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Abstract
Power ArchitectureR© processors are popular and widespread on
embedded systems, and such platforms are increasingly being
used to run virtual machines [11, 22]. While the Power Architec-
ture meets the Popek-and-Goldberg virtualization requirements for
traditional trap-and-emulate style virtualization, the performance
overhead of virtualization remains high. For example, workloads
exhibiting a large amount of kernel activity typically show3-5x
slowdowns over bare-metal.

Recent additions to the Linux kernel contain guest and host side
paravirtual extensions for Power Architecture platforms.While
these extensions improve performance significantly, they are guest-
specific, guest-intrusive, and cover only a subset of all possible
virtualization optimizations.

We present a set of host-side optimizations that achieve com-
parable performance to the aforementioned paravirtual extensions,
on an unmodified guest. Our optimizations are based on adaptive
in-place binary translation. Unlike the paravirtual approach, our
solution is guest neutral. We implement our ideas in a prototype
based on Qemu/KVM. After our modifications, KVM can boot an
unmodified Linux guest around 2.5x faster. We contrast our opti-
mization approach with previous similar binary translation based
approaches for the x86 architecture [4]; in our experience,each
architecture presents a unique set of challenges and optimization
opportunities.

Categories and Subject Descriptors C.0 [General]: Hardware/soft-
ware interface; C.4 [Performance of systems]: Performance at-
tributes; D.4.7 [Operating Systems]: Organization and Design

General Terms Performance, Design

Keywords Virtualization, Virtual Machine Monitor, Dynamic Bi-
nary Translation, Power Architecture Platforms, Architecture De-
sign, Code Patching, TLB, In-place Binary Translation, Read/write
Tracing, Adaptive Page Resizing, Adaptive Data Mirroring

1. Introduction
Embedded devices based on Power Architecture processors are
dominant for their favourable power/performance characteristics.
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Virtualization on these platforms is compelling for several applica-
tions including high availability (active/standby configuration with-
out additional hardware), in-service upgrade, resource isolation,
and many more [11, 22]. While newer Power Architecture plat-
forms have explicit support for efficient virtualization [2, 3], a ma-
jority of prevalent embedded devices run on older Power Architec-
ture platforms that use traditional trap-and-emulate style virtualiza-
tion [19]. These older platforms have power and cost advantages
and are expected to remain relevant for at least many more years.
Several systems based on these platforms are being activelyman-
ufactured (e.g., P1020 and P2020 series [16, 17], BSC9131 and
BSC9132 [1], etc.) with applications in wireless (e.g., Femtocell
solutions for LTE), high-speed networking, and more. Efficient vir-
tualization is highly desirable on these platforms.

The current virtualization approach on Power Architectureplat-
forms uses traditional trap-and-emulate. The guest operating sys-
tem is run unprivileged, causing each execution of a privileged op-
eration to exit into the hypervisor. For guest workloads executing a
large number of privileged instructions, these VM exits area ma-
jor source of performance overhead. Table 1 lists the performance
of vanilla Linux/KVM on a few common workloads, comparing
them with bare-metal performance. For example, a guest Linux
boot takes almost 5x longer when run virtualized.

The poor performance of simple trap-and-emulate style virtu-
alization has led to the inclusion of paravirtual extensions in the
Linux kernel on both guest and host sides for Power Architecture
platform [18]. The paravirtual extension in the guest rewrites the
guest (binary) kernel code at startup time to replace most privileged
instructions with hypervisor-aware unprivileged counterparts. At
guest startup, the guest creates a shared address space withthe host
through ahypercall. This shared address space is used by the hy-
pervisor to store guest state information, which is accessible to the
guest without incurring a trap. Table 1 lists KVM performance af-
ter enabling paravirtual extensions in the guest and the host. While
paravirtual extensions improve performance significantlyover un-
modified KVM, this approach has obvious shortcomings related to
requirements of being able to access and modify guest sourcecode,
inability to optimize dynamically loaded code (e.g., loadable mod-
ules), etc. These constraints make this approach ineffective and/or
impractical in many real-world and commercial settings.

We propose a host-side adaptive in-place binary translation
mechanism to optimize guest privileged instructions at runtime,
and improve the performance of unmodified (and untrusted) guests.
Our approach is more general than the paravirtualization approach;
we can optimize dynamically generated/loaded code, and can
gracefully handle self-referential and self-modifying code in the
guest. The second-last column in Table 1 summarizes the perfor-
mance results of our host-side binary translation approach.



