges in one
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i = 0
sum = 0

sum += g[i]

++i

return sum

b0

N

Y

Y

N

b2

b3

b4

i < n

g[i]>0
b1

(a) Unoptimized

i=0
sum=0

sum+=g[i]>0?
g[i] : 0;

++i

N

Y

NY

b0'

b1'

n > 0

i != n

return
 sum

b3'

(b) Optimized

Figure 2.4: Abstracted versions of unoptimized and optimized implementations of the program in
Figure 2.3. The ternary operator a?b:c represents the cmov assembly instruction.

program (say ProgB) and try to find the respective correlated program points and com-

posite edges in the other program (ProgA). For sound reasoning of loops, we ensure that

a correlation exists for at least one node in a loop, for all the loops. We pick the entry,

the exit and the loop heads in ProgB, as the anchor PCs (details in Section 2.4.1) that

need to be correlated with the PCs in ProgA. In our example, we pick (b0’, b1’, b3’) in

ProgB. Thus, ProgB can be represented through the three anchor nodes, and a set of four

composite edges, edgesB =(b0’-b1’, b1’-b1’, b1’-b3’, b0’-b3’). We now try and find the

correlated composite edges in ProgA for each composite edge in ProgB. Finally, when all

the composite edges of ProgB get correlated, we obtain a candidate correlation between

the two programs.

Running our algorithm on the example, we initialize the JTFG with its entry node

(b0, b0’). We pick an edgeB from edgesB (sorted in DFS order) and find the list of

composite edges in ProgA (up to some fixed length) that can be correlated with edgeB.

For edge (b0’-b1’) of ProgB we get (b0-b1, b0-b4, b0-b1-b2, b0-b1-b3, b0-b1-b3-b2,

b0-b1-b2||b0-b1-b3-b2)1 as the list of potential composite edges in ProgA, up to unroll

1a-b-c is sequential composition of edges a-b and b-c. a-b-c||a-d-c is parallel composition of edges a-b-c
and a-d-c. Please refer to Section 2.2.3 for details on composite edges.
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factor 1 (unrolling the loop once). The last edge involves a disjunction of two paths. The

conditions of these edges are (0 < nA, 0 ≥ nA, 0 < nA ∧ g[iA] ≤ 0, 0 < nA ∧ g[iA] >

0, 0 < nA ∧ g[iA] > 0, 0 < nA) respectively. The condition of the current edgeB is

0 < nB. However, the edge conditions of the two programs cannot be compared because

there is no relation between nA and nB. Before comparing the conditions across these

two programs, we need to find invariants which relate the variables of the two programs

at (b0, b0’). In this example, we require the invariant nA = nB at (b0, b0’) (we later

discuss how to obtain such invariants). Invariant nA = nB proves that the conditions of

(b0-b1) and (b0’-b1’) are equal, implying that the edge (b0’-b1’) can be correlated with

the edge (b0-b1). This pair of correlated edges is potentially a valid edge in the current

JTFG, from the node (b0, b0’) to the node (b1, b1’), and it gets added as a single edge

to the current JTFG. We then try to correlate the next composite edge of ProgB until all

the composite edges are correlated, and a simulation relation (JTFG) is found which can

prove the required equivalence. At each step, it is possible for multiple composite edges

in ProgA to have the required edge condition for correlation, while only one (or a few

of the choices) may yield a provable simulation relation. To handle this, our algorithm

backtracks to explore the remaining choices for correlated edges (discussed later). The

final JTFG and invariants for the example programs are shown in Figure 2.5.

At each step of the algorithm, a partial JTFG gets constructed. For future correlation,

we need to infer the invariants at the nodes of the currently constructed partial JTFG. We

use a guess-and-check strategy to infer these invariants. This is similar to previous work

on invariant inference (e.g., Houdini [15]), except that we are inferring these invariants on

the JTFG, while previous work used this strategy for inferring invariants of an individual

program. This guess-and-check procedure is formalized in Section 2.2.4.

The constructed JTFG may be incorrect on several counts. For example, it is possible

that the invariants inferred at intermediate steps are stronger than what is eventually prov-

able, and hence we infer an incorrect correlation. An incorrect correlation would mean

that we will fail to successfully correlate in future steps of the algorithm, or will finish with
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Correlation Invariants (I)
(b0,b0’) nA = nB, gA = gB, sumA = sumB,

MA = MB

(b1,b1’) sumA = sumB, nA = nB, iA = iB,
sl4(MA, gA + iA) = sl4(MB, gB + gB),
gA = gB,MA = MB,
iB + 1 ≤ nB

(b4,b3’) sumA = sumB,MA =∆ MB

Init: nA = nB, gA = gB, sumA = sumB,MA = MB

(a) Simulation relation

b0,b0'

b1,b1'

b4,b3'

b3

b2

b3

b2

(b) JTFG

Figure 2.5: Simulation relation (JTFG) for the programs of Figure 2.4. Table shows the invariants
at each node and graph shows the correlation of edges and nodes of the two programs. Init is the
initial conditions representing equivalence of inputs. Operator sl4 is a shorthand of SMT operator
select of size 4. The SMT expression sl4(MA, gA + iA) is an equivalent representation of gA[iA].
The edges of the first program between b1 and b4 and b1 and b1 are composite edges made up of
the individual edges in between.

a simulation relation that cannot prove observable equivalence. To handle either of these

cases of incorrect correlation, our algorithm backtracks to try other potential composite

edges for correlation, unwinding the decisions at each step. In theory, the algorithm is

exponential in the number of edges to be correlated, but in practice, backtracking is rare,

especially if the candidate edges for correlation are heuristically prioritized. Our simple

heuristic to minimize backtracking is to explore the composite edges in the order of in-

creasing depth, up to a given maximum limit controlled by unroll factor. This heuristic is

based on the assumption that a majority of the compiler transformations do not perform

unrolling, and can thus be proven at smaller depths. If the algorithm succeeds in finding a

JTFG that proves observable equivalence at the exit node, we have successfully computed

a provable simulation relation, and hence completed the equivalence proof.

2.2.2 Transfer function graph

We need an abstract program representation as a logical framework for reasoning about

semantics and equivalence. This abstraction is called the transfer function graph (TFG).

A TFG is a graph with nodes and edges. Nodes represent locations in the program, e.g.,
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T ::= ([ε], [ε], [ε],G([node], [edge]))
node ::= pc(int) | exit(int)
edge ::= (node, node, edgecond, τ)
edgecond ::= state→ ε
τ ::= state→ state
state ::= [(string, ε)]
ε ::= var(string) | nry op([ε]) | select(ε, ε, int) |

store(ε, ε, int, ε) | uif([ε])

Figure 2.6: Grammar of transfer function graph (T).

program counter (PC). Edges encode the effect of the instructions and the conditions under

which the edges are taken. In our setting of C program implementations, the state of the

program consists of bitvectors and a byte-addressable array, representing registers and

memory respectively.

A simplified TFG grammar is presented in Figure 2.6. The TFG T consists of precon-

ditions, inputs, outputs and a graph G with nodes and edges. A node is named either by its

PC location (pc(int)), or by an exit location (exit(int)); a TFG could have multiple exits.

An edge is a four-tuple with from-node and to-node (first two fields), its edge condition

edgecond (third field) represented as a function from state to expression, and its transfer

function τ (fourth field). The transfer function τ is a function from input program state

to output program state along that edge. In other words, it is a functional representation

of the effect of taking that edge on program state. An expression ε could be a boolean,

bitvector, byte-addressable array, or an uninterpreted function; var(string) represents a

named constant, nry op([ε]) represents nry operation on n expressions, select and store

are read and write operations on arrays, and uif([ε]) models the function calls as un-

interpreted functions. Expressions are similar to standard SMT expressions, with a few

modifications for better analysis and optimization, e.g., unlike SMT, select and store

operators have an additional third integer argument representing the number of bytes be-

ing read/written. An edge is taken when its edgecond holds. An edge’s transfer function

represents the effect of taking that edge on the program state, as a function of the state at

the from-node. A state is represented as a set of (string, ε) tuples, where the string names
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the state element (e.g., register name) and ε represents the value expression correspond-

ing the state element. Apart from registers and memory, the state also includes an “IO”

element indicating I/O activity, that in our setting, could occur only due to a function call

(inside the callee)2. A procedure’s TFG will have an entry node, and a single return (exit)

node.

The C function calls in programs are modeled as uninterpreted functions (uif) in

the TFGs. For every function, a summary representing the inputs and the outputs of

the function is computed. The inputs of a function are memory (heap and globals), IO

element, and its formal arguments, and the outputs are memory (heap and globals), IO

element, and the return register (i.e, eax). This function summary is computed using an

alias analysis (Section 2.3.3) and various ELF headers (Section 2.5), and represents the

global variables that are read or written by this function. The summary also indicates

whether the heap is read or written by the function. Finally, at each call-site, the effect

of a function call is captured by assigning every “output variable” of the callee through

uninterpreted function calls (uif); the inputs of the uif are based on the function call

arguments and the global variables/heap read by the callee (as determined by the callee

summary). The output variables of a callee capture the return value of the function call

and any side effects, i.e., global variables/heap written-to by the function call. The callee’s

summary is conservative, and hence this model is sound but not complete.

Figure 2.7 shows the TFGs of unoptimized and optimized versions of the programs of

Figure 2.4.

2.2.3 Joint transfer function graph

A joint transfer function graph (JTFG) is a subgraph of the cartesian product of the two

TFGs. Additionally, each JTFG node has predicates (second column of simulation rela-

tion) representing the invariants across the two programs. Intuitively, a JTFG represents

2In the programs we consider, the only method to perform I/O is through function calls (that may inter-
nally invoke system calls).
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Edge condition τ(sum, i, n,M) =

b0-b1 n > 0 (0, 0, n,M)
b0-b4 n ≤ 0 (0, 0, n,M)
b1-b2 sl4(M, g+i) ≤ 0 (sum, i, n,M)
b1-b3 sl4(M, g+i) > 0 (sum, i, n,M)
b3-b2 true (sum+ sl4(M, g + i), i, n,M)
b2-b1 i+ 1 < n (sum, i+ 1, n,M)
b2-b4 i+ 1 ≥ n (sum, i+ 1, n,M)

(a) TFG representation of the program of Figure 2.4a.

Edge condition τ(sum, i, n,M) =

b0’-b1’ n > 0 (0, 0, n,M)
b1’-b1’ i+ 1 6= n let u = sl4(M, g + i)

(sum+ (u > 0?u : 0), i+ 1, n,M)
b1’-b3’ i+ 1 = n let u = sl4(M, g + i)

(sum+ (u > 0?u : 0), i+ 1, n,M)
b0’-b3’ n ≤ 0 (0, 0, n,M)

(b) TFG representation of the program of Figure 2.4b.

Figure 2.7: TFGs of the unoptimized (top) and optimized programs of Figure 2.4, represented as a
table of edges. The ‘condition’ column represents the edge condition, and τ represents the transfer
function. Operator sl4 is a shorthand of select of size 4. Therefore, sl4(M, g + i) represents g[i].

a correlation between two programs: it correlates the move (edge) taken by one program

with the move taken by the other program, and vice-versa. Formally, a JTFG (JAB) be-

tween TFGA = (NA, EA) and TFGB = (NB, EB) is defined as:

JAB = (NAB, EAB)

NAB = {nAB|nAB ∈ (NA ×NB) ∧ (
∨

e∈outedgesnAB

edgeconde)}

EAB = {(euA→vA , euB→vB) |({(uA, uB), (vA, vB)} ∈ NAB)∧

(edgecondeuA→vA
= edgecondeuB→vB

)}

Here NA and EA represent the nodes and edges of TFGA respectively and euA→vA is

an edge in TFGA from node u to node v. The condition on nAB (in NAB’s definition)

stipulates that the disjunction of all the outgoing edges of a JTFG node should be true.

The two individual edges (euA→vA and euB→vB ) in an edge of JTFG should have equiv-
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alent edge conditions. The individual edge (e.g., euA→vA) within a JTFG edge could be

a composite edge. Recall that a composite edge between two nodes may be formed by

composing multiple edges between these two nodes into one. The transfer function of

the composite edge is determined by composing the transfer functions of the constituent

edges, predicated with their respective edge conditions. We use the ite (if-then-else)

operator to implement predication. Two edges can be composed into one by either se-

quential composition or parallel composition. Formally, we define sequential and parallel

composition as follows:

Sequential composition

e1 = (u→ v, edgecond1, τ1)

e2 = (v → w, edgecond2, τ2)

sequential(e1, e2) = (u→ w, edgecond1 ∧ edgecond2, τ2 ◦ τ1)

Parallel composition

e1 = (u→ v, edgecond1, τ1)

e2 = (u→ v, edgecond2, τ2)

parallel(e1, e2) = (u→ v, edgecond1 ∨ edgecond2, ite(edgecond1, τ1, τ2))

Sequential composition is applied to two edges in sequence, i.e, one edge goes from u to

v and the other edge goes from v to w. Parallel composition is applied to two edges in

parallel, i.e., both edges go from u to v. Figure 2.5 shows a JTFG for the programs in

Figure 2.7.

2.2.4 Algorithm for determining the simulation relation

Our correlation algorithm works across black-box compiler transformations, which is the

primary difference between our work and previous work. Algorithm 1 presents the pseudo

code of our algorithm. Function Correlate() is the top-level function which takes the
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Function Correlate(TFGA, TFGB)
jtfg← InitializeJTFG(EntryPCA, EntryPCB);
edgesB ← DfsGetEdges(TFGB);
proofSuccess = CorrelateEdges(jtfg, edgesB, µ);

Function CorrelateEdges(jtfg, edgesB, µ)
if edgesB is empty then

return ExitAndIOConditionsProvable(jtfg)
end
edgeB ← RemoveFirst(edgesB);
fromPCB ← GetFromPC(edgeB) ;
fromPCA← FindCorrelatedFirstPC(jtfg, fromPCB);
cedgesA← GetCEdgesTillUnroll(TFGA,fromPCA,µ);
foreach cedgeA in cedgesA do

AddEdge(jtfg, cedgeA, edgeB);
PredicatesGuessAndCheck(jtfg);
if IsEquivalentEdgeConditions(jtfg) ∧ CorrelateEdges(jtfg, edgesB, µ)
then

return true;
else

RemoveEdge(jtfg, cedgeA, edgeB);
end

end
return false;

Function IsEquivalentEdgeConditions(jtfg)
foreach e in edges(jtfg) do

rel← GetSimRelationInvariants(jtfg, GetFromPC(e));
if ¬ (rel =⇒ (eFirstEdgeCond ⇐⇒ eSecondEdgeCond)) then

return false;
end

end
return true;

Algorithm 1: Determining correlation. µ is the unroll factor.
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TFGs of the two programs, and returns either a provable JTFG or a proof failure. The

JTFG (jtfg) is initialized with its entry node, which is the pair of entry nodes of the

two TFGs. Then, we get the the edges (edgesB) of TFGB in depth-first-search order by

calling DfsGetEdges(). And finally, the initialized jtfg, edgesB, and µ are passed

as inputs to the CorrelateEdges() function, which attempts to correlate each edge

in ProgB with a composite edge in ProgA.

CorrelateEdges() consumes one edge from edgesB at a time, and then recur-

sively calls itself on the remaining edgesB. In every call, it first checks whether all edgesB

have been correlated (i.e., the jtfg is complete and correct). If so, it tries proving

the equivalence of the observables, through ExitAndIOConditionsProvable(),

and returns the status of this call. However, if there are still some edges left for cor-

relation (i.e., jtfg is not complete), we pick an edge (edgeB) from edgesB and try

to find its respective candidate composite edge for correlation in TFGA. Because we

are correlating the edges in DFS order, the from-node of edgeB (say fromPCB ←

GetFromPC(edgeB)) would have already been correlated with a node in TFGA (say

fromPCA ← FindCorrelatedFirstPC(jtfg, fromPCB)). We next compute

the composite edges originating at fromPCA in TFGA, to identify candidates for correla-

tion with edgeB. The function GetCEdgesTillUnroll() returns the list of potential

composite edges (cedgesA) that start at fromPCA, which can be correlated with edgeB.

We check every cedgeA in cedgesA for potential correlation in the foreach loop

in CorrelateEdges(). This is done by adding the edge (cedgeA, edgeB) to the

JTFG and checking whether their edge conditions are equivalent; before computing

this equivalence however, we need to infer the predicates on this partial JTFG through

PredicatesGuessAndCheck() (discussed next). These inferred predicates are re-

quired to relate the variables at already correlated program points across the two programs.

If the edge conditions are proven equivalent (IsEquivalentEdgeConditions()),

we proceed to correlate (recursive call to CorrelateEdges()) the remaining edges

in edgesB. If the conditions are not equal or the recursive call returns false (no future
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correlation found), the added edge is removed (RemoveEdge()) from jtfg and an-

other cedgeA is tried. If none of the composite edges can be correlated, the algorithm

backtracks, i.e., the current call to CorrelateEdges() returns false. We now describe

the subroutines of this algorithm, and the algorithm to infer the invariants is discussed

afterwards.

DfsGetEdges(tfg): First performs the depth-first search over tfg, and finally, re-

turns the edges in the order of exploration.

RemoveFirst(edges): Removes the first element from the list edges and returns

the removed element.

GetFromPC(edge): Returns the PC of the from node of the input edge. In other words,

the function returns fromPC such that edge = (fromPC→ toPC).

FindCorrelatedFirstPC(jtfg, fromPCB): Iterates over the nodes of jtfg

and returns fromPCA such that (fromPCA, fromPCB) is a node in jtfg.

GetCEdgesTillUnroll(tfg, pc, µ): It returns the list of all composite edges in

tfg that start at pc with a maximum unrolling of loops bounded by µ (unroll factor). The

unroll factor µ allows our algorithm to capture transformations involving loop unrolling

and software pipelining.

AddEdge(jtfg, edgeA, edgeB): Adds the edge (edgeA, edgeB) to jtfg.

RemoveEdge(jtfg, edgeA, edgeB): Removes the edge (edgeA, edgeB) from

jtfg.

GetSimRelationInvariants(jtfg, pc): Returns the conjunction of invariants

in the simulation relation (jtfg) at pc.