S.No. Benchmark Description Bare-metal KVM KVM-PV KVM-BT Speedup
Running Time insec (lower is better)

1 linux-boot Boots a Linux 3.0 guest 6.5 30.03 11.79 12.39 2.4x
2 echo-spawn Spawns 1000 echo processes 1.4 21.34 6.5 6.85 3.1x
3 find Executes ’find / -name

temp’
0.39 1.89 0.67 0.83 2.3x

4 lame MP3 encoder 0.44 0.56 0.49 0.50 1.1x
lmbench microbenchmarks Latency inmsec (lower is better)

5 syscall Writes one word to /dev/null 0.0002 0.020 0.003 0.003 6.7x
6 stat Invokes the stat system call 0.003 0.033 0.006 0.007 4.7x
7 fstat Invokes fstat system call on an

open file
0.001 0.021 0.004 0.004 5.3x

8 open/close Opens a temporary file for
reading and closes it immedi-
ately

0.006 0.067 0.013 0.023 2.9x

9 sig-hndl Installs a signal handler 0.001 0.024 0.004 0.004 6x
10 pipe Passes a word from process A

to process B and back to A
and measures round-trip time

0.003 0.066 0.033 0.041 1.6x

11 fork Callsfork andexit 1.084 6.641 1.640 1.679 3.9x
12 exec Callsfork, exec andexit 3.065 20.543 6.254 6.681 3.1x
13 sh Callsfork, exec sh -c and

exit
6.645 45.164 13.842 14.719 3.1x

Unixbench microbenchmarks Raw Score in 10 seconds (higher is better)
15 dhrystone2 Focuses on string handling 49697211 48110141 49014236 48957180 1.02x
16 syscall Calls the getpid system call 7863359 124854 818940 652829 5.2x
17 cswitch Spawns a child process with

which it carries on a bi-
directional pipe conversation

420968 60746 307136 240653 4.0x

18 proc-create Forks and reaps a child that
immediately exits.

44667 2470 9432 8714 3.5x

19 pipe Writes 512 bytes to a pipe and
read them back

3324145 188208 1111797 923218 4.9x

20 hanoi Calls compute-intensive hanoi
program

8853023 8689401 8846663 8836219 1.02x

Unixbench Filesystem microbenchmarks Throughput in KBps with 256 bufsize and 2000 max blocks
(higher is better)

21 file-read Read from a file 182340 11524 58647 49830 4.3x
22 file-write Write to a file 99850 10500 39500 38200 3.6x
23 file-copy Transfers data from one file to

another
59612 5432 22225 20070 3.7x

Table 1. Performance comparison of bare-metal, unmodified KVM, KVM-paravirtual, and our (KVM-BT) approach. The details of the
benchmarks, our test system, and the various KVM variants isdiscussed in Section 5. The last column computes the speedupof KVM-BT over
KVM.

Our host-side virtualization optimizations are based on adaptive
in-place binary translation. On observing a large number ofVM
exits by a guest instruction, we translate that instructionin-place
to directly execute the corresponding VMM logic (thus avoiding
an exit). In doing so, we directly modify the guest’s addressspace.
This is in contrast to afull binary translation approach that trans-
lates the entire guest code (e.g., VMware’s x86-based binary trans-
lator [4]). We compare the two approaches in more detail later in
this section and also in Section 6.1.

Modifying the guest’s address space has obvious pitfalls. Firstly,
we must ensure correctness in presence of arbitrary branches in the
code. For example, it would be incorrect if the guest could poten-
tially jump to the middle of our translated code. To ensure correct-
ness, we replace a privileged guest instruction by at most one trans-
lated instruction in the guest’s address space. Because instructions
are fixed length and word aligned on Power Architecture platform,
this ensures that there can never be a branch to the middle of our

translated code. Any branch could only reach either the beginning
or the end of our replacement instruction.

Not all guest privileged instructions can be emulated by just one
replacement instruction. Such instructions are instead replaced with
a branch to a code fragment in a host-managed translation cache.
This branch is implemented as a single instruction in the guest’s
address space, and the translation cache is allocated in guest vir-
tual address space such that it always remains accessible tothis
instruction. Finding, allocating, and protecting appropriate space
for the translation cache was our second challenge. Branch instruc-
tions using direct-addressing on Power Architecture platforms can
only address±32MB relative/absolute offsets in the guest virtual
address space, and this places constraints on the placementof the
translation cache. It is possible for the guest to be alreadyusing
all such virtual address space that satisfies the required placement
constraints. We present a scheme tostealdata pages from guest’s
address space to place the translation cache. To protect against



guest accesses, we mark the pages in the stolen spaceexecute-
only. This causes the hardware to trap into the VMM on any guest
read/write access to this space. We call this mechanismread/write
tracing. Read/write tracing is also used to maintain safety against
in-place guest modification, in presence of self-referential and self-
modifying code.

Finally, read/write tracing can cause a large number of page
faults, especially due to false sharing. The problem is exacerbated
on embedded Power Architecture platform, where OS typically
uses huge pages to reduce TLB pressure. We found that such page
faults can significantly reduce performance. We implement two
important optimizations to address this problem, namelyadaptive
page resizingandadaptive data mirroring.

Our work differs from previous x86-based binary transla-
tion work by VMware [4] in many ways, with most differences
stemming from differences in the two architectures. First,unlike
VMware’s binary translator, our approach translates in-place. As
we discuss later, this approach requires certain architectural fea-
tures but has advantages in design simplicity and performance.
Second, VMware’s translator places its translation cache and other
data structures at the top of the guest virtual address spaceand relies
on x86 segmentation hardware to protect them from guest access.
As we discuss later, these design choices are not suited to Power
Architecture platforms, due to Power Architecture ISA addressing
constraints and lack of segmentation hardware. We create space
for our translation cache by stealing data pages from guest address
space and protect it using read/write tracing. Further, address space
manipulation on embedded Power Architecture platforms present
unique challenges due to constraints on page sizes, alignments,
and TLB cache sizes. These challenges are unique to embedded
architectures, and have not been observed in previous work on x86
virtualization. We address these challenges using our adaptive page
resizing algorithm. Finally, we present and evaluate an important
optimization to reduce read/write tracing overhead, namely adap-
tive data mirroring. In this optimization, we make a copy of the
traced pages in another unused part of the guest address space and
adaptively translate read/write accesses to this data suchthat they
do not trap.

In summary, this paper presents an efficient host-side optimiza-
tion solution for Power Architecture virtualization. Our approach,
based on in-place binary translation (also called in-placeBT in the
rest of the paper), significantly improves the performance of an un-
modified guest. We present novel solutions to deal with challenges
like address space allocation for the translation cache andoptimiz-
ing read/write tracing overhead for small software-managed TLB
caches. We study an interesting three-way tradeoff on the embed-
ded platform between the number of VM exits due to privileged
instructions, the number of tracing page faults, and the number of
TLB misses due to TLB pressure, and offer an optimization so-
lution. The paper is organized as follows. Section 2 characterizes
the performance of KVM on Power Architecture platform and dis-
cusses the typical sources of overhead. Section 3 discussesour in-
place binary translation approach. We discuss read/write tracing
and the associated optimizations in Section 4. Section 5 presents
our experiments and results, and finally Sections 6-7 conclude.

2. Performance Characterization of KVM on
Power Architecture Platforms

We first characterize KVM’s performance on embedded Power Ar-
chitecture platforms. We perform our experiments on Linux/KVM
running on Freescale P2020 embedded Power Architecture plat-
form. On our test platform, the virtualization overheads oftrap-and-
emulate style virtualization can be up to 15x for compute-intensive
workloads executing a large number of privileged instructions (Ta-

Opcode Description
mfmsr Move from machine state register
mtmsr Move to machine state register
mfspr Move from special purpose register
mtspr Move to special purpose register
wrtee(i) Write MSR External Enable
rfi Return from Interrupt
tlbwe Writes a TLB entry in hardware
Exception Description
dtlbmiss Page fault on data due to TLB not

present
itlbmiss Page fault on instruction due to TLB not

present
dsi Page fault due to insufficient privilege

Table 2. Sources of VM Exits: Opcodes and Exceptions
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Figure 1. Main sources of VM exits

ble 1). The primary source of overhead are VM-exits due to guest
privileged instructions. Table 2 lists the most executed privileged
opcodes and briefly explains their semantics. Figure 1 showsthe
percentage of exits caused due to each opcode. Only five distinct
opcodes result in more than 80% of exits on all four benchmarks.
Table 3 presents the frequency profile of VM exits on the Linux
boot benchmark in more detail (similar profiles are seen on other
benchmarks too).

We next profile the number of distinct program counter (PC)
values that cause exits. Figure 2 shows a histogram on the number
of distinct PC values and the frequency of exits on them. Table 4
presents the exit profile of different PCs in more detail for the Linux
boot benchmark. For example, around 92% of all exits are caused
by only 93 distinct PCs for guest Linux boot. Other benchmarks
also show similar locality for VM exits. These measurementscon-

Instruction class Exit count % of total exits
mfspr 4484245 33.8
wrtee 2792109 21.1
mtspr 2307647 17.4
mfmsr 575302 9.5
rfi 413847 4.3
mtmsr 391813 3.1
dtlbmiss 198239 1.5
itlbmiss 192046 1.4

Table 3. Main sources of VM exits and their frequency on guest
Linux boot (refer Table 2 for semantics of these opcodes)
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Figure 2. Histograms representing the number of distinct exit-
causing PCs and their corresponding exit frequency. For example,
93 distinct PCs result in>20,000 exits each during Linux boot.