IsEquivalentEdgeConditions(jtfg): For each joint edge in jtfg, it checks

if the invariants at the from node of the joint edge can prove that the two constituent

correlated edges have equivalent edgeconds.
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Predicates guess-and-check

PredicatesGuessAndCheck() is an important building block of our algorithm, and

it is one of the elements that lend robustness to our algorithm. Previous work has relied

on inferring a relatively small set of syntactically generated invariants (e.g., [39, 48])

which are usually weaker, and do not suffice for black-box compiler transformations.

Like Houdini [15], we guess several candidate invariants generated through a grammar,

and run a fixpoint procedure to retain only the provable invariants. The guessing grammar

needs to be general enough to capture the required invariants, but cannot be too large, for

tractability.

Guess: At every node of the JTFG, we generate candidate invariants from the set G =

{ ?A⊕ ?B,MA =?A∪?B MB }, where operator ⊕ ∈ {<,>,=,≤,≥}. ?A and ?B represent

the program values (represented as symbolic expressions) appearing in TFGA and TFGB

respectively (including preconditions) and MA =X MB represents equal memory states

except the region X . The guesses are formed through a cartesian product of values in

TFGA and TFGB using the patterns in G. For example, for the program of Figure 2.1,

EA ⊕ EB is a subset of the candidate invariants that we will generate at the loop-node,

where EL ∈ {sum, sum+ 2 ∗ i, 2 ∗ i, i} and ER ∈ {res, 2 ∗ res, res+ j, j}.

This grammar for guessing candidate invariants has been designed to work well with

the transformations produced by modern compilers, while keeping the enumeration and

proof obligation discharge times tractable.

Check: Our checking procedure is a fixpoint computation which eliminates the un-

provable candidate invariants at each step, until only the provable candidate invariants

remain. At each step, we try and prove the candidate invariants across a JTFG edge, i.e.,

prove the candidate invariants at the head of the edge, using the current provable candi-

date invariants at the tail of the edge, and the edge’s condition and transfer function. The

candidate invariants at the entry node of the JTFG are checked using the initial conditions

across the two programs, represented by Init. Init consists of predicates representing
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input equivalence (C function arguments and input memory state (minus stack)). At each

step, the following condition is checked for every edge:

∀
(X→Y )∈edges

edgecondX→Y ⇒ (c invariantsX ⇒X→Y c invariantY )

Here c invariantsX represents the conjunction of all the (current) candidate invariants at

nodeX and c invariantY represents a candidate invariant at node Y . edgecondX→Y is the

edge condition for the edge X → Y . ⇒X→Y is the implication over the edge X → Y as

defined in Section 2.1. For brevity, we have omitted the state superscripts that are shown

in the equations of Section 2.1. If this check fails for some guessed candidate invariant

c invariantY at some node Y , then we remove that candidate, and repeat until a fixpoint

is reached.

2.2.5 Evaluation: guarantees and supported optimizations

Our equivalence checking algorithm is sound by design, i.e., whenever our algorithm

returns true, the programs are guaranteed to be equivalent. Moreover, it returns a machine

checkable proof of equivalence (witness), which can be checked by a third party verifier.

However, the algorithm is incomplete, i.e., there are possible cases of equivalent programs

for which the algorithm cannot infer a proof of equivalence.

We prove the following two properties of our algorithm. The first one is that the invari-

ants inferred by our incremental approach of JTFG construction is equivalent to perform-

ing a guess-and-check on the final JTFG. The second property describes the correlations

that our algorithm explores.

Theorem 2.2.1 The invariants found by the incremental construction of a JTFG (guess-

and-check in each step) is same as found by running the same guess-and-check on the

final JTFG.

Proof 2.2.2 Let Ji be the intermediate JTFG at the ith step after adding ith edge to Ji−1,
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and Jn represents the final JTFG after all the n edges have been added. In the each

step of the incremental construction of JTFG: an edge is added, candidate invariants are

generated at the new node and fixpoint is computed (check is run). Say, the sequence of

edges for computing the fixpoint at ith step is Si (an edge may be repeated in a sequence

multiple times). That is, Si leads to the fixpoint by proving on the sequence of edges

Si. This computation is represented as fx(Ji, Si) denoting the elimination performed by

running the check step on Ji in the sequence of edges Si. We prove that:

fx(J1, S1), fx(J2, S2), ..., fx(Jn, Sn) ≡ fx(Jn, S1 : S2 : ... : Sn)

The LHS represents the elimination performed in the incremental approach and it is

equivalent to that in the guess-and-check procedure on Jn (non-incremental approach) in

the sequence SC = S1 : S2 : ... : Sn (RHS). Here ‘:’ represents concatenation operator.

We use the following properties to prove the same.

Property1: The order/sequence of elimination of invariants, or otherwise, the sequence of

picking the edges for elimination of invariants, does not impact the final set of invariants

(i.e., the fixpoint) in the check phase of Houdini algorithm. Stated differently, any sequence

of edges resulting in a fixpoint, would result in the same outcome [16].

Property2: fx(Ji, Si) ≡ fx(Ji+1, Si)

The elimination on Ji+1 happens only on the edges that are in Si. Since, the last edge

added in Ji+1 is not in Si, therefore, the computation on both the sides is equivalent.

Property3: fx(Ji, Si), fx(Ji+1, Si+1) ≡ fx(Ji+1, Si : Si+1)

≡ fx(Ji+1, Si), fx(Ji+1, Si+1) (using Property2)

≡ fx(Ji+1, Si : Si+1) (equivalent representation)

Repeatedly, applying Property2 and Property3 we get:

fx(J1, S1), fx(J2, S2), ..., fx(Jn, Sn) ≡ fx(Jn, S1 : S2 : ... : Sn)

Property1 tells us that fx(Jn, S1 : S2 : ... : Sn) is the only result of guess-and-check on

the final JTFG Jn (as the solution is unique), and we prove it to be equivalent to the result

of the incremental approach.
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Theorem 2.2.3 Given that the guessing grammar is sufficiently strong for establishing

simulation relation. For all the edges in ProgB, we try all valid correlations up to the

unrolling factor µ in the ProgA.

Proof 2.2.4 For each edge L′B → LB in ProgB such that (L′A, L
′
B) is in the nodes of

the current JTFG, we look for all outgoing edges in ProgA up to the unrolling factor µ,

starting from the node L′A except:

1. We do not explore the unreachable nodes from L′A, as it definitely forms an invalid

simulation relation.

2. We do not consider an edge in ProgA whose edgecond is not proven equivalent to

that of the edge in ProgB. We prove that we eliminate only the edges that would

also be marked invalid in the final JTFG using the following: (1) It is given that the

guessing grammar is sufficiently strong for establishing a simulation relation im-

plying that we would not eliminate a right edge in the final JTFG. (2) The invariant

set at each node of a partial JTFG (using which we eliminate an edge) is always

a superset of that of the final JTFG. This is direct result of the fact that the invari-

ants set always decreases monotonically in Houdini [15, 16] and similar argument

applies for the incremental JTFG construction.

We have tested the algorithm and its implementation across standard loop transforma-

tions like loop inversion, loop peeling, loop unrolling, loop splitting, loop invariant code

hoisting, induction variable optimizations, strength reduction, inter-loop strength reduc-

tion, SIMD vectorization, and software pipelining. On the other hand, it does not support

loop reordering transformations that are not simulation preserving, such as tiling and in-

terchange. Also, if the transformations involve a reduction in the number of loops (e.g.,

replacing a loop-based computation with a closed form expression), the algorithm, in its

current form, may fail to construct the proof.

Non-loop transformations are well supported, our algorithm also works with: register
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allocation, strength reduction, dead code elimination, instruction selection, branch elimi-

nation, constant folding and propagation, dead store elimination, and common subexpres-

sion elimination.

A detailed evaluation of our algorithm, along with modeling of undefined behaviour,

is presented in Section 2.5.

2.3 Modeling undefined behaviour semantics

Programming languages have erroneous conditions in the form of erroneous program con-

structs and erroneous data. Language standards do not impose requirements on all such

erroneous conditions. The erroneous conditions on which no requirements have been im-

posed by the standard, i.e., whose semantics have not been defined are called undefined

behaviour (UB). Since the standard does not impose any requirements on UB, compilers

are permitted to generate code of their choice in presence of the same. In other words,

compilers can assume the absence of UB in the target program and are free to produce

code without the checks for UB conditions. Further, they can produce more aggressive

optimizations under such assumptions. For example, the C language standard states that

writing to an array past its size is undefined. Hence, C compiler writers do not need to

check the sanity of the array index during an array access. Moreover, aggressive compil-

ers may even remove a sanity check if the same has been added by the programmer in her

C program.

C language contains hundreds of types of undefined behaviour [29]. All modern com-

pilers like GCC, LLVM and ICC are known to extensively exploit UB while generating

optimized code (we provide some evidence in this thesis). Further, previous work on

optimization-unstable code detection [57] reported that 40% of the 8575 C/C++ Debian

Wheezy packages they tested, contain unstable code: unstable code refers to code that

may get discarded during optimization due to the presence of UB. Undefined behaviour is

clearly widespread. The need for UB has also been widely debated. On one hand, many
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textbook optimizations rely on UB semantics. For example, consider a simple for loop in

C: for (int i=0; i<=n; ++i). Now if n equals INT MAX, then this loop would

never terminate, and it would be possible for i to be negative inside the loop body (be-

cause i would wrap around after INT MAX). However, several optimizations would like

to depend on the loop termination property, and the loop invariant that i >= 0 inside

the loop body. Fortunately, these invariants are valid, because signed integer overflow is

undefined in C. This yields the assumption that ++i can never wrap around, indirectly im-

plying that it is illegal for n to be equal to INT MAX, in this example. On the other hand,

programmers are often annoyed by these “counter-intuitive” optimizations, and some of

them go to the extent of disabling certain types of UB through flags provided by the com-

piler. For example, the Linux kernel build process disables signed integer overflow and

type based strict aliasing UB assumptions in GCC [53, 54].

Undefined behaviour semantics and their exploitation by compilers for optimization

imply that the compiler verification tools (e.g., translation validation) must model these

semantics for more precise results. Similarly, synthesis tools and superoptimizers (e.g.,

[2]) must model such semantics, while comparing equivalence of the target program with

the candidate synthesized program, for better optimization opportunity. An equivalence

checking algorithm results in a false negative, i.e., incorrect equivalence failure if it does

not model the required UB. Previous work on simulation-based equivalence checking in

the context of translation validation [39, 59, 24, 42, 50, 55] has been done across selected

compiler optimizations, disabling the ones that exploit language level UB. Because our

goal is to perform end-to-end equivalence checks without disabling any particular opti-

mization, it is important for a black-box equivalence checker to model UBs that are ex-

ploited by the respective compilers; otherwise, it yields poor results. This thesis addresses

this issue and makes the following contributions:

• We extend the simulation relation by adding assumptions at each row of the sim-

ulation relation table, to model language level UB semantics. Equivalence is now



Equivalence checking across compiler optimizations 55

computed under these assumptions, i.e., the original program and the transformed

program need to be equivalent only if the corresponding assumptions are true. If

the assumptions are false, the programs are still considered equivalent even if their

implementations diverge. We call this the extended simulation relation (extended

with assumptions).

• We discuss the assumptions produced by different types of UB semantics and exper-

imentally determine the types of UB that are most consequential to compiler-based

optimization.

• To model aliasing based UB, which we find is heavily exploited by compilers

for optimization, we present an algorithm to compute aliasing information at the

IR/assembly level. Computation of aliasing information at the assembly level is

necessary because the programs emitted by the compilers are in assembly. The

aliasing information computed through this algorithm is used for generating UB as-

sumptions for the extended simulation relation. Our alias analysis needs to be as

precise as the compiler’s alias analysis, to be able to reason about correctness of

transformations that rely on such analysis.

2.3.1 Motivating example

Figure 2.8 shows a C program which computes the sum of the first n elements of a global

array A and stores the result in a global variable sum1 and at an address sum2. We have

deliberately used two different types of accumulators (int sum1 and long* sum2)

and i<n+1 in the for loop, to demonstrate three different types of C undefined behaviour

in the same example. Figure 2.9a and Figure 2.9b show the abstracted unoptimized and

optimized versions of the same program compiled by gcc -O0 and -O2 respectively.

The original programs are in x86 assembly, and many other optimizations are present in

the optimized version; for exposition and brevity, we have abstracted them into a C like

syntax and only the UB related optimizations are shown.
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int A[256];
int sum1 = 0; long* sum2;
void sum(int n) {

int* p = A;
for(int i=1;i<n+1;++i) {

sum1 = sum1 + *p;

*sum2 = *sum2 + *p;
p++;

}
}

Figure 2.8: An example function.
sum2 is allocated by the caller.

p=A
i=1

sum1+=*p4

*sum2+=*p4

i++;p+=4

return

b0

N

Y

b2

b3

i<n+1
b1

(a) Unoptimized

p=A;i=1
r1=sum1
r2=*sum2

r1+=*p4

r2+=*p4

i++;p+=4
return

N

Y

b0'

b1'

b3'

i<=n

sum1=r1
*sum2=r2

b2'

(b) Optimized

Figure 2.9: Unoptimized and optimized, abstracted
versions of the program in Figure 2.8.

The first optimization we discuss through this example, is a peephole optimization

involving substitution of the check i<n+1 by a faster check i<=n, avoiding the need

to compute n+1. However, as such, the substitution may not seem correct because the

two programs are not equivalent when n=INT MAX. For n=INT MAX, the loop of unop-

timized program takes zero iterations (INT MAX+1 wraps around to a negative number

INT MIN), while that of the optimized program loops forever (because i will always be

≤INT MAX). Interestingly however, it is legal and common for C compilers to perform

this optimization. This transformation is legal due to the signed integer overflow (SIO)

assumption, that forms a part of the C undefined behaviour semantics. As per this as-

sumption, signed integer arithmetic shall not3 overflow (i.e., it is an illegal program if

it causes signed integer arithmetic to overflow), and hence, the compiler need not worry

about the case when overflow takes place.

The second interesting optimization in this example is the register allocation of sum1

and *sum2 to registers r1 and r2 respectively, throughout the execution of the loop.

These registers containing the accumulated sum values, are written back to their respec-

tive memory locations at loop exit. Again, as such, these transformations may not seem

correct: it is possible for the pointer p, which can belong to [A,A+4*n) to alias with

either (or both) of &sum1 and sum2, in which case, the values stored at p may get mod-

3Phrasing is taken from the C standard.
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ified as the loop executes, making register allocation of sum1 and *sum2 incorrect. It is

however legal (and common) for C compilers to perform such register allocations. This is

due to UB related to the following aliasing assumptions:

1. Type based strict aliasing assumptions (TBSA): Pointers of different types (e.g.,

long* and int*) shall not alias with each other (with the exception of char*).

2. Out-of-bounds variable access assumptions (OBVA): A program shall not access a

memory location beyond the region of an object (variable).

In our example, the TBSA assumptions guarantee that sum2 (of type long*) and p (of

type int*) cannot alias. Similarly, sum2 cannot alias with &sum1 (of type int*).

Further, the OBVA assumptions guarantee that p cannot point beyond the object A, i.e., p

must belong to [A, A+4*256). This implies that p cannot alias with &sum1, as sum1 and

A are distinct regions. With these assumptions, it is indeed legal to register-allocate sum1

and *sum2 throughout the loop execution.

The unoptimized and optimized programs in Figure 2.9a and Figure 2.9b respectively

can be shown to be equivalent only if the UB assumptions are modeled and used in the

simulation-based proof. In this thesis, we contribute algorithms to model and use these

UB assumptions in a simulation-based proof, and show their effectiveness for computing

equivalence across compiler transformations on general-purpose code.

Figure 2.10 shows an extended simulation relation (defined in the next section) which

can establish equivalence for the example program. This extended simulation relation

has an assumption column in addition to the correlation and invariants. The assumption

column represents the UB assumptions at the respective correlated location pairs. The

assumptions encode the absence of modeled UB at the respective program locations. Dur-

ing the inductive proof of the simulation relation, assumptions of the predecessor node are

also used for proving the invariants of successor nodes.

Section 2.3.2 presents the extended simulation relation, Section 2.3.3 describes how

we model the undefined behaviour assumptions for use in the extended simulation rela-
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Location Assumption Invariants (P )
(b0,b0’) True nA = nB, AA = AB,&sum1A =

&sum1B, sum2A = sum2B,MA =∆ MB

(b1,b1’) (nA 6=
INT MAX) ∧
(&sum1A 6= pA) ∧
(sum2A 6= pA) ∧
(sum2A 6= &sum1A)

sl4(MA,&sum1A) = r1B,
sl4(MA, sum2A) = r2B, nA = nB, iA = iB,
AA = AB, pA = pB,&sum1A = &sum1B,
sum2A = sum2B,MA =∆∪{&sum1A,sum2A} MB

(b3,b3’) True MA =∆ MB

Init: nA = nB, AA = AB,&sum1A = &sum1B, sum2A = sum2B,MA =∆ MB

Figure 2.10: Extended simulation relation for the programs in Figure 2.9. Table shows the invari-
ants at each location pair. (b0, b0’) and (b3, b3’) are the entry and exit rows respectively. AA and
&sum1A are the base addresses of the globals A and sum1 respectively in ProgA. sl4(M,addr)
represents 4 bytes of data read in memory (M ) at address addr. =∆ represents equivalent memory
states except at ∆; ∆ represents the stack region. Init represents equivalence of inputs.

tion, and finally, Section 2.3.4 evaluates the impact of different undefined behaviour on

compiler optimizations.

2.3.2 Extended simulation relation (with assumptions)

We extend the simulation relation of Section 2.1 to support undefined behaviour assump-

tions, i.e., to allow equivalence computation in the presence of undefined behaviour (UB)

semantics. Equivalence is now conditional on these assumptions, i.e., the equivalence

proof may fail if these assumptions are discounted. The relevant assumptions are com-

puted at each program location of the unoptimized program specification. These assump-

tions are based on a best-effort static analysis of the program: for example, if the program

involves arithmetic on a signed integer variable, then the corresponding signed integer

overflow (SIO) assumption is inferred at that program location. Some assumptions can

be inferred directly from program syntax, while others may require a deeper static anal-

ysis. In general, the sophistication of the static analysis required to infer the undefined

behaviour assumptions ought to match the sophistication of the analyses used by the opti-

mizer. Signed integer overflow (SIO) and type-based strict aliasing (TBSA) assumptions

are examples of assumptions that can usually be inferred through straight-forward syntac-
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tic analysis of the program, while the out-of-bounds variable access (OBVA) assumptions

usually require a deeper alias analysis, the kind used by modern compilers for optimiza-

tion. We discuss this latter analysis in Section 2.3.3. In this section, we assume that such

assumptions are already available at the respective program locations, and we discuss their

effect on the required extended simulation relation.