Exit count PC count % of total exits
>20000 93 91.9
>10000 23 3.1
>5000 68 4.2
>2000 12 0.3
>1000 17 0.2
<1000 420 0.2

Table 4. Exit frequency information for distinct PC values. For
example, 93 distinct PCS result in>20,000 exits each, accounting
for 91.9% of total VM exits.

firm that binary translating only the most frequently executed op-
codes/PCs is likely to produce large improvements.
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Figure 3. Figure showing patching of multiple instructions with
branch instruction.
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Figure 4. Figure showing patching of multiple instructions using
bl instruction. This approach fails in presence of arbitrary guest
jumps.

3. In-place Binary Translation
We monitor PCs causing a large number of VM exits and binary
translate them to avoid these exits. We translate guest instructions

in-place. Some privileged instructions can be emulated by single-
instruction translations. For example,mfmsr is translated to aload
instruction to the address of the emulatedmsr register. Other op-
codes which can be translated to single instructions aremfspr and
mtspr (refer Table 2 for semantics of these opcodes). These op-
codes requiring single-instruction translations cause the bulk of
privileged exits in common workloads (refer Figure 1). We call the
privileged instruction that was patched, thepatch-site.

Other privileged opcodes require translation to multiple instruc-
tions. For such opcodes, we store the emulation code in the trans-
lation cache, and patch the original instruction with abranch in-
struction to jump to its emulation code. The emulation code in the
translation cache is terminated with another branchback to the
instruction following the patch-site (see Figure 3). Because each
patch-site requires a different terminating branch instruction, a new
translation is generated for each patch-site.

The translated code needs to access either the emulated guest
state or the translation cache. Both these data structures need to
be allocated in the guest virtual address (VA) space for efficient
virtualization. We now discuss the resulting placement constraints
on these data structures.

Single-instruction translations access the emulated state using
load and store instructions. To avoid any register overwrites,
these memory access instructions must encode the address within
the opcode. Power Architecture ISA allows the specificationof a
signed 16-bit displacement. This implies that the emulatedstate
must lie either in the top or bottom 32KB of the guest address
space. For many present-day operating systems, the top 32KBof
virtual address (VA) space is often unused and can be used to store
the emulated state. If such address space is not available, single-
instruction translations can be converted to multiple-instruction
translations to allow more placement flexibility, as we discuss next.

For multiple-instruction translations, we replace the privileged
instruction with a branch to the translation cache. Branch instruc-
tions are of two types: direct and indirect. On Power Architec-
ture, direct branches specify a signed 26-bit absolute or PC-relative
(relative to current program counter) offset (branch <addr> or
branch <pc+addr>), while indirect branches specify a 32-bit reg-
ister operand (e.g.,blr). Further, a branch instruction could choose
to save the PC in the link register (e.g.,bl <addr>). For example,
bl (branch and save return address in link register) is typically used
for function calls, andblr (branch to the address saved in link reg-
ister) for function returns.

Hence, for multiple-instruction translations, the address of
the translated code (in the translation cache) must be accessible
through the 26-bit offset specified in thebl instruction. The 26-bit
offset could either be PC-relative or absolute. A PC-relative 26-bit
offset constrains the translated code to lie within±32MB of the
patch-site. This is usually not possible because such address space
is already occupied by the guest and/or its applications. Anabso-
lute 26-bit offset constrains the translated code to lie either in the
top 32MB (0xfe000000-0xffffffff) or in the bottom 32MB (0x0-
0x2000000) of the virtual address (VA) space. Most present-day
operating systems reserve the top VA space for the kernel. Insuch
systems, it is possible to use the top 32MB for storing the transla-
tion cache, provided the kernel is not already using those addresses.
However, a branch back to the instruction following the patch-site
will still require a 32-bit offset specification. We discusstwo of the
many approaches we tried to solve this problem:

1. Usingbl andblr: We placed the translation cache in the top
32MB of the VA space and replaced the patch-site with abl
instruction (with absolute addressing) that saves the address of
the following instruction in the link register. The translated code
is then terminated with ablr.



2. Usingbranch: We placed the translation cache within±32MB
of the patch-site and used thebranch instruction to jump to
it. The translated code is terminated with abranch back to
the address following the patch-site. Because the patch-site
is within ±32MB of the patch-site, the branch back can be
implemented using thebranch opcode.

The first approach (usingbl andblr) clobbers the link register,
and there is no way to save and restore the link register without
replacing multiple guest instructions. As we discussed earlier, it
is dangerous to replace multiple guest instructions for a single
patch-site as a guest could potentially jump to the middle ofour
replacement code (as shown in Figure 4). Hence, we abandoned
this approach.

We used the second approach of placing the translation cache
within ±32MB of the patch-site and using thebranch opcode to
jump to it and back. Finding unused space for the translationcache
within ±32MB of the patch-site is usually not possible because
the guest is typically already using these addresses. In this case,
we steala contiguous address space from the data sections of the
guest. The data sections of the guest are identified by parsing the
kernel header (embedded system bootloaders typically workby
having access to guest kernel images in standard formats, e.g.,
ELF). The original data at the stolen guest addresses is copied into
hypervisor space, and is replaced by our translation cache contents.
All instructions accessing the stolen address space are made to trap
(using read/write tracing) and the hypervisor supplies thecorrect
value. If no space in any of the guest’s data sections satisfies our
±32MB placement constraints, we simply forego that optimization
opportunity.

To store the emulated guest register state (which will be ac-
cessed by our translated code), we search forunusedguest VA
space. We assume that the guest maps its kernel at the top of its VA
space (e.g., Linux maps the kernel starting at0xc0000000), and
that if a page table mapping does not exist there, the corresponding
VA space is unused. We allocate this unused VA space for storing
the emulated guest state. If the guest later uses this VA space (by
creating a mapping for it in the TLB), we move our guest emulated
state to another location after invalidating all current translations.
We assume that the guest kernel will not access a kernel virtual ad-
dress without a priori mapping it in its VA space (e.g., it will not use
demand paging for the kernel pages). Violation of this assumption
by a guest could cause incorrect guest behaviour. Almost allcom-
mercial and open operating systems available today for embedded
Power Architecture platforms conform with this assumption. We
expect the user to disable our host-side optimizations (using a flag
to the Qemu/KVM command line invocation for example) if he ex-
pects the guest to behave in a non-conforming manner. He could
also choose to install a kernel module in the guest (similar to the
“tools” mechanism used in popular virtualization software) to al-
locate unused guest virtual address space for the host. For aLinux
guest, we simply use the top 64 KB of the VA space to store our
emulated guest registers; this space is never used by Linux.We call
this theshared space, as it is shared between the guest and the host.
As we discuss later, we also use the shared space for storing the
data cache for adaptive data mirroring.

Compared to full binary translation, in-place binary translation
is simpler and results in higher performance. Full binary transla-
tion incurs an overhead of a potentially extra terminating jump af-
ter every basic block because typically, code layout in the transla-
tion cache is different from guest’s code layout. More importantly,
full binary translation approaches incur significant overhead for in-
direct jumps (e.g., thecall/ret microbenchmark in [4] incurs a
400% overhead). VMware hides this overhead by only translating
kernel code and running user applicationsdirectly on hardware,
by observing that translation is not required for safe execution of

most user code on most guest operating systems. A fully secure
BT implementation, however, will require translation of all user
code, and will show significant overhead due to indirect branches
for user-level compute-intensive workloads (like SPECInt). Also,
VMware’s full binary translator will always show significant over-
head for compute-intensive kernel-level workload involving in-
direct branches. Our in-place binary translation approachavoids
these overheads.

On the other hand, in-place BT requires certain architectural
features. In our implementation, we rely on Power Architecture
ISA’s fixed-length aligned nature of instructions and its support for
separate user and kernelrwx page protection bits to safely imple-
ment in-place BT. These features are not available on x86, perhaps
making in-place BT a misfit for x86. Our work highlights that sub-
tle architectural variations result in widely different optimization
solutions. Further, in-place BT has its own challenges regarding
translation cache placement, dealing with self-referential and self-
modifying code, and optimizing TLB utilization. Our work pro-
vides solutions to these challenges.

4. Read/Write Tracing and Associated
Optimizations

Read/write tracing is required to emulate access to space stolen for
the translation cache and to protect against read/write accesses to
the privileged instructions that were translated in-place. Embedded
Power Architecture platforms use software-managed TLBs, and all
TLB manipulation instructions are privileged. Hence, the hypervi-
sor traps all guest TLB accesses and has full control on all address
space manipulation activity by the guest. We use hardware page-
protection bits to implement read/write tracing. EmbeddedPower
Architecture platforms provide orthogonalrwx protection bits per
page for both user/supervisor privilege levels. Using these bits, we
can mark a guest page containing a patch-site execute-only in user
mode. This allows the execution of an instruction on this page to
proceed uninterrupted (necessary for execution of both patched in-
struction and translation code), but any read or write access causes
a page fault (and a VM exit). On a page fault, the hypervisor emu-
lates the faulting instruction in software. We call this method mem-
ory read/write tracing (similar to VMware’s memory write tracing
on x86 [4]).