Let ProgA be the unoptimized program specification and ProgB be the optimized im-

plementation. ProgA specification also includes a map from the program locations to the

corresponding UB assumptions (Assum). An extended simulation relation is represented

as a table, where each row is a tuple ((LA, LB), Assum[LA], I) such that LA and LB are

program locations in ProgA and ProgB respectively, Assum[LA] is the set of assump-

tions in ProgA at location LA, and I is a set of invariants on the state elements (program

variables) at locations LA and LB. A tuple ((LA, LB), Assum[LA], I) represents that the

invariants I hold whenever the two programs are at LA and LB respectively, assuming all

the UB assumptions at all ProgA program locations (Assum) hold.

An extended simulation relation is valid if it is inductively provable. For a valid ex-

tended simulation relation, the invariants at each location pair are provable from invariants

and UB assumptions at the predecessor location pairs. Notice that the UB assumptions

do not need to be proven. Invariants at the entry location (pair of entry locations of the

two programs) represent the equivalence of program inputs (Init); the base case of this

inductive proof. Finally, if we can thus inductively prove equivalence of the observables

at the exit location (pair of exits of the two programs), we have established the programs

to be equivalent. Formally, an extended simulation relation is valid if:

Init⇔ invariants(EntryA,EntryB)

∀
(L′

A,L′
B)→(LA,LB)

Assum[L′A] ∧ invariants(L′
A,L′

B) ⇒(L′
A,L′

B)→(LA,LB) invariants(LA,LB)

Note that the validity equations are similar to that of simulation relation (as discussed

in Section 2.1) except the introduction of Assum[L′A]. Here invariants(LA,LB) repre-
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sents the conjunction of invariants in the extended simulation relation for the location

pair (LA, LB), Init is the input equivalence condition at the entry of the two programs,

L′A and L′B are predecessors of LA and LB in programs ProgA and ProgB respectively,

and ⇒(L′
A,L′

B)→(LA,LB) represents implication over the paths L′A → LA and L′B → LB in

programs ProgA and ProgB respectively as defined in Section 2.1. Note that we have

omitted the state superscripts (that are shown in the equations of Section 2.1) for brevity.

Following theorem justifies the extended simulation relation for proving equivalence

of programs with undefined behaviour.

Theorem 2.3.1 Given two C programs ProgA and ProgB, andAssum as the modeling of

undefined behaviour at the respective locations (representing the absence of the modeled

undefined behaviour in ProgA). If a valid extended simulation relation across ProgA and

ProgB, with Assum, can prove the equivalence of observables, then the programs are

equivalent.

Proof 2.3.2 Let AssumC represents all undefined behaviour assumptions as per the C

standard for ProgA. Note that the Assum that we model will never be stronger than

AssumC , i.e., for all X ∈ nodes of ProgA: AssumC [X] ⇒ Assum[X]. This could be

due to either not modeling of all undefined behaviour, or incompletness in the modeling

of undefined behaviour, as determining the same is undecidable.

While checking the validity over each edge (L′A, L
′
B)→ (LA, LB) of the extended simula-

tion relation (i.e., the inductive check of the validity equations), we have two possibilities:

Case 1: Assum[L′A] = true (i.e., undefined behaviour not present or a weaker modeling)

The validity equation of extended simulation relation degenerates into the validity equa-

tion of simulation relation, i.e., both edges (L′A → LA) and (L′B → LB) simulate each

other.

Case 2: Assum[L′A] = false (i.e., undefined behaviour is present)

The validity check passes vacuously, encoding the fact that there is no need to prove the

invariants. Stated differently, all correlations and invariants are considered valid if some
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undefined behaviour is present as per the C standard.

Collectively, (1) Assum is not stronger than the actual AssumC (2) The extended simu-

lation relation is valid under Assum as per the validity equations and (3) The extended

simulation relation can prove the equivalence of observables of ProgA and ProgB, im-

plies that the programs are equivalent.

Altogether, the extended simulation relation precisely captures the undefined behaviour

specification of the C standard that a program should not trigger any undefined behaviour,

otherwise, a compiler is allowed to generate a code (i.e., behaviour) of its choice.

Figure 2.10 shows an extended simulation relation which establishes the equivalence

across the programs in Figure 2.9a and Figure 2.9b. The exit row of this extended simula-

tion relation denotes equivalence of memory states (modulo stack and local variables) at

the exit, representing the equivalence of globals variables {sum1, A} and values at pointer

sum2 and the remaining unused heap. This simulation relation is only provable when the

UB assumptions are used in the inductive proof. For example, without the assumptions,

the invariant sl4(MA,&sum1A) = r1B of the second row is not provable on edge (b1,

b1’)→ (b1, b1’) (sl4 represents the memory-read of four bytes; see Figure 2.10 caption).

2.3.3 Modeling undefined behaviour assumptions

We now discuss how to obtain the undefined behaviour (UB) assumptions for the extended

simulation relation. We first generate these assumptions on the unoptimized program

specification ProgA, for each location, through static analysis of the program. Later, at the

time of the construction of the extended simulation relation, for every row (LA, LB), the

assumptions corresponding to LA are added in the extended simulation relation. In other

words, the UB assumptions are inferred for the unoptimized program and used during the

construction and proof of the extended simulation relation.

The algorithm to infer the UB assumptions depends on the type of the UB. For ex-

ample, the assumptions for many types of UB can be inferred purely syntactically — see
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Type of undefined behaviour Description
Signed integer overflow (SIO) Signed integer arithmetic cannot overflow
Type based strict aliasing (TBSA) Pointers of different types cannot alias (barring

exceptions like char *)
Dereferenced addresses not null An address that has been dereference cannot be

zero
Shift operand bounds If a value X is shifted left/right by another

value S, then S ≥ 0 and S < numbits(X)
(numbits(X) is the number of bits used to rep-
resent X)

Type alignment A value X of type T must be aligned to the size
of T

No divide by zero The divisor of a division operation cannot be zero

Table 2.1: Examples of types of C undefined behaviour that can be modeled through syntactic
analysis of the program.

Table 2.1 for some examples. Such syntactic analysis and modeling of UB has also been

used previously for the verification of manually written peephole optimizations in LLVM

[36].

The out-of-bounds variable access (OBVA) undefined behaviour assumptions are an

example of UB that require a relatively deeper static alias analysis. This is because the

production quality compilers typically implement a similar alias analysis for better op-

timization opportunity. The static alias analysis provides a may-alias relation between

program pointers and program variables. The program variables include all global and

local variables defined by the programmer. Further, to model aliasing in heap and stack,

we include two special “variables”, called “stack” and “heap”. Thus, a pointer value

in the program may alias with one or more of the user-defined variables, and/or with

the stack/heap4. Based on this analysis, we infer assumptions indicating that a program

pointer must point within the memory regions belonging to the variables with which it

4While a stack is not a part of the program’s language level semantics, it gets introduced by the compiler
in the assembly implementation.
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may alias:

aliasing assumptionsp ⇔
∨

v∈{u:may alias(p,u)}

(p ≥ vbegin ∧ p < vend)

Here p represents a pointer value, v is a program variable p, and [vbegin, vend) represents

the region of memory occupied by variable v. Further, invariants encoding the mutual-

disjointness of regions associated with each program variable, and for the stack and heap,

are added through conditions on the respective vbegin and vend values. In our running

example of Figure 2.8, the alias analysis infers that pmay alias with only the array variable

A. Further, because A and sum1 are different variables, their memory regions are mutually

disjoint, thus implying that p cannot alias with sum1.

Our alias analysis, to infer the variables with which a program pointer may alias, is

similar to the previous work on alias analysis for assembly code [11]. The alias analysis

need not be precise, but needs to be sound, i.e., the may-alias relation for a pointer p must

include all variables that a pointer may actually alias with (over-approximation). We next

describe the two analyses (linearly-related and may-depend-on) used by us to infer the

may-alias relation.

May-alias analysis

To compute the may-alias relation, we first compute two relations, linearly-related (lr) and

may-depend-on (dep) between program pointers and program variables (including stack

and heap). The lr relation indicates the variable with which a program pointer is linearly-

related, aka, based-on [11]. In other words, if a program pointer is at an offset from

the address of a program variable then it is lr with that program variable. For example,

the pointers p1=v+10 and p2=v+i (for some arbitrary variable i) are both lr with the

variable address v. On the other hand, p=*v is not lr with v (even though p may depend

on v, as we discuss later). In our running example of Figure 2.8, p is lr with A. The C type
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system guarantees that a pointer may be lr with at most one program variable5. Also, if

a program pointer p is lr with a program variable A, then p may alias with A, and cannot

alias with any other variable (including stack/heap). A pointer can at most be lr with one

variable.

In addition to the lr relation, we compute another relation called “may-depend-on”

dep. This relation indicates the variables on which a program pointer may depend on, i.e.,

the variables whose address may potentially influence the value of this program pointer.

If the address of a variable may not influence the value of a pointer, then that pointer

may be assumed to not alias with the aforementioned variable. Note that lr(p, v) implies

dep(p, v).

The may-alias relation between a pointer p and program variable v is computed in

terms of the linearly-related and may-depend-on relations as follows:

may alias(p, v)⇔ dep(p, v) ∧
∧

w∈(V−v)

(¬lr(p, w))

Here V is the set of all program variables. In other words, we assume that a pointer p may

alias with a variable v if it may depend on v, and it is not linearly-related to any other

variable w 6= v in V 6.

Computing linearly-related and may-depend-on relations

Computing both lr and dep relations involves a forward dataflow analysis on the pro-

gram’s control flow graph. These relations are initialized at the program entry with con-

servative assumptions, and they are computed at each intermediate program location by

analyzing transfer functions of the incoming control-flow edges. In our setting, each pro-

gram represents a C function body, and the calling conventions of the compiler are used to

initialize the relations at the entry node, i.e., we assume that the function arguments may

5A violation of this type-system, through type-punning for example, falls into the realm of UB.
6As discussed earlier, the C type system ensures that if p is linearly-related to a variable w, then p cannot

alias with any other variable v 6= w.
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depend on any of the global variables and/or the heap, but are independent of the stack

and local variables of the function. Further, we assume that the function arguments are

not lr with any global variable. Together, these assumptions at program entry specify that

the function arguments may alias with all the program’s global variables and the heap, but

cannot alias with the function’s stack/local variables.

The lr analysis across a control-flow edge involves a simple syntactic analysis of the

expression trees of the transfer function on that edge. Transfer function (τ ) of each edge

of a TFG returns the output state in terms of the input state. The different registers in the

output state are expressions in terms of the registers of the input state as per the grammar of

TFG (Figure 2.6). These expressions form expression trees with root as the output values.

This syntactic analysis, over an edge, involves inference rules of the type: lr(p, v) ⇒

lr(p ⊕ X, v), i.e., if the input value (p) is known to be lr with v, then the output value

of type p ⊕ X (for any expression X that may potentially depend on other variables

w 6= v) is also lr with v. “⊕” represents the addition and subtraction operators; we further

generalize these rules to operations involving bitwise masking of lower-order bits of a

pointer (a common operation in compiled code). If these inference rules cannot decide a

pointer p to be lr with a variable v, then we conservatively assume that p is not lr with

v (over-approximation). At all internal nodes (except the start node), we initially assume

all pointers to be lr with all variables (>), and refine the relations iteratively till a fixpoint

is reached. As discussed earlier, at the start node, we assume that none of the function

arguments are lr with any of the variables. This information on lr relations flows from the

program entry to all intermediate program locations, through transfer functions. The meet

operator for this lr dataflow analysis is intersection, i.e., a pointer is lr with a variable

only if it is lr on all possible program paths. The lattice of lr analysis is formed by the

lr(p, v) facts of the pointers (p ∈ P and v ∈ V ), here P is the set of pointers and V is the

set of program variables. During the data flow analysis, the lr(p, v) fact flows only in one

direction: > → lr(p, v)→ ⊥, here > is unknown and ⊥ is the worst-case information.

Similarly, the dep analysis across a control-flow edge also involves a syntactic analysis
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lr dep

Function entry ¬lr(arg, global), ¬lr(arg, heap) dep(arg, global), dep(arg, heap),
¬dep(arg, stack)

Dataflow rule lr(p, v)⇒ lr(p⊕X, v) dep(p, v)⇒ dep(OP (. . . , p, . . .) , v)

Meet operator intersection union

Table 2.2: Forward dataflow rules to compute lr and dep relations. arg ∈ function arguments,
global ∈ global variables, heap ∈ heap variables, and stack ∈ local variables. ⊕ represents
the addition or subtraction operators. OP is a function that uses p as an argument.

on the expression trees of the corresponding transfer function. The syntactic analysis

involves inference rules of the type: dep(p, v) ⇒ dep(OP (. . . , p, . . .) , v), i.e., if p may

depend on v, then any value derived from p (through any operation OP that uses p as

an argument) may also depend on v. At the entry node, we conservatively assume that

the function arguments may depend on any of the global variables or on the heap. At all

intermediate nodes, we initialize by assuming that the pointers do not depend on any of

the variables (>). At each iteration, we refine this may-depend-on relation at every node

by analyzing the expression trees of the transfer function of each incoming edge. The

meet operator for the dep relation is union, i.e., a pointer may depend on a variable if it

depends on that variable on any program path. The lattice of dep analysis is similar to

as that of lr analysis: > → dep(p, v) → ⊥, here > is unknown and ⊥ is the worst-case

information.

Table 2.2 lists the rules of lr and dep analyses succinctly. At the entry, we initialize

the starting values of lr and dep with conservative assumptions (first row). Data flow rules

encode the kill and gen sets of the data flow equations. If the data flow rule holds, then it

a gen fact, else, it is a kill fact. Both the analyses are flow-sensitive, note that we compute

the lr and dep values for different variables at different points.

Unlike compilers, our alias analysis needs to work for assembly code where pointer

arithmetic is much more common. The lr relation is intended to capture such pointer

arithmetic. Also, the modeling of stack is unique to assembly code. Our algorithm, which

over-approximately computes the may-alias relation through lr and dep relations, is sound
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and efficient (polynomial in the size of the program and quite fast in practice), and captures

the common patterns in compiled code. A more expensive analysis can potentially yield

more precise may-alias relations.

2.3.4 Evaluation

We perform experiments to demonstrate the impact of undefined behaviour (UB) on com-

piler optimizations. To demonstrate the same, we compute equivalence of C functions

across unoptimized (-O0) and optimized (-O2) x86 binaries produced by compiling C

programs through production compilers, GCC (v4.8) and LLVM (v3.6) with and without

UB models. We disable function inlining during compilation, as our prototype implemen-

tation cannot reason about inter-procedural optimizations. Even after disabling inlining,

the average speedup across the compiler optimizations on these programs is 1.72x over

clang-O0. To be able to reconstruct the C-level information, required for modeling

UB and equivalence checking, we enable a few additional flags during the compilation

(namely -g and -reloc) to generate debug information and relocation headers respec-

tively. We assume that the binaries contain the symbol table (i.e., are unstripped), which

along with relocation headers allow accurate renaming of memory addresses to global

variable symbols. Further, the debug headers provide the signature and types of the vari-

ables and the functions. Both GCC and LLVM support these compile-time options, and

these options have no impact on the runtime of the executable.

The functions are drawn from four SPEC benchmarks: bzip2 (compression utility),

gzip (compression utility), mcf (combinatorial optimization) and parser (word pro-

cessing). The number of global variables in these benchmarks are 100, 212, 43 and 223

respectively. We compiled each program with both compilers to produce 16 binaries (8

unoptimized and 8 optimized), representing a total of 1058 pairs of unoptimized and opti-

mized assembly functions (ignoring the identical glibc functions). Among these pairs,

714 functions had at least one loop in them (cyclic functions). The average number of
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Figure 2.11: For every benchmark-compiler option, the first bar shows the success rates when we
model all three UB. The remaining three bars show the success rates when a particular type of UB
among three (TBSA, SIO, OBVA) is not modeled. Each bar individually shows the contribution to
the success rates by cyclic (at least one loop) and acyclic functions.

assembly LOC and C-LOC for these functions is 112 and 35 respectively. We ignored the

functions containing floating point operations (14 functions) as our semantic model for

x86 floating point instructions is incomplete.

We performed experiments to demonstrate the significance of the three types of UB

discussed in Section 2.3.1, namely signed integer overflow (SIO), type based strict alias-

ing (TBSA), and out-of-bounds variable access (OBVA) assumptions. We estimate the

presence of UB based optimizations for each benchmark and compiler option by per-

forming the equivalence check twice, for each function, with and without using the UB

assumption. If an equivalence check for a function pair passes with the UB assumption

but fails without the assumption, then we assume that the compiler has exploited the re-

spective undefined behaviour towards optimizing the function. The plot in Figure 2.11

shows the success rates for each compiler and each benchmark for four different cases:

the first bar represents the success rate when all three undefined behaviours are modeled;

the second, third and fourth bars represent the cases when TBSA, SIO and OBVA as-

sumptions are not modeled respectively. For SIO and TBSA, we employ the compiler

flags fno-strict-overflow and fno-strict-aliasing to differentially esti-

mate the impact of these assumptions. These flags enable/disable the SIO and TBSA

assumptions while performing optimizations. If our equivalence check passes when these
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assumptions are disabled by the compiler, but fails when these assumptions are enabled by

the compiler, we assume that the compiler is leveraging these assumptions for optimiza-

tion. For OBVA, we simply turn on/off our alias analysis (Section 2.3.3) to determine the

effect of OBVA assumptions.

The overall average success rates for equivalence checking across the four cases are

81%, 76%, 77% and 50%. As expected, the success rates are lower when a certain type

of UB is not modeled. The drop in success rates, when a UB is not modeled with respect

to the first bar (where all three types of UB are modeled), indicates the impact of the

respective type of UB on compiler optimization. The drop in success rates due to non-

modeling of OBVA assumptions is 31 percentage points. In contrast, the drop due to non-

modeling of SIO and TBSA assumptions is only 4 and 5 percentage points respectively.