We implement software emulations of memory instructions in
KVM to handle the resulting page faults. There are 36 different
memory opcodes in Power Architecture ISA that need to be em-
ulated. For read instructions, we simply return the original con-
tents of the memory address in the appropriate destination operand.
The original contents may be obtained either from the present
guest page (if the address does not intersect with a patch-site), or
from a hypervisor table storing the original contents (if the address
matches a patch-site or if the address belongs to the stolen trans-
lation cache address space), or both. A similar strategy is used for
write instructions.

Read/write tracing results in extra traps (tracing page faults) into
the hypervisor. Most of these traps are either due to accesses to
stolen space for translation cache or due to false sharing (i.e., access
to unpatched guest data lying on the same page as the patch-site).
The false sharing problem is aggravated by the huge page sizes
used on embedded architectures to reduce TLB pressure. We also
observe a number of traps due to read/write accesses to the patch-
sites themselves, especially at guest boot time (for Linux guest).
We found that Linux scans (and potentially modifies) its own code
sections at boot time on Power Architecture platforms, and could
get confused if it observes an incorrect value (due to in-place BT).
Also, the kernel (or modules) could potentially read/writeits own



code even after booting. These extra traps could degrade guest
performance.

We implement two optimizations to reduce tracing page faults.
Our first optimization adaptively resizes guest pages to reduce false
sharing. Our second optimization adaptively mirrors guestdata
(which is causing a large number of faults) to reduce the number of
tracing page faults. For the second optimization, we also translate
the faulting instruction to access the mirrored data. We next discuss
both these optimizations.

4.1 Adaptive Page Resizing

Most embedded operating systems use huge pages (Linux uses a
256MB page) for the kernel on Power Architecture platforms to re-
duce TLB pressure. Typical TLB sizes on embedded Power Archi-
tecture processors are small. For example, the software-managed
TLB on our test system is a combination of a 16-entry fully-
associative cache of variable-sized page table entries anda 512-
entry 4-way set-associative fixed-size (4KB) page table entries. The
latter is used mostly for user pages. A faster L1 TLB lookup cache
is implemented in hardware, and all invalidations to maintain con-
sistency with the software-programmed L2 TLB are done automat-
ically. The variable-pagesize TLB cache supports 11 different page
sizes: 4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, and
4G. Further a page of sizeS must beS-byte aligned in physical
and virtual address spaces.

The hypervisor traps guest accesses to the TLB, and creates
appropriateshadow TLB entriesthat are loaded into hardware while
the guest is running (similar to the hardware-managed shadow page
tables used in x86 [4]). The guest cannot directly access theshadow
TLB entries, as guest’s accesses to the TLB entries are trapped
and emulated by the hypervisor. This allows the hypervisor full
flexibility in choosing the size and privileges of its shadowTLB
entries. For example, the hypervisor can setup multiple shadow
TLB entries, to shadow a single guest TLB entry representinga
larger page. To minimize TLB pressure, the hypervisor typically
uses one shadow TLB entry per guest TLB entry. For example, if
the guest uses 4MB pages, then the shadow TLB will also have
corresponding entries for 4MB pages. We implement read/write
tracing by disabling read/write privileges in the shadow TLB entry.
Disabling read/write privileges on a TLB entry representing a large
page predictably causes an unacceptably large number of tracing
page faults (every kernel data access becomes a page fault onLinux
if we disable read/write privileges on the 256MB kernel page).
Similarly, always using 4KB pages for the shadow TLB causes an
unacceptably large number of TLB misses. We evaluate both these
schemes in our experiments.

A more intelligent strategy is required to size the guest shadow
TLB entries to balance the tradeoff between tracing page faults due
to false sharing and TLB misses. The adaptive page resizing al-
gorithm resizes shadow TLB entries dynamically and adaptively.
After patching a privileged guest instruction, if we noticea high
number of tracing page faults on that page, webreakthe page into
smaller fragments (and the corresponding TLB entry into smaller
TLB entries). After breaking, we only mark the TLB entry contain-
ing the patch-site execute-only, and leave the remaining unmodi-
fied. To minimize false sharing, we keep the size of the page con-
taining the patch-site as small as possible, without adversely affect-
ing performance. All other pages created by this fragmentation are
sized as large as possible, to minimize the overall number ofTLB
entries. While smaller pages reduce false sharing, they also result
in increased TLB pressure.

After fragmentation of a large page, if we still notice a high
number of page faults on the smaller page (which we do not want
to break further to avoid TLB pressure), we remove all patch-sites
on that page and re-instate read/write privileges on it. Thedecision

on whether to remove the patch-sites on a page, depends on the
tradeoff between the number of privileged-instruction exits and the
number of tracing page faults on that page.

Breaking a large page potentially creates many smaller pages
due to alignment restrictions. For example, if the kernel has mapped
itself using a 256MB page at virtual address (0xc0000000,0xcfffffff),
and a patch is to be applied at address 0xc0801234, and we have
decided to break the patch-site page into a 4MB page, the new set
of TLB entries will be for addresses
(0xc0000000,0xc03fffff);(0xc0400000,0xc07fffff);
(0xc0800000,0xc0bfffff);(0xc0c00000,0xc0ffffff);
(0xc1000000,0xc1ffffff);(0xc2000000,0xc2ffffff);
(0xc3000000,0xc3ffffff);(0xc4000000,0xc7ffffff);
(0xc8000000,0xcbffffff);(0xcc000000,0xcfffffff). Notice that each
page of sizeS is S-byte aligned andS is always one of the values
supported by the architecture.

We use two policies to determine the size of the smaller pages,
depending on the nature of the page faults. We found that typically
tracing page faults occur either in bursts (a large number offaults
occur on a small set of closely-located addresses on a singlelarge
page) or in scans (faults are spread over a large region with asmall
number of faults per address). For bursts, the ideal configuration is
to resize the pages such that all faulting addresses belong to one
small page (which can be untraced). Hence, on observing a burst,
we try and break that page such that all patch-sites on that page
belong to the “shortest” page. We discuss the tradeoffs involved
in choosing the size of the shortest page in our experiments.If we
observe that the number of faults on the shortest page is still greater
than thresholdT , we untrace it by removing all its patch-sites. For
scans, where the tracing page faults are distributed acrossa large
address range, the page is broken into two halves and the halfwith
larger number of tracing page faults is untraced. We do this only if
the number of tracing page faults is greater than thresholdT (this
threshold is the same as that used for bursts).

For both bursts and scans, if we find that neighbouring pages
have identicalrwx privileges as a result of untracing, we oppor-
tunistically merge them into a larger page to reduce TLB pres-
sure. These checks for opportunistic merging are performedevery
100ms.

The thresholdT is determined dynamically, as it depends on
the tradeoff between the number of privileged instruction exits and
tracing page faults on that page. On tracing a page, we recordthe
number of privileged instruction exits that this page was experienc-
ing, before it got patched and traced. This serves as our threshold
T for that page. If in future, the number of tracing page faultswe
are experiencing on this page is greater thanT , we untrace it by
removing all its patches. On each tracing or untracing eventon a
page, the thresholdT is updated and is used to determine whether
to again trace or untrace the page during future execution. Hence,
after a page is untraced,T is also used to determine whether to re-
trace it or not (we retrace if the number of privileged instruction
exits> T ). Our dynamic thresholding mechanism relies on the as-
sumption that the expected number of privileged instruction exits
(or page faults) after untracing (or after retracing) will be similar
to what had been observed previously. To avoid long-term effects
of transient guest behaviour, we implement graceful aging by de-
creasingT linearly with time.

The adaptive page resizing algorithm automatically sizes (and
resizes) the pages containing both the stolen address spacefor the
translation cache and the patch-sites. The algorithm also untraces
and retraces pages dynamically to minimize VM exits. Our algo-
rithm aims to effectively handle the tradeoff between privileged-
instruction exits, tracing page faults, and TLB misses. We evaluate
the effectiveness of our algorithm in our experiments.



4.2 Adaptive Data Mirroring

After implementing adaptive page resizing, we still observed up to
50% performance overhead due to tracing page faults. One source
for this overhead are the tracing page faults on the data region stolen
for the translation cache. We found that another major source of
this overhead were tracing page faults due to accesses to function
dispatch tables and exception handler tables which were co-located
with kernel code. Often these tables share the same 4KB region as
the privileged kernel code accessing them, rendering our adaptive
page resizing algorithm ineffective on these accesses.

We avoid these faults by dynamically monitoring such page
faults, adaptively copying the data being accessed to the shared
space (mirroring), and translating the instructions accessing this
data to read/write from the new location. This optimizationpre-
vents future page faults on this data. The mirrored data is main-
tained as a cache of word-sized values in the shared space. The
translation code for the faulting instruction checks the cache to
see if the data has been mirrored. If the check succeeds, a value
is returned-from/updated-in (for read/write respectively) the cache,
else the read/write operation is executed on the original address
(potentially resulting in a trap and emulate). These translations of
memory access instructions are also stored in the translation cache.