The drop due to non-modeling OBVA assumptions is significantly higher than the other

undefined behaviour because of the following two reasons: (1) High number of global

variables in the benchmark programs, e.g., parser benchmark has 200 globals. (2) Register

allocation or otherwise reordering of memory accesses is a frequent and very important

optimization.

These experiments confirm:

1. The widespread impact of undefined behaviours on compiler optimizations.

2. Throw light on the relative impact of different types of C undefined behaviour on

compiler optimizations.

2.4 Implementation: optimizations and heuristics

In this section, we describe some important optimizations that helped scale and improve

the results of the equivalence checking algorithm of Section 2.2.4.
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2.4.1 Fixing nodes and edges in the optimized TFG

The first heuristic we use is collapsing of one of the TFGs in the algorithm of Section 2.2.4.

In this step, we fix nodes and edges (that need to be correlated) in one of the TFGs. This

step helps reducing the number of edges and nodes which we need to correlate with, and

hence, reduces the number of nodes and edges in the final JTFG. The fixed nodes are also

called anchor nodes. The rules of collapsing of a TFG are as follows:

1. We fix nodes and edges only in the optimized TFG of the program.

2. We pick the entry node and the exit node of the optimized TFG.

3. We pick at least one node for each loop in the optimized TFG. To be precise, we

pick the ‘head’ node of every back-edge in the depth-first search (DFS) traversal of

the optimized TFG.

4. We pick the nodes at which IO is performed.

5. Once the nodes are fixed, we collapse all the edges between every consecutive pair

of fixed (anchor) nodes into a single composite edge (Section 2.2.3).

The TFG of the optimized program of Figure 2.4b shown in Figure 2.7 is in fact a

collapsed TFG. The anchor nodes are {b0’, b1’, b3’}, and all the edges between two

consecutive anchor nodes have been collapsed into the respective composite edges.

This heuristic helps reducing the number of nodes and edges of the optimized TFG,

which results in having less number of nodes and edges in the constructed JTFG. Having

fewer nodes and edges in a JTFG further results in requiring fewer number of candi-

date invariants and fewer number of SMT queries in the guess-and-check procedure, and

therefore, allows the algorithm to scale for complex functions. Further, it allows reasoning

across optimizations that subvert the branch structure of the program. While this heuristic

has its advantages, the expressions of the composite edges may become complex, which,

in turn, may result in complex queries to the underlying SMT solver. In our experience,
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this heuristic works well and helps our algorithm to scale while computing equivalence

across complex functions with large number of nodes and edges.

2.4.2 Heuristics for prioritizing guesses

The guesses are generated from the grammar G, as discussed in Section 2.2.4. How-

ever, the number of possible guesses through G can be very large. Based on experiments,

we categorized the guesses into two tiers: tier-1 (small and simple guesses), and tier-2

(guesses involving slightly larger expressions). We find that the SMT solvers can some-

times take a long time to decide tier-2 guesses, while most transformations can be decided

through tier-1 guesses. To deal with this efficiently, we first attempt our complete proof

procedure using only tier-1 guesses. If the proof fails due to tier-1 guesses, we attempt

to use tier-2 guesses. The first phase (where only tier-1 guesses are used) is usually quite

fast, and is able to decide around 99% of all successful equivalence checks (i.e., we did

not need even a single tier-2 guess for these checks). Recall that our backtracking proce-

dure which tries multiple correlations, allows even simple guesses to result in successful

generation of equivalence proofs. Following is the exact nature of tier-1 and tier-2 guesses:

Tier-1 guesses include

1. Equating the values of registers and memory across each pair of correlated nodes.

2. Equating all memory read/write values in TFGA with all memory read/write values

in TFGB.

3. Equating all arguments and return values of an uninterpreted functions correlated

across the correlated edges of TFGA and TFGB.

4. Equating all values used as an address to a memory access, in a cartesian product

fashion across the two TFGs.
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5. Equating the edge-condition, and generating more guesses by under-approximating

this equation (i.e., equating the subexpressions of the two edge-conditions’ expres-

sions), for all correlated edges of the two TFGs. For example, in Figure 2.1, the

edgeconds of the paths b1-b2-b1 and b1’-b2’-b1’ are i < n and j < n respectively.

Equating the edgeconds results in i < n⇔ j < n, and equating the subexpressions

results in A = B for all A ∈ {i, n, i < n} and B ∈ {j, n, j < n}.

Tier-2 guesses further add

1. Equating all subexpressions of all expressions appearing in the transfer functions

(τ ) of each TFG edge across the two TFGs, in a cartesian product fashion. Recall

that the transfer function of an edge of a TFG consists of expressions in terms of

the input state. All the subexpressions of these expressions are equated with the

subexpressions of the transfer functions in the other program.

For large programs, subexpressions could get relatively large and can cause SMT

solvers to take a long time. Further, the number of subexpressions grows with increasing

expression size. It is worth noting however, that both these categories of guessing (tier-1

and tier-2) produce guesses that are much simpler than the guesses based on weakest-

preconditions as used in previous work (e.g., TVI [39]). We attribute the robustness of

our equivalence checker, inspite of the simple nature of our guessing procedures, to our

backtracking-based correlation algorithm.

2.4.3 SMT solver optimizations

Several optimizations were necessary to reduce SMT solver timeouts. We have developed

our custom expression representation and a simplification pass over it before discharging

the decision queries to the underlying SMT solver. The most important simplification is

the ‘short circuiting’ of memory reads/writes. Our expression library supports higher level

reads and writes on memory, in comparison to the expression libraries of SMT solvers. In
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our expression library, select and store operations allow the specification of the data

size, i.e., the size of the data that is read/written. The signatures of these operations are:

select(M, addr, size) and store(M, addr, size, data); here size

specifies the number of bytes read/written on the memory M at the address addr, and

data is the data written in case of a write. These higher level operations have direct

correspondence with the reads/writes of multi-byte variables. Without the size field, the

representation of a multi-byte read/write would be more complex; multiple bytes would

have to be read and concatenated on a select, and multiple stores would have to be used

to represent a multi-byte store. This usually results in complex expressions. The higher

level representation involving size is easy to simplify and reason, and it is close to the

compiler’s view of the program. For example, this representation allows us to perform an

important simplification, called ‘short-circuiting’, which results in an efficient discharge

of proof obligations and is crucial in reducing the timeouts of the underlying SMT solvers.

The simplification involves the following rewrite:

select(store(M,addr′, size′, data), addr, size)⇒ select(M,addr, size)

where the address ranges [addr′, addr′+size′) and [addr, addr+size) do not overlap

with each other. In other words, if the address of a previous write does not alias with the

address of the read being performed, then we can discard the inner store corresponding

to the write operation from the expression tree of the read operation.

We use Z3 [10] and Yices [12] as our SMT solvers, working in parallel to discharge

each proof obligation (query). We use the result from whichever solver finishes first (wins)

for each query. We found that Yices won 86% of the times across all queries, across all

equivalence tests. However, it was also interesting to see that for some queries, Yices

would take forever (beyond four hours), while Z3 would be able to return a result within

a few seconds. One example of a pattern where this happens consistently, is the strength-

reduction compiler optimization, where a compiler replaces a multiplication by a constant,

e.g., 5*x, with a sequence of left-shift expressions, e.g., ((x << 2) + x), where x is some

expression. Thus, using two solvers in parallel, indeed improved our efficiency and suc-
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cess rates.

Another important optimization we implemented is caching of query results, as our

algorithm involves proving similar predicates several times. For example, multiple prod-

uct graphs are likely to have significant common subgraphs, and thus common predicates

need to be proven at each correlation attempt. Similarly, Houdini’s fixpoint algorithm

requires the same predicates to be proven, multiple times, under different preconditions.

Our cache for query results is designed to capture all these common patterns, and exhibits

an overall hit rate of 95.3%; without caching, average runtime is around 4x worse.

2.5 Combined evaluation

We implemented our ideas into a tool which works with x86 assembly programs. Given

two x86 programs, our tool either generates a machine checkable proof of equivalence or

it fails. For checking equivalence across compiler optimizations, we compile multiple C

programs by multiple compilers at different optimization levels, for x86, to generate unop-

timized (-O0) and optimized (-O2 and -O3) binary executables. We then harvest functions

from these executable files and reconstruct C-level information, necessary for modeling

undefined behaviour assumptions and for performing equivalence checks. Once the func-

tions are harvested and C-level information is reconstructed, we perform the equivalence

checks between the functions from unoptimized (O0) and optimized (O2/O3) executa-

bles. We selected four compilers for this study: GCC (v4.8), LLVM (v3.6), ICC (v16.0)

and CompCert (v2.5). GCC and LLVM are mainstream open source compilers, ICC is a

proprietary compiler by Intel, and CompCert is a verified compiler.

The high level C program information necessary for performing the equivalence check-

ing and modeling undefined behaviour are global variables and their scope/type attributes,

local stack, function declarations and function calls, and program logic (function body).

We reconstruct the language level semantics from ELF executables by using certain (stan-

dard) ELF headers. We rely on the debug headers (-g), symbol table and relocation table
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(-fdata-sections --emit-relocs) for getting the required high level informa-

tion. Debug headers contain information about the functions and their signatures. Symbol

table provides the global variable name, address, size and binding attributes. The relo-

cation headers allows precise renaming of addresses appearing in code, to the respective

global variable identifiers with appropriate offsets, ensuring that the different placement of

globals in different executables are abstracted away. None of these flags affect the quality

of generated code. All these flags (or equivalent) are available in gcc, clang, icc and

ccomp. Our reconstruction procedures are identical for both O0 and O2/O3 executables.

The difference is that while the reconstructed information from O0 is used for obtaining

the high level C program specification, the reconstructed information from O2/O3 is used

only to help with proof construction.

We use the flags fno-strict-overflow and fno-strict-aliasing to dis-

able the undefined behaviour assumptions related to signed integer overflow (SIO) and

type based strict aliasing (TBSA) respectively. Also, we model the undefined behaviour

related to out-of-bounds variable access (OBVA) as per the discussion of Section 2.3.3.

We have have classified our results into three categories: Section 2.5.1 presents the

results of establishing equivalence, in a black-box manner, across compiler optimizations

produced by multiple compilers, Section 2.5.2 presents the bugs discovered, and finally,

Section 2.5.3 discusses some early synthesis results in the setting of superoptimization.

2.5.1 Equivalence checking across compiler optimizations

The C programs that we compiled for generating unoptimized and optimized binaries,

are listed in Table 2.3 along with their characteristics. ctests is a program taken from

the CompCert testsuite [33] and involves a variety of different C features and behaviour;

the other programs are taken from the SPEC CPU2000 integer benchmarks. The SPEC

benchmark programs do not include gcc and eon because their ELF executables files are

very big, and our tool to harvest instruction sequences from executable files does not sup-
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Bench Fun UN Loop SLOC ALOC Globals
mcf 26 2 21 1494 3676 43
bzip2 74 2 30 3236 9371 100
ctests 101 0 63 1408 4499 53
crafty 106 5 56 12939 72355 517
gzip 106 1 66 5615 14350 212
sjeng 142 3 68 10544 38829 312
twolf 191 17 140 17822 84295 348
vpr 272 69 155 11301 44981 153
parser 323 2 240 7763 30998 223
gap 854 0 466 35759 177511 330
vortex 922 5 116 49232 167947 815
perlbmk 1070 65 271 72189 175852 561

Table 2.3: Benchmarks characteristics. Fun, UN and Loop columns represent the total number of
functions, the number of functions containing unsupported opcodes, and the number of functions
with at least one loop, resp. SLOC is determined through the sloccount tool. ALOC is based on
gcc-O0 compilation. Globals represent the number of global variables in the executable.

port such large ELF files. We also include an integer program from the SPEC CPU2006

integer benchmarks: sjeng. sjeng is one of the few C benchmarks in SPEC CPU2006

that is not already present in CPU2000, and has a low fraction of floating point operations.

We avoid programs with significant floating-point operations, as our semantic models for

x86 floating point instructions are incomplete. A total of 4% of the functions contain

unsupported (usually floating-point) opcodes (Table 2.3), and we do not consider them

in our evaluation. Figure 2.12 plots the performance of all benchmarks across different

compiler optimization levels. On average, an optimized (O2/O3) executable is 1.9x faster

than an unoptimized executable. Thus, our equivalence checks are performed across opti-

mizations that exhibit this performance gap.

Success rates breakdown

Figure 2.13 plots the success rates for each benchmark-compiler-optimization pair. Each

bar further shows the pass/fail percentage of the cyclic and the acyclic functions for a

compiler-optimization pair. Overall, our tool is able to generate sound equivalence proofs

across almost all transformations across multiple compilers for 76% of the tested function-
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Figure 2.12: Performance of benchmarks across different compilers.

pairs for O2 optimization level, and 72% of the tested function-pairs for O3 optimization
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Figure 2.13: Equivalence statistics. Functions with at least one loop are called “cyclic”. The
bar corresponding to a compiler (e.g., clang) represents the results across O0/O2 and O0/O3
transformations for that compiler (e.g., for clang2 and clang3 resp.). The average success
rate across 26007 equivalence tests on these benchmarks, is 76% for O2 and 72% for O3 (dashed
blue and red lines resp.). The missing bars for ccomp are due to compilation failures for those
benchmarks.

Success rates with ALOC

Figure 2.14 plots the success rates as a function of the number of assembly instructions

in a function. There were 26007 function-pairs tested across all benchmarks and com-

piler/optimization pairs. The timeout value used was five hours. The success rates are

much higher for smaller functions: for functions with ALOC of up to 105 and 345, the
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Figure 2.14: Cumulative success rate (pass/fail) vs. ALOC.

success rates are 97% and 90% respectively. The mean and median values for runtimes for

passing equivalence tests are 313 seconds and 8.5 seconds respectively. 5% of the passing

tests take over 1000 seconds to generate the result. Failures are dominated by timeouts (5

hours), inflating the mean and median runtimes for all (failing + passing) equivalence tests

to 3962 seconds and 22 seconds respectively. The largest function for which equivalence

was computed successfully has 4754 ALOC.

Success rates with TFG complexity

The size (ALOC) of a function is not the only indicator of its complexity. We plot the

success rates against the number of composite edges in the TFGB (Figure 2.15); the

number of composite edges in a TFG is a direct indicator of the number of loops in the

function (because we only consider loop-heads as intermediate nodes). For example, the

maximum number of composite edges in a TFG with n loops is (n+ 1)2 (e.g., if the TFG

has one loop, it can have at most four composite edges). The plot indicates that while

some failures exist even for acyclic sequences (primarily due to undefined behaviour, or

uncaptured compiler behaviour), the percentage of failures increases with increasing TFG

complexity. Yet, the success rates remain quite high (over 90%) even till TFGs with ten
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Figure 2.15: Success rate vs. composite edges in TFGB .

composite edges. The most complex TFG for which our tool was successfully able to

establish equivalence had 31 composite edges in the corresponding TFGB.

Profiling

Most of the time taken by our algorithm goes into SMT query solving; across all equiv-

alence tests, around 74% of the total time is spent in SMT query solving, of which 11%

is spent in our simplification procedure of Section 2.4.3. Our tool spends roughly 96% of

the time in determining the correlation between the two TFGs across all our experiments.

Multiple JTFGs are tested during the depth-first search co-relation procedure (e.g., at each

call to IsEquivalentEdgeConditions() in Algorithm 1), and our tool’s running

time is strongly co-related with the number of JTFGs tested. Figure 2.16a plots running

time for an equivalence test (Y axis) against the number of JTFGs that had to be checked

to identify a correct correlation for that test (X axis). Only passing equivalence checks

are shown. It is not surprising that the running time usually increases with the number

of JTFGs that had to be checked, but it is interesting to see that some equivalence checks

take a long time, even for checking only a few JTFGs. The running time also depends on

the complexity of the proof obligations within a JTFG, as that influences the running time
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Figure 2.16: Time taken for equivalence test (Y-axis) plotted against number of (a) JTFGs
checked, (b) ALOC and (c) number of composite edges in TFGB . For acyclic programs, the
number of JTFGs checked and the number of composite edges in TFGB will be 21 and 20 respec-
tively (independent of program ALOC). Both X and Y axes are in log-scale. For some functions
(while debugging), we explicitly used a timeout value of > 5 hours, and so a few points appear
above the 5 hour limit.

of the SMT solver discharging those proof obligations.

Figures 2.16b and 2.16c plot running time for an equivalence test against the ALOC

(assembly lines of code) of the programs being tested, and the number of composite edges

in TFGB, respectively. Both ALOC and the number of composite edges in TFGB are

indicators of the size and complexity of the tested programs. The running time seems

co-related with ALOC: larger functions usually take more time, and smaller ones usually

take less time. The running time also usually increases with the number of composite

edges in TFGB, because larger TFGs require deeper DFS traversals. It is interesting to
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note that transformations across fairly complex programs with up to 31 composite edges

in their TFGB, can be handled by our tool.

Computing equivalence across different compilers

We additionally conducted equivalence checking across compcert-O0 and gcc-O2,

and the results are shown in Table 2.4. The success rates are slightly lower than the average

because sometimes the symbol names used by different compilers in final ELF executables

are different, resulting in inconsistent renaming, leading to equivalence failures.

Benchmark Pass %
mcf 62.5
bzip2 56.3
compcert 96.8
gzip 67.6
crafty 45.9
sjeng 68.8
gap 71.6
parser 80.6
vpr 57.1
Overall Pass % 70.7

Table 2.4: Success rates of equivalence checking across compcert-O0 and gcc-O2.

Reasons for incompleteness in our equivalence checker

The modeling of undefined behaviour due to memory underruns and overruns is crucial to

get reasonable success rates for equivalence checking across black-box composed trans-

formations produced by modern compilers. For example, without this modeling, our suc-

cess rates are 15%-52% lower. Yet, there remain certain language-level semantics that we

have not yet modeled in our tool. We discuss two interesting cases in detail, along with

counter-examples (that we observed during our experiments), that will cause our equiv-

alence checker to incorrectly fail. We then discuss some other reasons for equivalence

failure, due to inadequate modeling of semantics in our tool.
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1. A common reason for equivalence failures is the use of address-taken uninitialized

variables as function arguments. Consider the following function:

int foo() {

int a;

bar(&a);

return a;

}

Here the programmer may maintain an invariant that the callee bar does not read

the value in pointer &a, but we model this conservatively by assuming that bar can

both read and write to variable a. This results in an equivalence failure. This can

potentially be fixed by generating function summaries indicating whether they read

or write or read/write their arguments.

2. An interesting reason for equivalence failures is due to compiler analysis of scope

of global variables declared with the “static” keyword (e.g., global variables that are

visible only within a compilation unit). Consider the following example:

static int a;

void foo() {

a = 4;

bar();

return;

}

If bar was declared in a separate compilation unit from foo (and a), the compiler

may infer that bar may never be able to access a and so, it may reorder the call

to bar and the assignment to a (a = 4;). However, our equivalence checker fails

to compute equivalence across such reorderings. This can potentially be fixed by

using the scope information of global variables.
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A reason for equivalence failures is also our imprecise modeling of local variables —

we model them as stack accesses, and hence cannot reason about undefined behaviour

related to accesses to local variables. Another major cause for equivalence failures are

global compiler optimizations (unrelated to undefined behaviour). Some examples of

global compiler optimizations that cannot be captured by a function-granular equivalence

checker, are: (1) Local array variables that are initialized at allocation time and are read-

only in usage, being moved to global read-only data section in the ELF file, and converted

to global variable access in the optimized implementation. (2) Different functions being

called for C/C++ constructs in optimized and unoptimized implementations, e.g., different

variants of malloc. (3) Accesses to read-only data (e.g., strings) converted to immediate

values inside the optimized code. (4) Analysis of access pattern to global variables to

reduce their size, e.g., if the only values written to a global 4-byte integer are 0 and 1,

the integer is replaced by a one-byte character. (5) Functions not terminated using the

ret instruction in the optimized implementations, because the compiler determines that

a callee function never returns. There are more examples of compiler transformations,

which utilize global invariants that a function-granular approach cannot address. Overall,

we find that the gamut of compiler transformations is significantly richer than the ones

supported by existing translation validation tools, including ours.

2.5.2 Bugs discovery

Our experiments led to the discovery of one bug in GCC-4.1.0 [18] and two bugs in ICC-

16.0.3 [20, 21]. Each bug entails equivalence failures across multiple functions. Following

are the details of the bugs found:

1. GCC confirmed and fixed bug: gcc supports the -fno-strict-aliasing op-

tion to disable undefined behaviour assumptions due to type-based aliasing, but we

found a confirmed bug in its implementation in GCC. This is undesirable because

the Linux kernel depends on this option, and GCC is the default compiler for com-

piling Linux. Here is description of the exact program that triggers the bug:
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$ gcc -v

gcc version 4.1.0

$ cat a.c

struct list { int hd; struct list * tl; };

struct list *reverselist(struct list *l) {

struct list * r, * r2;

for (r = NULL; l != NULL; l=l->tl) {

r2 = (struct list *)foo(sizeof(struct list));

r2->hd = l->hd;

r2->tl = r;

r = r2;

}

return r;

}

$ gcc -O2 -m32 -S -fno-strict-alias a.c

# Showing the compiled assembly for the relevant portion

# of the loop body generated in a.s

Assembly gcc-4.1.0:

movl (%ebx), %eax # eax <- l.hd

movl %esi, 4(%edx) # r2.tl <- hd

movl %edx, %esi #

A: movl 4(%ebx), %ebx # ebx <- l.tl

B: movl %eax, (%edx) # r2.hd <- eax

testl %ebx, %ebx #

The read from l->tl (instruction A) has been reordered before the write to r2->hd

(instruction B). Based on the documentation of -fno-strict-aliasing, this

should not be possible, as l->tl could potentially alias with r2->hd in the loop

body.

The bug was confirmed and has been fixed in later versions of gcc.
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2. ICC confirmed bug: icc supports the -fno-strict-aliasing option to dis-

able undefined behaviour assumptions due to type-based aliasing, but we found a

confirmed bug in its implementation. The bug report was escalated within Intel,

upon our reporting. Here is a description of the exact program that triggered the

bug, and how our tool uncovers it.

$ icc -v

icc version 16.0.3

(gcc version 4.8.0 compatibility)

$ cat a.c

#include "stdlib.h"

char *foo(size_t size);

struct list { int hd; struct list *tl; };

struct list *reverselist(struct list *l) {

struct list * r, * r2;

for (r = NULL; l != NULL; l=l->tl) {

r2 = (struct list *)foo(sizeof(struct list));

r2->hd = l->hd;

r2->tl = r;

r = r2;

}

return r;

}

$ icc -O2 -m32 -S -falias -no-ansi-alias -fargument-alias a.c

# Showing the compiled assembly for

# the loop body generated in a.s

..B1.3: # Preds ..B1.2 ..B1.4

addl $4, %esp #9.25

pushl $8 #9.25

# foo(size_t) call foo #9.25
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..B1.4: # Preds ..B1.3

movl %edi, 4(%eax) #11.5

movl %eax, %edi #12.5

movl (%esi), %ecx #10.14

movl 4(%esi), %esi #8.33

testl %esi, %esi #8.23

movl %ecx, (%eax) #10.5

jne ..B1.3 # Prob 82% #8.23

The write to r2→hd (instruction 10.5) has been reordered after the read from

l→tl (instruction 8.33). Based on the documentation of -no-ansi-alias,

this should not be possible, as r2→hd could potentially alias with l→tl in the

loop body.

3. ICC confirmed issue (developers non-committal on semantics): icc supports the

-fno-strict-overflow option to disable undefined behaviour assumptions

related to signed integer overflow semantics, but does not necessarily respect it.

Certain software like the Linux kernel depend on the correctness of this option.

We filed this issue on the icc mailing list, and a developer confirmed with the fol-

lowing response: “... icc has special treatments of int overflow for 32-bit mode

which I haven’t seen explained adequately and would hope not to rely on ...”, and

“ ... For all I know, Intel may have worked to eliminate such dependencies from

kernel.”. In other words, Intel developers are non-committal on the semantics of

-fno-strict-overflow. This confusion on the semantics of an important

compiler flag, seems undesirable.

Here is an example where the equivalence check failed due to icc (incorrectly) vio-

lating the semantics of -fno-strict-overflow option:

$ icc -v

icc version 16.0.3

(gcc version 4.8.0 compatibility)
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$ cat b.c

void foo(int fl) {

long i;

for (i = 0; i < fl + 1; i++) {

printf("%d\n", i);

}

}

$ cat main.c

#include <limits.h>

void foo(int fl);

int main() { {

foo(INT_MAX);

}

$ icc -m32 -O0 -fno-strict-overflow main.c b.c -o O0.out

$ icc -m32 -O2 -fno-strict-overflow main.c b.c -o O2.out

$ ./O0.out

<no output>

$ ./O2.out

0

1

2

...

These are subtle issues of contract violation between the compiler vendor and the

software vendor that, if violated, could cause subtle bugs and security issues. Both

-fno-strict-aliasing (or -falias and -ansi-alias options in icc) and

-fno-strict-overflow are supported by all compilers, and software like the Linux

kernel depend on them. The bugs related to violating the -fno-strict-aliasing

flag involve reordering of memory accesses; such reorderings are very subtle but result
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in equivalence failures. It would be very challenging to discover such bugs through auto-

mated testing. None of these issues appeared in CompCert-compiled executables, in our

limited experiments. This is due to less-aggressive optimizations of CompCert.

2.5.3 Superoptimization experiments

Finally, we have used our tool inside a 32-bit x86 brute-force superoptimizer that supports

a rudimentary form of loops: it allows enumeration of straight-line instruction sequences

potentially containing the x86 string instructions scas, stos, and cmps (the equiva-

lent of memchr, memset, and memcmp functions, resp.); each of these instructions is

modeled as a TFG containing a cycle. Through supporting these instructions, optimized

implementations for common routines like initializing an array, and comparing elements

of two arrays, get synthesized automatically, that are up to 12x faster than compiled code

generated by any of the four compilers we discussed (across O2 and O3).

Our 32-bit x86 superoptimizer is based on brute-force enumeration, and uses a two-

step equivalence test: a fast probabilistic execution test, followed by a precise boolean test

using our equivalence checker. It supports 400+ x86 opcodes (including a large part of

MMX/SSE/AVX/AVX2 opcodes), supports memory operations, opcodes with loops, and

also uses symbolic constants (e.g., C0, C1, etc.) and symbolic constant modifiers (e.g.,

C0+1, C0-4, etc.), to generalize concrete constant values. We use a static cost function

based on measurements, and prior literature on instruction speeds [17]. The optimizer

consists of three major components: a harvester, an enumerator, and a rewriter. The har-

vester harvests instruction sequences from the target function — sequences are harvested

by using a sliding window (of different sizes) over the target function. The sequences

are allowed to contain arbitrary branching, and loops. The harvester additionally records

the set of live-registers at the end of each harvested sequence. The harvested sequences

are grouped based on their input/output characteristics, and each group is optimized in

one enumeration. Enumeration for multiple groups can happen in parallel over multiple
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Pseudo-code/Description Superopt-solution X gcc llvm icc superopt speedup
O2 O3 O2 O3 O2 O3

array cmpX
for(i=0; i<n; i++) cld b 4.34 4.32 3.26 2.53 4.01 4.01 13.5 3.11
if a[i] != b[i] mov $0,%eax w 3.68 3.67 2.77 2.46 3.16 3.16 7.55 2.05
return 0 cmp %ecx,%ecx l 3.67 3.67 3.17 2.46 3.67 3.67 3.83 1.04

return 1 repe cmpsX
sete %al

array setX
for(i=0; i<n; i++) cld b 4.72 4.72 5.46 5.67 5.66 5.36 73.4 12.9
a[i] = C0X rep stosX w 4.73 4.72 4.16 4.16 4.73 6.30 35.9 5.70

l 4.71 4.71 4.15 4.17 5.01 5.65 17.5 3.10
num onebits
for(i=0; i<32; i++) popcnt a,%ecx 2.34 2.34 15.7 15.7 17.3 18.5 104.3 5.64
if (a & (1 << i)) add %ecx,%eax
ret++

array findX
for(i=0; i<n; i++) cld b 4.73 4.73 4.73 4.73 5.68 5.67 3.55 0.63
if a[i] == v mov %ecx,%esi w 3.30 4.97 3.63 3.72 3.67 3.75 3.72 0.75
return i cmpl $1,%ecx l 3.26 4.96 4.04 4.96 4.95 4.95 3.72 0.75

return n repne scasX
sete %bl
movzbl %bl,%ebx
sub %ebx,%esi
sub %ecx,%esi

array rfindX
for(i=n-1;i>=0;i--) std b 3.66 3.65 6.00 6.00 6.00 6.00 3.00 0.5
if a[i] == v leal -1(%edi, w 3.70 3.70 6.00 6.00 6.00 6.00 3.00 0.5
return i %ecx,1),%edi l 3.61 3.60 6.00 6.00 6.00 6.00 3.00 0.5

return -1 repne scasX
setne %bl
movzbl %bl,%ebx
subl %ebx,%ecx

strlen
string length cld 5.69 5.69 5.99 5.99 5.70 5.65 3.66 0.61

mov $-1,%ecx
mov $0,%eax
repne scasb
not %ecx
dec %ecx

strrchr
Index of last occurrence cld 4.46 4.38 3.94 3.96 5.79 5.71 3.31 0.57
of char in C string, -1 ow mov $-1,%ecx

mov $0,%eax
repne scasb
negl %ecx
std
mov %bl,%al
repne scasb
movzbl %al,%eax
sub %eax,%ecx

Table 2.5: Examples of programs synthesized with x86 string instructions through a 32-bit su-
peroptimizer. The columns indicate the runtimes for different compiler/optimization pairs The
measurements are speedups relative to unoptimized (O0) code produced by gcc (higher is better).
The best performing configuration is highlighted in bold. The letter X is used to represent byte
(b), word (w), or long (l) variants of the instructions/operations. The speedup column represents
the ratio of the performance of the superoptimized sequence over the best configuration among
the compilers. At input, the number of iterations (n) is in ecx, the array pointers are in esi and
edi, and the value being stored/compared in eax; the operand written in the last instruction is the
return value.
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cores/machines.

Enumeration involves executing the enumerated sequences over testvectors, for the

probabilistic execution test. The testvectors are auto-generated from the target sequences

to ensure sufficient path coverage within each target sequence. The testvectors terminate

on the target sequences within a small number of iterations, and are thus expected to

terminate in the solution. For memory operations, we use a 256-byte array, and sandbox

all memory accesses in an enumerated sequence to fall within the array, similar to previous

work [2]. The execution test involves 76 testvectors, and results in a throughput of around

120,000 sequences tested per second. It is rare for an inequivalent pair of sequences to

pass the probabilistic test. Further, we use several heuristics to prune the enumeration,

e.g., (a) prune sequences that read from a location which is not read by a target sequence,

(b) prune sequences that write to a location that is not written by a target sequence, (c)

prune sequences that are known to be equivalent to another lower-cost sequence, etc. The

learned optimizations are stored in a database, indexed by the target sequences.

Finally, we rewrite the function by sliding a peephole window, and querying the

database for an optimization, for each window. We select the right optimizations to stitch

together, to form the lowest-cost function implementation, through a dynamic program-

ming formulation of this problem, similar to [3].

Table 2.5 shows the synthesized sequences for some common string/array operations.

The synthesized sequences are 1.04-12x faster than the fastest code generated by any of

the four compilers. Notice that the solutions are not easy to verify manually, while our

tool generates equivalence proofs for them within a few seconds. In general, we expect the

support for loops to enable general-purpose loop-based optimizations in a superoptimizer,

and this work is an initial step towards this goal.
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2.6 Related work

One of the earliest examples of a translation validator can be found in a paper by Samet

[46]. Translation validation for mature compilers on large and complex programs, has

been reported in at least two previous works: Translation validation infrastructure (TVI)

[39] for GCC, and Value-graph translation validation [55, 50] for LLVM.

TVI demonstrated the validation of the gcc-2.91 compiler and the Linux-2.2 kernel,

across five IR passes in GCC, namely branch optimization, common-subexpression elimi-

nation (CSE), loop unrolling and inversion, register allocation, and instruction scheduling.

In TVI, validation is performed in a pass-by-pass manner across each IR pass, i.e., first the

input IR is validated against the output of the first pass, then the output of the first pass is

validated against the output of the second pass, and so on. The TVI paper reports around

87% validation success rates. Necula’s algorithm does not support loop unrolling, and that

was reported as the primary cause for validation failures. There are several issues with

TVI when applied to end-to-end (black-box and composed transformations) equivalence

checking. First, this pass-based approach is not possible in synthesis/superoptimization

setting. Second, TVI’s heuristics for branch and memory-access correlations at basic-

block granularity are syntactic, and fail for a large number of compiler transformations.

Third, TVI cannot tolerate generating incorrect invariants. TVI has to always generate cor-

rect invariants, as it does not have any elimination mechanism. TVI generates invariants at

a given node by using the weakest-preconditions of the invariants at the successor nodes.

This procedure of inferring the simulation relation is both expensive and less robust than

our guessing procedure. For end-to-end checks, the substituted expressions generated by

weakest-precondition become large and unwieldy, resulting in SMT solver timeouts. Fur-

ther, guessing based on only weakest preconditions is often inadequate. Finally, TVI was

tested across five compiler passes, and did not address several transformations, including

those relying on undefined behaviour.

Value-graph translation validation for LLVM has been performed previously in two
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independent efforts [55, 50]. The value-graph based technique works by adding all known

equality-preserving transformations for a program, to a value graph, until it saturates.

Equivalence checking now involves checking if the graphs are isomorphic. In the work

by Tristan et. al. [55], validation is performed across a known set of transformations,

namely, dead-code elimination, global value numbering, sparse-condition constant propa-

gation, loop-invariant code motion, loop deletion, loop unswitching, and dead-store elim-

ination. Stepp et. al. [50] support all these transformations, and additionally enable

partial-redundancy elimination, constant propagation, and basic block placement. While

these tools capture several important transformations, they also omit many, e.g., loop in-

version and unrolling, branch optimization, and instruction scheduling, to name a few.

Some of these omitted transformations (e.g., loop inversion) enable more aggressive trans-

formations, and so by omitting one of those, a chain of important transformation passes

gets omitted. Also, none of these transformations rely on language-level undefined be-

haviour. For example, the transformations do not include the ones that could reorder

accesses to global variables (e.g., by register-allocating them). Both papers report roughly

60-90% success rates for LLVM IR across the transformations they support. Compared

head-to-head, this is comparable to our success rates, albeit in a much simpler setting. A

value-graph approach is limited by the vocabulary of transformations that are supported

by the translation validator, and thus seems less general than constraint-based approaches

like TVI and ours. Also, the number of possible translations for passes like register alloca-

tion and instruction scheduling is likely to grow exponentially in a value-graph approach.

At least with the current evidence, it seems unlikely that the value-graph based translation

validation approach would yield good results for black-box equivalence checking.

Data-driven equivalence checking (DDEC) [48] is an effort perhaps closest to our

goals of checking equivalence on x86 assembly programs. However, DDEC takes a radi-

cally different approach of relying on the availability of execution traces for high-coverage

tests, an assumption that is not always practical in a general compiler optimization setting.

DDEC was tested on a smaller set of examples (around 18) of x86 assembly code gener-
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ated using GCC and CompCert, and all DDEC test examples are a part of our ctests

benchmark. Compared head-to-head with DDEC, our algorithm is static (does not rely on

execution traces), supports a richer set of constructs (stack/memory/global accesses, func-

tion calls, undefined behaviour), is more robust (tested on a much larger set of programs,

and across a richer set of transformations), and more efficient (when compared head-to-

head on the same programs). While DDEC can infer linear equalities through execution

traces, it cannot handle several other types of non-linear invariants (e.g., inequalities) of-

ten required to prove equivalence across modern compiler transformations. Recent work

on loop superoptimization for Google Native Client [7] extends DDEC by supporting

inequality-based invariants; the evaluation however is limited to a small selection of test

cases, and hence does not address several scalability and modeling issues that we tackle

in our equivalence checker. For example, the authors do not model undefined behaviour,

which we find is critical for black-box equivalence checking across real programs.

The Correlate module of parameterized program equivalence checking (PEC) [24]

computes simulation based equivalence for optimization patterns represented as parame-

terized programs containing meta-variables. In contrast, we are interested in equivalence

checking across black-box transformations involving low level syntax, as is typical in syn-

thesis and superoptimization settings: our correlation algorithm with guessing procedures

has been evaluated for this use case. In PEC’s setting, the presence of meta-variables usu-

ally provides an easier correspondence between the two programs, greatly simplifying the

correlation procedure; the relations (predicates relating variables in two programs) across

meta-variables are also easier to determine in this setting.

Previous work on regression verification [51, 13] determines equivalence across struc-

turally similar programs, i.e., programs that are closely related, with similar control struc-

ture and only a small (programmer introduced) delta between the two programs. In our

setting, the programs being compared are significantly different because of transforma-

tions due to multiple composed compiler optimizations. While our equivalence checker

can correctly compute equivalence across all the examples presented in regression verifi-
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cation [51, 13], the converse is not true.

There are more approaches to translation validation and equivalence checking (e.g.,

[62, 63, 43, 59, 34, 22, 35, 4]), and most have been evaluated on a variety of relatively

smaller examples. To our knowledge, previous work has not dealt with compiler transfor-

mations in as much generality as our work. Our work also overlaps with previous work on

verified compilation [32, 60, 61], compiler testing tools [58, 27, 28], and domain specific

languages for coding and verifying compiler optimizations [30, 31].

In terms of the correlation algorithm, our approach is perhaps closest to CoVaC [59],

in that we both construct the JTFG incrementally, and rely on an invariant generation

procedure, while determining the correlations. There are important differences however.

CoVaC relies on an oracular procedure called InvGen; we show a concrete implementation

of PredicatesGuessAndCheck(). Further, we differ significantly in our method to

identify the correlations. CoVaC relies on correlating types of operations (e.g., memory

reads and writes are different types), which is similar to TVI’s syntactic memory corre-

lations, and is less general than our semantic treatment of memory. Also, CoVaC relies

on the satisfiability of the conjunction of edge conditions (viz. branch alignment) in the

two TFGs, which is unlikely to work across several common transformations that alter

the branch structure. CoVaC was tested on smaller examples across a handful of transfor-

mations. In contrast, our correlation method based on equality of condition of composite

edges is more general, and we demonstrate this through experiments. Further, backtrack-

ing and careful engineering of guessing heuristics are important novel features of our

procedure.

Most previous translation validation work (except DDEC) has been applied to IR.

There has also been significant prior work on assembly level verification, through equiva-

lence checking. SymDiff [25, 19, 26] is an effort towards verifying compilers and regres-

sion verification, and works on assembly code. However, the support for loops in SymDiff

is quite limited — they handle loops by unrolling them twice. Thus, while SymDiff is

good for checking partial equivalence [25], and to catch errors across program versions
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and translations, generation of sound equivalence proofs for programs with loops is not

supported.

Modeling of undefined behaviour (UB) for verification has previously been studied

in Alive [36], where acyclic peephole optimization patterns of the InstCombine pass

in LLVM are verified. These optimizations could potentially involve UB assumptions,

and hence modeling of UB becomes necessary. The typical verification target for Alive

is a few lines of optimization pattern representing a single optimization. In contrast, our

verification targets involve concrete programs (with up to 1000s of lines) and containing

multiple composed compiler optimizations. Alive models UB involving undefined val-

ues, poison values and instruction attributes like nsw (signed integer overflow), the kind

that can be modeled through a simple syntactic analysis of the LLVM peephole optimiza-

tion pattern. For example, the presence of UB attributes like nsw, undef, etc., in the

optimization pattern directly indicates the UB assumptions. Aliasing based UB, involv-

ing out-of-bounds variable access assumptions (OBVA), requires an alias analysis, and

Alive did not consider this in their work. Our work is directed towards studying the com-

mon transformations in end-to-end compiler optimization, and we find that UB involving

OBVA is the most commonly exploited for optimization in both GCC and LLVM. We

believe that our alias analysis can also benefit Alive interested in capturing aliasing based

UB assumptions. Another major difference between Alive and our work is that Alive

verifies acyclic optimization patterns, while we generalize the ideas to simulation-based

equivalence across programs containing loops.

Another setting of translation validation is when modifications are allowed in the

source code of a compiler. Work on credible compilation [45, 38, 23] augments the com-

piler passes to generate the proof of equivalence automatically. The checking is then

straightforward, it just checks if the generated proof can establish equivalence between

the programs. This simplification comes from the liberty of modifying the source of a

compiler. Since a compiler pass knows the semantics of the transformation performed, it

can generate the exact proof of equivalence during the compilation, eliminating the need
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of a more difficult inference procedure. Although interesting, this flexibility of modifying

a compiler is further away from our motivation of doing a black-box equivalence check-

ing. In our setting of black-box equivalence checking, we cannot modify or even observe

the source code of a compiler.

Our work overlaps with previous work on detection of unstable code, STACK [57].

STACK classifies unstable code as the code whose semantics are sensitive to undefined

behaviour (UB). The underlying assumption of this work is that if an optimizer dis-

cards/modifies the (unstable) code due to the presence of UB, the resulting logic may

behave differently from what the programmer intended. While STACK identifies certain

important types of unstable code through static pattern-matching on LLVM IR, it also

leaves out many. Aliasing based UB stands out as an example of UB not considered by

STACK.

Our linearly-related (lr) and may-depend-on (dep) analyses resemble previous work

on alias analysis for executable code by Debray et. al. [11]. The authors of this work

noted that alias analysis for executable code requires reasoning about pointer arithmetic,

and hence proposed special modeling for the add and mult opcodes, as these were the

most commonly encountered opcodes for pointer manipulation on the RISC architecture

they considered. However, because their analysis is syntactic in nature, it introduces im-

precisions in common situations involving store and subsequent load of a pointer to/from

memory. In such situations where a syntactic analysis does not provide enough infor-

mation, the alias information would be conservatively widened to ⊥ in their approach.

Their empirical evaluations reflect these imprecisions. Our approach works on de-sugared

expressions obtained from machine opcodes, involving standard bitvector and boolean

operators. Also, our memory model allows reasoning about stores followed by loads to

identical locations (without other intervening conflicting stores), thus capturing the com-

mon pattern of pointers getting saved to stack slots for future reference. This semantic

treatment lends robustness to our analysis, and makes it independent of the underlying

machine ISA. In another related work on alias analysis, Fernandez and Espasa [14] at-
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tempted to remove the imprecisions discussed in [11], by sacrificing soundness guaran-

tees. Sacrificing soundness is not acceptable in our setting. The authors of both these

previous works on alias analysis for executable code were interested in link-time opti-

mizations; unlike us, they do not describe a model for reasoning about UB using this

obtained aliasing information.





Chapter 3

Equivalence checking across power

environments

Energy harvesting devices that harvest energy from their surroundings, such as sunlight

or RF radio signals, are increasingly getting popular. Because the size reduction of bat-

teries has not kept pace with the size reduction of transistor technology, energy harvesting

allows such devices to be much smaller in size, e.g., insect-scale wildlife tracking devices

[44] and implantable medical devices [40]. Such devices are already commonplace for

small dedicated computations, e.g., challenge-response in passive RFID cards, and are

now being imagined for more general-purpose computational tasks [44, 37].

The harvested energy is unpredictable and usually not adequate for continuous oper-

ation of a device. Power failures are spontaneous and may occur after every 100 mil-

liseconds, for example [44]. Thus, computation needs to be split into small chunks that

can finish in these small intervals of operation, and intermediate results need to be saved

to a persistent memory device at the end of each interval. A power reboot should then

be able to resume using the results of the last saved computational state. This model of

computation has also been termed, intermittent computation [37]. Typically, the intermit-

tent programs involve instrumentation of the continuous programs (that are supposed to

be continuously powered) with periodic checkpoints. The checkpoints need to be close

99



100 Equivalence checking across power environments

enough so that the computation across two checkpoints can finish within one power cycle.

On the other hand, frequent checkpoints degrade efficiency during continuous operation.

Further, a checkpoint need not save all program state, but can save only the necessary

program state elements, required for an acceptable computational state at reboot. The

presence of volatile and non-volatile program state simultaneously makes the problem

more interesting.

An intermittent program may be written by hand, through manual reasoning. Al-

ternatively, semi-automatic [37] and automatic [44, 56] tools can be used to instrument

continuous programs with checkpoints, to allow them to execute correctly in the inter-

mittent environments. The goal of these automated tools is to generate an intermittent

program that is equivalent to the continuous program under all possible power failures.

In addition to correctness, these tools try to generate intermittent programs with smaller

checkpoints for efficiency. These tools reason over high-level programs (C or LLVM IR).

Given that the failures happen at the architecture instruction granularity (and possibly at

micro-instruction granularity) and it is the machine state that needs to be checkpointed;

the reasoning at a higher level is error-prone and could go wrong because of the transfor-

mations (e.g., instruction reordering) performed by the compiler. Moreover, the bugs in

intermittent programs could be very hard to detect: because the power failures are spon-

taneous and recurring, the number of potential states involved is very large.

Verifying the correctness of an intermittent program with respect to a continuous pro-

gram is important from two aspects: First, we will be able to verify the correctness of the

output of existing automatic instrumentation tools. Second, a verification tool will enable

us to model automatic-instrumentation as a synthesis problem to optimize for the effi-

ciency of generated intermittent programs, with the added confidence of verified output.

We present an automatic technique to verify the correctness of an intermittent pro-

gram with respect to a continuous program. Towards this goal, we make the following

contributions:
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• A formal model of intermittence that correctly and exhaustively captures the be-

haviour of intermittent programs for all possible power failures. Our model of in-

termittent programs is amenable to checking equivalence with its continuous coun-

terpart.

• Due to recurring executions in an intermittent program, an intermediate observable

event (not occurring at exit) may occur multiple times, causing an equivalence fail-

ure. We show that if the observables are idempotent and commutative, then we can

claim equivalence between the two programs.

• A robust algorithm to infer a provable bisimulation relation to establish equivalence

across a continuous and an intermittent program. The problem is undecidable in

general. The algorithm is robust in the sense of its generality in handling even min-

imal checkpointing states, i.e, a more robust algorithm can verify an intermittent

program with smaller checkpoints. Stated differently, we perform translation vali-

dation of the translation from a continuous to an intermittent program. However, in

our case, in addition to program transformation, the program execution environment

also changes. The continuous program is supplied with continuous power, whereas

the intermittent program is powered by a transient power supply.

3.1 Example

We briefly discuss, with the help of an example, the working of intermittent programs and

issues associated with it. Figure 3.1a shows an x86 program that increments a non-volatile

global variable nv and returns 0 on success. The program terminates after returning

from this procedure. We call it a continuous program as it is not meant to work in an

environment with power failures. Figure 3.1b shows an intermittent program, generated by

instrumenting the continuous program. This program can tolerate power failures, and it is

equivalent to the continuous program, under all possible power failures. The equivalence
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is computed with respect to the observable behaviour, which in this case is the output, i.e.,

the value of return register eax and the value of the global variable nv.

The intermittent program has been generated from the continuous program by insert-

ing checkpointing logic at the checkpoint locations CP1 and CP2. During checkpointing,

the specified CPelems and the location of the current executing checkpoint get saved to

CPdata in persistent memory. In case of a power failure, the program runs from the entry

again, i.e., the restoration logic, it restores the CPelems, and then jumps to the location

stored in CPdata.eip (term eip comes from the register eip, which holds the program

counter). For the first run of the intermittent program, the checkpoint data is initialized

to ((), Entry), i.e., CPdata.CPelems=() and CPdata.eip=Entry. This

ensures that on the first run, the restoration logic takes the program control flow to the

original entry of the program.

In case of power failures, the periodic checkpointing allows the intermittent programs

to not lose the computation and instead, start from the last executed checkpoint. For

example, if a failure occurs at location I5, the intermittent program will resume its com-

putation correctly from CP2, on power reboot. This is so because the checkpoint CP2

gets executed while coming to I5, and the restoration logic, on the next run, restores the

saved state and jumps to CP2. Moreover, under all possible scenarios of power failures,

the output of the intermittent program remains equal to that of the continuous program.

Notice that we need not checkpoint the whole state of the machine, and only a small

number of checkpoint elements is sufficient to ensure the equivalence with the continu-

ous program. A smaller checkpoint is important as it directly impacts the performance

of the intermittent program; a smaller checkpoint results in less time spent on saving and

restoring it. Figure 3.1a shows the smallest set of CPelems that need to be saved at CP1

and CP2. The first two elements of CPelems1 and the only two elements of CPelems2

ensure that the address where return-address is stored and the contents at this address, i.e.,

the return-address (both of which are used by the ret instruction to go back to the call

site) are saved by the checkpoint. As per the semantics of ret instruction, ret jumps to
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Entry:
CP1: I1: push ebp

I2: mov esp ebp
I3: inc (nv)

CP2: I4: xor eax eax
I5: pop ebp
I6: ret

CP1: I1
CP2: I4
CPelems1:

esp, (esp), nv
CPelems2:

esp, (esp+4)

(a) Continuous program

Restoration: # new entry
restore CPdata.CPelems CPelems
jmp CPdata.eip # init to Entry:

Entry: # original entry
CP1’: # checkpointing logic

save (CPelems1, CP1) CPdata
CP1: I1: push ebp

I2: mov esp ebp
I3: inc (nv)

CP2’: # checkpointing logic
save (CPelems2, CP2) CPdata

CP2: I4: xor eax eax
I5: pop ebp
I6: ret

(b) Intermittent program

Figure 3.1: The first assembly program increments a global non-volatile variable nv and re-
turns 0. It also shows the checkpoint locations CP1 and CP2 and respective checkpoint elements
(CPelems1 and CPelems2) that need to checkpointed at these locations. The second program
is an intermittent program, which is generated by instrumenting the first program at the given
checkpoint locations.

the address stored at the address esp (esp is the stack register), i.e., it jumps to (esp)1.

At CP1 and CP2, the return address is computed as (esp) and (esp+4) respectively.

Note that the expressions are different because of an intervening push instruction. Fur-

ther, checkpointing of non-volatile data is usually not required; however, (nv) needs to

be saved at CP1 because it is being read and then written before the next checkpoint. If

we do not save (nv) at CP1, failures immediately after I3 would keep incrementing it.

Tools that generate intermittent programs by automatically instrumenting the given

continuous programs [37, 44, 56] usually work at a higher level (C or LLVM IR). These

tools perform live variable analysis for volatile state and write-after-read (WAR) analysis

for non-volatile state to determine the checkpoint elements. However, these approaches

result in making conservative assumptions because of the lack of knowledge of compiler

transformations (e.g., unavailability of mapping between machine registers and program

variables) and the proposed checkpointed elements contain unnecessary elements. For ex-

ample, a tool, like DINO [37], without the knowledge of compiler transformations would

1(addr) represents 4 bytes of data in memory at address addr.
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checkpoint all the registers and all the data on the stack for our running example. Even if

these analyses are ported at the machine level, the proposed checkpoint elements would

be conservative as these analyses are syntactic in nature. For example, a live variable

analysis for the example program would additionally propose the following unnecessary

elements: ebp at CP1 and eax, (esp) at CP2.

The observable of the example program is produced only at the exit. Let us consider a

case, when the observable events are produced before reaching the exit (called intermedi-

ate observables). In case of intermediate observables, the observables may get produced

multiple times due to the power failures. For example, assume that there is an atomic in-

struction I5’: print("Hello, World!") (which produces an observable event)

in between I4 and I5. Due to the power failures at I5 and I6, the program will again

execute the code at I5’ and the observable event will get produced again, resulting in an

equivalence failure. Interestingly however, it is possible that the observer cannot distin-

guish, whether the observable has been repeated or not. This depends upon the semantics

of print, e.g., if it prints to the next blank location on the console, then the observer may

see multiple “Hello, World!” on the console. However, if it prints at a fixed location (e.g.,

fixed line and column of an LED board), then the multiple calls to print would just

overwrite the first “Hello, World!”, and this would be indistinguishable to the observer.

The non-determinism in the intermittent program and consequently, the repeated ob-

servables makes the problem of checking equivalence with respect to continuous program

interesting. We take the ideas of black-box equivalence checking algorithm from Chap-

ter 2, extend them to handle non-determinism and repeated observables, and come up with

an algorithm that can establish equivalence across power environments, i.e., between the

continuous and the intermittent programs.

Rest of the discussion is organized as: Section 3.2 presents the modifications needed in

the TFG grammar to support checkpointing, modeling of intermittent program behaviour

is discussed in Section 3.3, and finally, Section 3.4 describes the algorithm to establish

equivalence between the continuous and the intermittent program.
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T ::= (G([node], [edge]))
node ::= (pc(int) | exit(int), [CPelem])
edge ::= (node, node, edgecond, τ)
edgecond ::= state→ ε
τ ::= state→ state
state ::= [(string, type, ε)]
ε ::= const(string) | nry op([ε]) | select(ε, ε, int) |

store(ε, ε, int, ε)
CPelem ::= (string) | (string, ε, int)
type ::= Volatile | NonVolatile

Figure 3.2: Modified grammar of transfer function graph to support volatility and checkpointing
of state elements. Bold attributes depict the modifications over the grammar of Figure 2.6.

3.2 Program representation

We modify the grammar of TFG in Figure 2.6 to support the constructs of intermittent pro-

grams. Figure 3.2 shows the modified grammar. For intermittent execution, checkpoints

can be inserted at arbitrary program locations. A checkpoint saves the required state el-

ements to a persistent store. The saved state would allow the restoration logic to resume

from the last executed checkpoint. We model checkpoints by annotating the TFG nodes

corresponding to the checkpoint locations as checkpoint nodes with their corresponding

checkpointed state (specified as a list of checkpoint elements [CPelem]). The semantics

ofCPelems are such that on reaching a node withCPelems, the projections ofCPelems

on the state are saved. A CPelem can either specify a named register (first field) or it can

specify an address with the number of bytes of a named memory (second field). The first

type of CPelem allows to checkpoint a register or the complete memory state, whereas

the second type allows flexibility to checkpoint a memory partially or in ranges.

Figure 3.3 shows the TFGs of the continuous and the intermittent programs of Fig-

ure 3.1. Note that the TFGs also show the other instrumentation details, namely failure

edges and restore edges, which we discuss next.
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push ebp

inc (nv)

xor eax eax

pop ebp

ret

mov esp ebp

1

2

3

4

5

6

7

restore CPdata.CPelems CPelems
jmp CPdata.eip

4’

4

save (CPelems2, 4) CPdata

1

2

3

4

5

6

7

R

Entry

Failure edge

Restore edge

R Restoration entry node

4 Checkpoint node

7 Exit

4

Figure 3.3: TFGs of the continuous and the intermittent program of Figure 3.1.

3.3 Modeling intermittence

3.3.1 Instrumentation model

Instrumenting a continuous program to generate an intermittent program involves: adding

the checkpointing logic at the given checkpoint nodes, adding the restoration logic, chang-

ing the entry of the program to the restoration logic, and setting the initial checkpoint data

in the persistent memory.

The checkpointing and the restoration logic work with data called checkpoint data

(CPdata). The checkpoint data is read/written from/to a fixed location in a persistent

memory. The checkpoint data consists of CPelems of the machine state and the check-

point location. The checkpointing logic saves the checkpoint data from the machine state,

and the restoration logic updates the machine state from the checkpoint data. Addition-

ally, after updating the machine state, the restoration logic changes the program control

flow (jmp) to the stored checkpoint location (CPdata.eip). The checkpointing logic is

added for all the given checkpoint nodes. The restoration logic, however, is added once,

and the entry of the program is changed from the original entry to the entry of the restora-
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tion logic. The checkpoint data is initialized with the empty CPelem list and the stored

checkpoint location is set to the original entry. This ensures that the intermittent program

starts from the correct entry, i.e., the original entry, in its very first execution. Further, it is

assumed that the location where CPdata is stored cannot alias with the addresses of the

programs. In other words, the program, except for checkpointing and restoration logic,

should not read or write CPdata.

The checkpointing logic is made atomic by using a double-buffer to save the check-

point data. The checkpointing logic works with two checkpoint data: current CPdata

and unused CPdata, and a pointer CPdataLocation points to the current CPdata.

While checkpointing, it writes to the unused checkpoint data and once complete, it up-

dates CPdataLocation to the address of unused checkpoint data, making it the current

CPdata. This technique ensures that a failure while executing the checkpointing logic

does not corrupt the checkpoint data. For brevity, we do not show the implementation of

double buffering.

Figure 3.3 shows the TFGs of the continuous and the intermittent program. Nodes 1

and 7 are the entry and the exit locations of the continuous program respectively. In the

intermittent program, the checkpointing logic has been inserted at nodes 1 and 4, and the

restoration logic has been appropriately added at program entry. The CPelems at node 1

(CPelems1) and 4 (CPelems2) are listed in Figure 3.1a. A checkpoint node in the in-

termittent program is shown as a single node in the program graphs; in practice, it consists

of multiple nodes and edges representing the TFG of the checkpointing logic. Figure 3.3

also shows the TFG of the checkpointing logic of node 4. It saves the CPelems2 and

sets the stored program location (CPdata.eip) to the location of the checkpoint node 4 in

this example. The intermittent program always starts in the restoration logic. It restores

the state from the saved CPdata.CPelems and then jumps to the stored program location

(CPdata.eip).
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3.3.2 Modeling power failures

Power failures in an intermittent environment are spontaneous and can occur at any mo-

ment. We assume that a power failure can occur before and after every instruction of

the assembly program, which is analogous to the properties of precise-exceptions, and

is guaranteed by most architectures. On architectures where this assumption cannot be

made, one can model power failures at the micro-instruction level, i.e., before and after

every micro-instruction of that architecture, and rest of the technique would remain the

same.

At the TFG level, nodes precisely represent the instruction boundaries, i.e., a power

failure can occur at any of the nodes of the TFG. On a power failure: the volatile data is

lost and the program, on reboot, starts from the entry, i.e, the restoration logic. We model

power failures at each node by adding a non-deterministic failure edge from each node of

the TFG to the entry of the restoration logic.

Definition 3.3.1 (Failure edge) A failure edge is an edge of a TFG from node n to the

entry node R of the restoration logic. The edgecond and the transfer function τ of a

failure edge are defined as:

edgecond = δ

τ(S) = ∀(s,t,ε)∈S


(s, t, NDVε) if t is Volatile

(s, t, ε) if t is NonVolatile

Where δ is a non-deterministic boolean value, S is the state at the node n, (s, t, ε)

represents an element of the state S, and NDVε is a non-deterministic value of the type

of the expression ε.

A failure edge of a TFG models the non-determinism and the effect of a power failure;

the condition under which the edge is taken is non-deterministic, i.e., spontaneous power

failure, and the effect is modeled by the transfer function and the program control flow

change. The transfer function of a failure edge preserves the non-volatile data and garbles
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the volatile data (overwritten with arbitrary/non-deterministic values) and the failure edge

goes to the entry, encoding the fact the program starts from the entry on reboot.

The failure edges are added for all the nodes of the instrumented TFG, even for the

nodes of the checkpointing and the restoration logic. The failure edges for the nodes

of checkpointing and restoration logic capture the fact that power failures are possible

even while executing the checkpointing and the restoration logic. This failure model is

exhaustive and complete, and it precisely models the semantics of power failures. The

failure edges are shown as the dashed edges in Figure 3.3.

3.3.3 Resolving indirect branches of restoration logic

The restoration logic changes the control flow of the program based on the contents of

stored program location. It is implemented as an indirect jump (i.e., jmp CPdata.eip)

at the assembly level. In general, an indirect jump may point to any program location;

however, in our case we can statically determine the set of locations the indirect jump can

point to. As the indirect jump depends on the value stored in CPdata.eip, we determine

all the values that may get stored in CPdata.eip.

At the beginning, CPdata.eip is initialized to the original entry of the intermittent

program. And later, it is only modified by the checkpointing logic and set to the locations

of the checkpoint nodes. Thus, the indirect jump can either point to the original entry or

any of the checkpoint nodes. Using this information, we resolve the indirect jump of the

restoration logic and add restore edges to the intermittent TFG to reflect the same.

Definition 3.3.2 (Restore edge) A restore edge is an edge of a TFG from the node R,

i.e., the restoration logic, to the original entry or a checkpoint node n of the TFG. The

edgecond and the transfer function τ of the restore edge are defined as:

edgecond = (CPdata.eip == n)
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τ(S) = ∀(s,t,ε)∈S



(s, t, ε) (s) /∈ CPdata.CPelems

(s, t, ε) (s, , ) /∈ CPdata.CPelems

(s, t,D) ((s) : D) ∈ CPdata.CPelems

(s, t, store(ε, a, b,D)) ((s, a, b) : D) ∈ CPdata.CPelems
Where S is the state at the nodeR, (s, t, ε) is an element of the state S, (s) and (s, a, b)

are checkpoint elements, CPdata.CPelems has the stored checkpoint elements as a map

from CPelems to the stored data (D), and s, t, ε, a and b correspond to name, type,

expression, address and size (number of bytes) respectively.

The edge condition represents that the edge is taken to a checkpoint node n if the

stored program location CPdata.eip is equal to n. The transfer function restores the

state by updating the state with all the CPelems available in the CPdata.CPelems.

The restore edges are added to the intermittent TFG from the restoration logic to all the

checkpoint nodes and the original entry. The restore edges are shown as the dash-dot

edges in Figure 3.3.

3.4 Equivalence

We find that the problem of checking equivalence across power environments, i.e., across

the continuous and the intermittent programs, is unique in its own way, and we cannot just

offload it to any existing equivalence checker. The important differences that make this

problem unique are:

1. The intermittent program, which runs in an environment with power failures, has

non-determinism, whereas the continuous program is deterministic. Previous tech-

niques work in a setting where both the programs are deterministic; in our setting,

one of the programs (the intermittent program) has edges that can be taken non-

deterministically, i.e., the failure edges. Consequently, the correlation is different
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as power failures would now be modeled as internal moves, and hence, we instead

need to infer a weak bisimulation relation [47].

2. Due to recurring executions in the intermittent program (because of the power fail-

ures), an intermediate observable event in the intermittent program can be produced

more times than in the continuous program. To reason about the same, we describe

two properties of the observables, namely idempotence and commutativity, and we

use these properties to establish equivalence under the repeated occurrences of the

observables.

As we have seen in Figure 3.1, the amount of instrumentation code added to inter-

mittent program is quite small and most of the code of the intermittent program remains

the same. However, even in this setting, the problem of checking equivalence between

the continuous and the intermittent program is undecidable in general. In other words,

determining whether a certain checkpoint element (CPelem) needs to be checkpointed is

undecidable. We define equivalence between a continuous and an intermittent program,

i.e., across the instrumentation, and we prove the theorem that determining this equiva-

lence is undecidable.

Definition 3.4.1 (Equivalence) A continuous TFG (C) is equivalent to an intermittent

TFG (I), where I has been generated by instrumenting C, if starting from identical input

state S, the two TFGs produce equivalent observable behaviour, for all values of S.

Theorem 3.4.2 Given a continuous TFG (C) and an intermittent TFG (I), where I has

been generated by instrumenting C, determining equivalence between C and I is unde-

cidable.

Proof 3.4.3 Determining whether any function f halts can be reduced to this problem.

Consider the following construction of a continuous (C) and an intermittent (I) program:

C(a)={f(); print(a);} I(a)={CP(); f(); print(a);}, such that CP()

checkpoints the complete state except the volatile variable a. The two functions can only
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be equivalent if f() does not halt. Checking whether f halts can be written in terms of

determining whether the two functions are equivalent: f Halts = (C 6= I). However,

the halting problem is undecidable, hence, checking equivalence between a continuous

and an intermittent program is also undecidable.

3.4.1 Correlation

The correlation across two TFGs defines a matching between the nodes and the paths (also

called moves) of the two TFGs. It tells the path taken by one program, if the other program

takes a certain path, and vice versa. In our case, we reason in terms of the paths from

one checkpoint to another checkpoint (checkpoint-to-checkpoint paths, defined next), and

define the correlation in terms of the same.

Definition 3.4.4 (Checkpoint-to-checkpoint path) Given a continuous TFG C and an

intermittent TFG I , where I has been generated by instrumenting C: a path from node n

to node m in the intermittent TFG I is a checkpoint-to-checkpoint path if the nodes n and

m belong to the set N = {entry, exit}∪CPs, and none of its intervening nodes between

n and m belongs to N . Here entry, exit and CPs are the original entry, the exit and the

set of checkpoint nodes respectively.

A checkpoint-to-checkpoint path in the continuous program C is defined in the same

manner, however, assuming the checkpoint nodes of the corresponding intermittent TFG

(i.e., I); this is because C has no notion of checkpoint nodes.

The checkpoint-to-checkpoint paths are further classified depending upon whether a

power failure occurs or not, on a checkpoint-to-checkpoint path.

Definition 3.4.5 (Failure path) A checkpoint-to-checkpoint path is a failure path if a

power failure occurs in it.

Theorem 3.4.6 A failure path starts and terminates on the same checkpoint. In other

words, a failure path starting and terminating on different checkpoint is not reachable.
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Proof 3.4.7 Since there are no intervening checkpoints on a failure path, the stored check-

point location (CPdata.eip) is the starting checkpoint (n), implying that on a failure, only

one restore edge, which goes from the restoration logic to the starting checkpoint, will

have its edgecond true.

Definition 3.4.8 (Progress path) A checkpoint-to-checkpoint path is a progress path if

there are no power failures in it.

A checkpoint-to-checkpoint path starting from a checkpoint can either reach a succes-

sive checkpoint if no power failure occurs in between, or it reaches back to the starting

checkpoint (via a failure and then the restore edge to it) if there is a power failure. A

checkpoint-to-checkpoint path in the intermittent TFG is either a failure path or a progress

path. However, all the checkpoint-to-checkpoint paths in the continuous program are

progress paths as there are no failures in it. Figure 3.4a shows the failure and the progress

paths of the intermittent TFG. Note that we have not shown the edges of the TFG of check-

pointing logic, we get rid of them by composing these edges with the incoming edges of

the start node of a checkpoint, e.g., path 3→ 4′ → 4 is collapsed into an edge 3→ 4.

We use the notion of a weak bisimulation relation [47] to establish equivalence be-

tween the continuous and the intermittent TFGs. In a weak bisimulation relation, a move

(of correlation) in the non-deterministic program may be preceded and succeeded by any

number of internal moves. The non-deterministic failure paths of the intermittent TFG are

modeled as the internal moves and progress paths of the two TFGs are treated as the usual

moves. We propose the following correlation between the two TFGs:

Definition 3.4.9 (Correlation) Given a continuous TFG C and an intermittent TFG I ,

where I has been generated by instrumenting C, both starting from the original entry or

the same checkpoint node (nCP ):

1. If I takes a progress path p, then C takes the corresponding progress path p in

it, and vice versa. Additionally, the individual edges of the progress paths are also
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(a) Simplified TFG
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(b) Correlation graph

Node: (1,1)
MC

nv = M I
nv, nv

C = nvI ,
espC = espI ,
select(MC , espC , 4) =
select(M I , espI , 4)
Node: (4,4)

MC
nv = M I

nv, nv
C = nvI ,

espC = espI ,
select(MC , (espC + 4), 4)
= select(M I , (espI+4), 4)

Node: (7,7)
eaxC = eaxI ,
MC

nv = M I
nv

(c) Invariants

Figure 3.4: The first figure shows a simplified intermittent TFG, the edges and the nodes have
been duplicated for exposition and non-reachable failure paths have been removed. Checkpoint-
to-checkpoint paths formed by dashed edges are failure paths and that formed by solid edges are
progress paths. The second figure shows the correlation graph; single-edges show correlations of
no-moves with failure paths. The third figure shows the invariants at the checkpoint nodes and
exit.

taken together. That is, ifC takes the edge (n→ m) ∈ p, then I takes the same edge

(n → m), and vice versa. That is, for all nodes n ∈ p and edges (n → m) ∈ p:

node n and edge n → m of C are correlated with node n and edge n → m of I ,

respectively.

2. If I takes a failure path p, then C takes a no-move, i.e., C does not move at all and

stays at the same node (nCP ), and vice versa. Further, every individual edge of the

failure path of I is taken with a no-move of C. That is, for all nodes n ∈ p: node n

of I is correlated with node nCP of C.

Intuitively, the above correlation of moves states that for TFGs starting from the entry

or the same checkpoint: if there is no power failure, and the intermittent program moves

to a successive checkpoint, then the continuous program also moves to the same next

checkpoint, and vice versa. However, if the intermittent program undergoes a failure,
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hence, returning to the starting checkpoint, then the continuous program does not move at

all, and stays at the starting checkpoint, and vice versa. Note that the above correlation,

in its current form, supports only the checkpointing transformation, which is suitable for

our setting. However, it is possible to extend this definition to support other peephole

optimizations along with the checkpointing transformation.

Correlation between two TFGs forms a graph, whose nodes and edges are pairs of

nodes and edges of the two TFGs. That is, if (nC , nI) is a node and (eC , eI) is an edge of

the correlation graph, then nC and nI are the nodes of the continuous and the intermittent

TFG respectively, similarly, eC and eI are the edges of the continuous and the intermittent

TFG respectively. Figure 3.4b shows the correlation graph for the running example.

3.4.2 Inferring invariants

Once we have fixed the correlation between the two TFGs, we need to check if the cor-

relation is indeed correct as it is not necessary that the two TFGs take the same progress

path starting from the same checkpoint. Furthermore, we need to check that the two TFGs

produce the same observable behaviour. This involves inferring invariants at the nodes of

the correlation graph. The inferred invariants should be strong enough to prove that the

correlated edges are taken together (i.e., equivalent edgeconds of the correlated edges of

the two TFGs) and the observables at the correlated edges are identical. Formally:

∀
(nC,nI )→(mC,mI )

invariants(nC,nI )
⇒(nC,nI )→(mC,mI )

(o(nC→mC ) = o(nI→mI )
)∧

(edgecond(nC→mC ) = edgecond(nI→mI )
)

Here (nC , nI) → (mC ,mI) is an edge in the correlation graph, nC → mC and nI →

mI are edges in the continuous and the intermittent TFG respectively, invariants(nC,nI )

represents the conjunction of the invariants at the correlation node (nC , nI), edgeconde

represents the edge condition of an edge e, oe represents the observable on an edge e,
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and ⇒(nC,nI )→(mC,mI )
represents the implication over the edge (nC , nI) → (mC ,mI) as

defined in Section 2.1.

For inferring these invariants we reuse the guess-and-check technique of Chapter 2.

Please refer to Section 2.2.4 for the detailed discussion. Figure 3.4c shows the inferred

invariants for some nodes, which can prove the required conditions and equivalence for

the running example, under the CPelems of Figure 3.1a.

On final notes, our equivalence checking algorithm is general and handles loops seam-

lessly; in fact, we are already handling the loops which get introduced due to the failure

edges. Had there been a loop in the example program, say there is a backedge from node

3 to 2, it would reflect in the failure and progress paths too, e.g., Figure 3.4a will contain

a solid as well as a dash edge from node 3 to 2. Similarly, the correlation graph too will

have edges from node (3,3) to (2,2) and node (1,3) to (1,2). Finally, our technique is not

without limitations – it is possible that a correlation other than the proposed one, or an

invariant of different shape/template (other than the one used) is required for proving the

equivalence. Though we did not encounter this in practice.

3.4.3 Intermediate observables

We now discuss the issue with observables occurring at the intermediate nodes, i.e., the

nodes other than the exit node. We call these the intermediate observables. In an inter-

mittent program, an intermediate observable event can be produced more times than is

produced in the continuous program. It happens because of the recurring executions of

an intermediate observable due to power failures. Given a sequence λC = o1o2...oi...ox

(written as a string) of observable events on a progress path (from checkpoint node n1

to checkpoint node nx+1) of the continuous TFG, the event oi is produced on the edge

ni → ni+1, for i ∈ [1, x + 1). The possible sequences of observable events for the cor-

responding intermittent TFG, during the moves from checkpoint node n1 to checkpoint
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node nx+1 (by taking one or more failure paths followed by a progress path) are:

λI = λIn1
λC such that λIn1

= (o1|o1o2|o1o2o3|...|o1o2...ox−1)∗

The sequence is written as a regular expression, where ∗ represents Kleene star, i.e., zero

or more repetitions and | represents the alternation operator. The first part of the expression

λIn1
represents all sequences of observables produced at node n1. The alternation operator

encodes that a failure may happen at any node ni and may produce a sequence o1o2...oi−1

for i ∈ [1, x] (a failure at nx+1 will not take the control back to n1); the ∗ operator encodes

that failures may occur zero or more times. The second part (λC) represents the case when

there is no power failure and the execution reaches the successive checkpoint nx+1.

The sequence of observables produced in the intermittent program could be different

from that produced in the continuous TFG. However, if the effects of the two sequences,

i.e., λC and λI are same, and the observer cannot differentiate between the two, we will

be able to claim the equivalence of the two programs. To this end, we define a notion of

idempotence and commutativity of observables, and we use these properties to prove that

the sequences of observables produced by the continuous and the intermittent TFG are

equivalent if the observables are idempotent and commutative.

Definition 3.4.10 (Idempotence) An observable event o is idempotent if its recurring oc-

currences are undetectable to the observer. That is, the sequence oo produces the same

effect as o.

Definition 3.4.11 (Commutativity) The observable events o1 and o2 are commutative if

the order of occurrences of the two events is not important to the observer. That is, the

sequences o1o2 and o2o1 are both equivalent to the observer.

Intuitively, an observable is idempotent if the observer cannot detect if the observable oc-

curred once or multiple times. For example, the observable print(line, column,
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text), which prints text at the given line and column, is idempotent. The user can-

not distinguish if multiple calls to this function have been made. Observables setpin(pin,

voltage) (sets the voltage of the given pin) and sendpkt() (send network packet)

are more examples of idempotent observables. The observer cannot tell if the function

setpin() is called multiple times, as it will not change the voltage of the pin on re-

peated executions. In case of sendpkt(), if the network communication is designed to

tolerate the loss of packets, and consequently, the observer/receiver is programmed to dis-

card the duplicate packets, then the observable is idempotent with respect to the receiver.

Two observables are commutative if it does not matter to the observer, which one occurred

first. For example, if a program lights an LED and sends a packet, and if these two events

are independent to the observer, e.g., the packet is meant for some other process and the

LED notification is meant for the user, then their order is unimportant to the observer.

Theorem 3.4.12 λI = λC , if for all oi and oj in λC , oi is idempotent, and oi and oj are

commutative.

Proof 3.4.13 In sequence λI , we move an event oi to position i (by applying commutativ-

ity) and if the same event is present at i + 1, we remove it (by applying idempotence), we

keep applying these steps until only one oi remains. Performing these steps in increasing

order of i, will transform λI into λC . If the length of λI is finite, termination is guaranteed.

With all the pieces, we state the final theorem now:

Theorem 3.4.14 A continuous TFG C and an intermittent TFG I , where I is generated

by instrumenting C, are equivalent if:

1. Invariants can prove the correlation and the equivalence of observables at each

correlated edge of the progress paths (Section 3.4.2).

2. On every progress path: each observable is idempotent, and every pair of observ-

ables is commutative (Section 3.4.3).
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3. Both the TFGs, i.e., C and I , terminate.

Proof 3.4.15 Proof by induction on the structure of programs:

Hypothesis: Both programs C and I produce the same observable behaviour on execu-

tion till a node n, for n ∈ N = {entry, exit} ∪ CPs, where CPs is the set of checkpoint

nodes.

Base: At entry, the two programs, C and I , have same observable behaviour.

Induction: Assuming the hypothesis at all the immediate predecessor checkpoints (m) of

node (n), we prove that the observable behaviour of the two programs are equivalent at

n, where m,n ∈ N .

An observable sequence at node n for program I can be written in terms of the observ-

able sequence at the predecessor node m and the observable sequence produced during

the moves from m to n: λIn = λImλ
I
m→n. From Condition#1, we can prove that the two

programs move together from m to n and the individual observables of the two programs

are same. Using the same along with Condition#2, Condition#3 and Theorem 3.4.12,

we claim that λIm→n = λCm→n. Finally, using the hypothesis λIm = λCm, we prove that

λIn = λCn .

Note that Condition#3 is important to eliminate the case when after some failure, the in-

termittent program never gets powered, and it never progresses. In that case, equivalence

is undefined. Condition#3 eliminates the same.

3.5 Evaluation

We evaluate our technique in terms of the runtime of verification, and the robustness and

capability of our algorithm. We are not aware of any previous verifier for this problem,

and so we do not have a comparison point for the verification runtimes of our tool. How-

ever, we do compare the robustness and capability of our technique by using our verifier

in a simple synthesis loop, whose goal is to minimize the size of checkpoints at a given

set of checkpoint nodes. Moreover, the capability of this synthesis loop is dependent on
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the capability of our verifier. If our verifier can prove the equivalence between the con-

tinuous and the intermittent programs, with smaller checkpoints, then the synthesis loop

can generate an intermittent program with smaller checkpoints. This also enables us to

compare our work with DINO [37]. With similar goals, DINO automatically generates an

intermittent program from a given continuous program by instrumenting it at a given set

of checkpoint locations. It works with mixed-volatility programs and performs a syntactic

analysis to determine the checkpoint elements that need to be checkpointed. However, un-

like our tool, DINO’s output is unverified. A detailed comparison with DINO is available

in Section 3.6.

We implemented our equivalence checking technique in a verifier for the x86 architec-

ture. Our technique is independent of the architecture: the reason we chose the x86 archi-

tecture is primarily because we had access to a disassembler and semantic models of x86

ISA. Constructing a TFG from an executable required us to resolve other indirect jumps

(other than that of the restoration logic) occurring in the program; in particular, the indirect

jumps due to the function returns, i.e., the ret instructions. A ret instruction takes back

the program control to the return-address stored in a designated location in the stack. The

return-address is set by the caller using the call instruction. We perform light-weight

static analysis to determine the call sites of every function and hence determine the return-

addresses of every ret instruction. We appropriately add the return edges (similar to re-

store edge) from the return instruction to the determined call sites. The transfer function of

the return edge is identity and its edgecond = (return address == call site address).

While testing our verifier on some handwritten pairs of continuous and intermittent

programs, we found that it is very easy for a human to make mistakes in suggesting the

checkpoint elements and checkpoint locations, especially for mixed-volatility programs.

For example, in the program in Figure 3.1, the user ought to specify a checkpoint before

I3. If a checkpoint location is not specified before I3, the intermittent program cannot

be made equivalent to the continuous program no matter what the checkpoint elements

are. Our verifier gets used by the synthesis loop, and the average runtime of our verifica-
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Benchmark # CP
nodes

Avg.
CP size
DINO

Avg. CP
size synthe-
sis loop

Improvement
over DINO

Synthesis
time (s)

Avg. veri-
fication run-
time

DS 5 120.8 42.4 2.8x 3500 16.5
MIDI 4 80 19 4.2x 2154 11.9
AR 2 128 22 5.8x 26290 332.8
CRC 2 96 24 4x 42 1.1
Sense 3 96 25.3 3.8x 331 3.2

Table 3.1: For each benchmark, the second column gives the number of checkpoint nodes, the
third and the fourth column give the average checkpoint size (bytes) determined by DINO and
synthesis loop respectively, the fifth column gives improvement by synthesis loop over DINO, and
the sixth and the last column give the total time taken by the synthesis loop and the average runtime
of the verifier respectively.

tion procedure ranges between 1s to 332s for benchmarks taken from previous work on

intermittent computation [44, 37]. Table 3.1 describes our benchmarks and results, and

the seventh column shows the individual average runtimes for different benchmarks. Al-

most all the verification time is spent on checking satisfiability of SMT queries. For these

experiments, we discharge our satisfiability queries through the Yices SMT solver [12].

We implemented a synthesis loop to optimize the checkpoint size. Given a set of

checkpoint locations, the synthesis loop tries to greedily minimize the checkpoint ele-

ments that need to be checkpointed. It keeps proposing smaller checkpoints (with fewer

CPelems), and it relies on our verifier to know the equivalence between the continuous

and the intermittent program, with the current checkpoint elements. The synthesis loop

starts by initializing each checkpoint node with all possible checkpoint elements (the most

conservative solution). It then iterates over each checkpoint element of all the checkpoint

nodes, and considers each checkpoint element for elimination. It greedily removes the cur-

rent checkpoint element if the remaining checkpoint elements preserve equivalence. The

loop terminates after considering all the checkpoint elements and returns the last solution.

Clearly, the capability of this synthesis loop is dependent on the robustness and capabil-

ity of the verifier. If the verifier can verify intermittent programs with fewer checkpoint

elements, only then can the synthesis loop result in a better solution.
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We took benchmarks from previous work [37, 44] (all the DINO benchmarks are in-

cluded) and used the synthesis loop and DINO to generate checkpoint elements at a given

set of checkpoint nodes. For each benchmark, Table 3.1 shows the size of checkpoints

generated by the synthesis loop and DINO for the same set of checkpoint nodes. The syn-

thesis loop is able to generate checkpoints with 4x improvement over DINO, i.e., the data

(in bytes) that needs to be checkpointed is on average 4 times less than that determined by

DINO. The synthesis loop is able to perform better than DINO because of the precision in

the model of the intermittent programs and the precision that we get while working at the

assembly level (Section 3.6). Additionally, the synthesis loop benefits from the semantic

reasoning over the syntactic reasoning done by DINO (Section 3.1).

3.6 Related work

We compare our work with the previous work on automatic instrumentation tools that

generate intermittent programs, namely DINO [37], Ratchet [56] and Mementos [44].

These tools work in different settings and employ different strategies for checkpointing.

In contrast, our work is complementary to these tools, and our verifier can be employed to

validate their output.

DINO works with mixed-volatility programs, and given the checkpoint locations, it

generates the intermittent programs automatically. It proposed a control flow based model

of intermittence, where the control flow is extended with failure edges, going from all the

nodes to the last executed checkpoints. This modeling is conservative and incomplete as it

lacks semantics and does not model the effect of the power failures, unlike ours, where the

failure edge is defined formally, in terms of the edge condition and the transfer function

of a failure edge. Consequently, the model is not suitable for an application like equiv-

alence checking. It then performs a syntactic WAR analysis (write-after-read without an

intervening checkpoint) of non-volatile data on this extended control flow graph to deter-

mine the non-volatile data that needs to be checkpointed. Since it works at a higher level
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and does not have a mapping between the machine registers and the program variables, it

results in checkpointing all the registers and all the stack slots, often resulting in unnec-

essary checkpoint elements. Further, DINO does not work with intermediate observables

and the output is not verified. Our work is complementary to DINO, in that our verifier

can be used to validate DINO’s output.

Ratchet is a fully-automatic instrumentation tool to generate intermittent programs

from continuous programs. However, it takes a radically different approach of assuming

that the whole memory is non-volatile, i.e., all program data including the stack and heap

are deemed non-volatile. Only the machine registers are assumed to be volatile. Ratchet

works by adding a checkpoint between every WAR occurrence on non-volatile data, i.e., it

breaks every WAR occurrence. By breaking every WAR occurrence, correctness of non-

volatile data across power reboots is ensured; for the machine registers, Ratchet simply

saves the live machine registers at every checkpoint. These simplifications involve a per-

formance cost, as it results in frequent checkpoints because the checkpoint locations are

now determined by these WAR occurrences. Further, it is not always possible to insert

a checkpoint between WAR occurrences within a single instruction (e.g., “inc (nv)”).

Ratchet authors also do not allow intermediate observables. Finally, Ratchet’s output can

also be verified using our tool.

Mementos is a hardware-assisted fully-automatic instrumentation tool to generate in-

termittent programs. At each checkpoint location, it relies on hardware to determine the

available energy and the checkpointing logic is only executed if the available energy is

less than a threshold level, i.e., the checkpoints are conditional. This is an interesting idea

and verification under such conditional checkpointing may seem non-trivial. Interestingly

however, our verifier does not require any modification to work in this setting. The only

difference would be that the number of failure and progress paths that get generated would

be more: a checkpoint-to-checkpoint path can now bypass a successive checkpoint, result-

ing in a checkpoint-to-checkpoint path to a second level successor. For example, in our

example, there will be also a progress path from node 1 to the exit, because the checkpoint
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at node 4 is conditional.

Systems that tolerate power failures are not uncommon, file system is one example

that is designed to tolerate power failures. The file system design has to ensure that across

power failures, the disk layout remains consistent. In addition to power failures, it has to

worry about disk write reorderings done by the disk controller. FSCQ [6] and Yggdrasil

[49] are two recent papers that formally verified the file systems under power failures

and reorderings. FSCQ is written in Coq and requires manual annotations and proofs for

verification. Yggdrasil, on the other hand is an automatic technique. In FSCQ, the spec-

ifications are given in Crash Hoare Logic (CHL) which allows programmers to specify

the expected behaviour under failures. The verification then entails proving that the file

system follows the given specifications. In Yggdrasil, the behavioral specifications are

provided as higher-level programs. The verification involves checking whether the file

system is a crash refinement of the given specification, i.e., it produces states that are a

subset of the states produced by the specification. The specifications in both the tech-

niques are crash-aware, i.e., the specification encodes the behaviour under power failures.

In contrast, we do not need specifications – our specifications are the continuous programs,

which are not aware of crashes. The intermittent program should behave as if there are

no power failures, i.e., equivalent to the continuous program. In addition, the problem

of intermediate observables is unique to our setting. It would be interesting to explore if

our technique can be used to verify file systems. Considering that our technique works

smoothly with loops, it would remove Yggdrasil’s important shortcoming of its inability

to reason about loops in a uniform way.

Smart card embedded systems are another interesting example of systems that are de-

signed to work with failures. These cards get powered by inserting in the appropriate

terminal, and suddenly removing it during an operation may leave the card’s data in an

inconsistent state. A mechanism is added to restore a consistent state on the next inser-

tion. A card has anti-tearing properties if it can always be restored to a consistent state

after tearing (removal) at every execution state. Anti-tearing properties of smart cards are
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important and previous work [1] formally verifies this by proving that tearing is safe at

every program point in Coq. This technique is not automatic and requires manual proofs.

Our work overlaps with previous work on equivalence checking in the context of trans-

lation validation [24, 9, 8, 39, 48, 13, 25, 26, 51, 42, 30, 31, 52, 36, 55]. The goal of

translation validation is to compute equivalence across compiler optimizations. On the

other hand, our work targets equivalence across the instrumentation, albeit, under power

failures. We have borrowed ideas from previous work, e.g., invariant inference is similar

to that of [8, 9, 7], which are further based on Houdini [15]. In our work, we adopt these

well-known techniques to verify intermittent programs against continuous programs.





Chapter 4

Conclusion and future directions

This thesis presents techniques to check program equivalence in a black-box manner,

which is an essential construct of program synthesis techniques like superoptimization.

We discuss equivalence checking across two different kind of transformations: compiler

optimizations (Chapter 2) and transformations to make a program work in an intermittent

environment (Chapter 3).

In the first part, we present a black-box technique to compute equivalence across com-

piler optimizations and test it across the optimizations produced by multiple compilers.

We demonstrate the importance of handling undefined behaviour while checking equiva-

lence across compiler optimizations. Our work is the first to handle undefined behaviour

related optimizations in the equivalence checking for programs containing loops. We

evaluate our equivalence checking algorithm across a large set of benchmarks, across

optimizations produced by four modern compilers, namely GCC, LLVM (clang), ICC

(Intel’s C Compiler), and CompCert (ccomp). Our technique is sound and our success

rates for black-box equivalence checking are comparable to previous equivalence check-

ing tools, which do not operate in a black-box setting. Our study also led to the discovery

of three bugs in the codebase of GCC and ICC. We also used our equivalence checker in an

32-bit x86 superoptimizer that supports a rudimentary form of loops. In our limited study,

for common routines like initializing an array and comparing elements of two arrays, the
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superoptimizer automatically synthesized optimized implementations that are up to 12x

faster than the fastest code generated by the four compilers of our experimental setup.

Superoptimization is the primary target of our work, and we expect the support for

loops to enable general-purpose loop-based optimizations in a superoptimizer. Synthesis

using our equivalence checker is a natural future step, however, this is not the only oppor-

tunity of future work. A direction related to optimization is the synthesis of optimization

patterns (instead of optimization instances). That is, one can use an equivalence checker to

synthesize the optimization passes (i.e., optimization patterns), offline, and later, use these

passes during the compilation and optimization. An equivalence checker is also an impor-

tant construct for a certifying compiler, and this is another potential line of exploration.

A certifying compiler generates an optimized implementation with its proof of correct-

ness, i.e., the proof of equivalence, for the performed transformations. One can imagine

a certifying compiler using the existing compilers and an equivalence checker. We can

get the performance of aggressively optimizing compilers with the proof of correctness. It

would be interesting to compare the performance of code generated by such a certifying

compiler with that of CompCert. Apart from the various applications, it may be interest-

ing to investigate how our technique performs together with the stronger (non black-box)

assumptions that have been employed in previous work on equivalence checking, such as

pass-by-pass verification, and knowledge of the potential transformations.

Using our equivalence checker, we also present a method to quantify the impact of un-

defined behaviour on compiler optimizations. We considered three undefined behaviour

and found overwhelming relative significance of out-of-bounds variable access assump-

tions (for optimization), compared to other types of undefined behaviour like signed in-

teger overflow and type based strict aliasing assumptions. There are hundreds of types

of undefined behaviour in C, and some of them have been bitterly debated in the past

[53, 54]. We believe that this approach to quantifying the impact of different types of

undefined behaviour on compiler optimization, can bring some insight and basis for such

debates. Moreover, such a study gives a quantified feedback to the language designers
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about the usage of different behaviour assumptions by the compiler developers. This

could be another future direction of research.

In the second part, we present a method to verify the correctness of intermittent pro-

grams. We present a precise formal model of intermittent programs (i.e, intermittence) to

correctly and exhaustively capture the behaviour of intermittent programs for all possible

scenarios of power failures. We present a robust technique to establish equivalence across

a continuous program and its intermittent version. The algorithm is robust in the sense

of its generality in handling even minimal checkpointing states, i.e, smaller checkpoints.

Furthermore, we describe two properties of observables: idempotence and commutativ-

ity, which allow us to reason about recurring executions of observables in the intermittent

environment. We evaluate our verifier by using it as a part of a synthesis tool, which iden-

tifies the program state elements that need be checkpointed for a given set of checkpoint

locations. We achieve a significant improvement in checkpoint data size over previous

state-of-the-art tools to generate intermittent programs, with the added advantage of the

proof of correctness.

In future work, it would be interesting to synthesize checkpoint-locations along with

checkpoint elements. This should free the user from specifying the checkpoint locations,

and this should result in even better checkpoints for a given cost function. Another direc-

tion would be to verify the correctness of file systems, which are also meant to tolerate

power failures. Considering that our technique is automatic and works smoothly with

loops, it would be interesting to explore if our technique can be used for verifying the

correctness of file systems.
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