To maintain guest correctness, the pages containing patches for
faulting instructions (due to tracing) need to be read/write traced
too. This can potentially result in a chain-effect: tracingof these
new pages can cause more tracing page faults, resulting in more
pages to be patched and traced, resulting in more tracing page
faults, and so on. . . . Fortunately, we do not see this chain effect
in practice. The faulting instructions that are patched typically
reside on a page that is already being traced, causing this cycle to
converge on the first iteration. Intuitively, kernel code which causes
privileged VM-exits or tracing page faults is likely to be spatially
close, and will eventually lead to a small set of traced pages. We
observed this behaviour in all our experiments with Linux guests.
Even if the read/write tracing chain becomes long, we rely onour
adaptive page resizing algorithm to break this chain by removing
the trace on a page (and all the associated patch-sites) if that page
experiences a large number of page faults.

5. Experimental Results
We implemented our optimizations in Linux/KVM version 3.0,
which has paravirtual extensions for Power. To measure perfor-
mance ofunmodifiedKVM and KVM with our optimizations, we
disabled the paravirtual extensions. We perform our experiments
on Freescale QorIQ P2020 platform, which is optimized for single-
threaded performance per watt for networking and telecom appli-
cations. Our system has a 1.2GHz processor with 32KB L1 cache
and 512 KB L2 cache. We use RAMdisk for our experiments to
eliminate I/O overheads.

Our benchmarks are described in Table 1. We use four mac-
robenchmarks, namelylinux-boot, echo-spawn, find and
lame. These benchmarks have also been used in a previous per-
formance study [13]. The others are microbenchmarks from the
widely-usedlmbench [14] and Unixbench [10] toolsets. These
toolsets are routinely used for system benchmarking.linux-boot
and echo-spawn execute a large number of privileged instruc-
tions, whilefind executes relatively fewer privileged instructions.
lame is largely computation-bound with mostly user-level unpriv-
ileged computation and some I/O. Hence,lame seldom exits to
the hypervisor and shows virtualized performance close to bare-
metal. We do not report performance comparisons on purely user-
level compute-intensive workloads because they exhibit near bare-
metal performance for all cases. We also do not report performance
comparisons on device-bound (e.g., network-bound or disk-bound)

workloads because they are limited by the performance of theem-
ulated device. In this work, we focus on CPU virtualization and do
not study optimizations for I/O virtualization.

We implement the following optimizations in Linux/KVM:

• In-place binary translation, stealing address space for transla-
tion cache, and read/write tracing (In-place-BT)

• Adaptive page resizing (Adapt-PR)

• Adaptive data mirroring and translation of faulting instructions
(Adapt-DM). Adapt-DM includesAdapt-PR.

Table 5 summarizes our performance results before and afterthese
optimizations. Different workloads show different improvements.
The improvement primarily depends on the three-way tradeoff be-
tween the number of VM exits due to privileged instructions,the
number of tracing page faults, and the number of page faults due
to increased TLB pressure (TLB misses). Figures 5 and 6 show the
reduction in VM exits and page faults due to all these three reasons
for each workload, before and after our optimizations (the full raw
data is also available on the last page). The exits due to access vio-
lation faults (Acc. Viol.) are primarily due to tracing page faults,
but may also include certain access violations due to the guest it-
self. We call exits due to execution of privileged instructions in user
mode privileged exits. We do not report exit statistics forlmbench
microbenchmarks because thelmbench suite is configured to run a
variable number of iterations in each run, making it difficult to com-
pare the number of exits across different optimizations. Similarly,
we do not report exit statistics forUnixbench Filesystem mi-
crobenchmarks because the number of exits on these benchmarks
depends on the throughput achieved in that run, which makes it
difficult to compare them across different optimizations. We also
show the reduction in exits for the paravirtual solution (KVM-PV)
for comparison. The number of exits inKVM-PV can be considered
as a lower-bound on the number of exits achievable by a host-side
binary translation solution.

Just usingIn-place-BT does not improve performance for
a Linux guest. In fact, we find that read/write tracing severely
impairs performance because the guest uses a huge 256MB page
to map the kernel’s code and data. If we trace the entire 256MB
page, a Linux guest does not boot even after hours. Even if we
break the guest kernel page uniformly into large fragments of size
16MB each (and trace only those fragments which contain patch-
sites), it takes multiple hours to boot a Linux guest. On the other
hand, if we uniformly break all guest kernel pages into small4KB
fragments, we observe a slowdown of 370% (over base KVM) for
linux-boot, due to increased TLB pressure resulting in a large
number of TLB misses. Similar performance degradation is seen
on other benchmarks too (e.g., 300% onecho-spawn).

The second column in Table 5 shows the performance of
KVM with Optimizations In-place-BT + Adapt-PR. Because
Adapt-PR localizes the trace to a small page and adaptively un-
traces and retraces pages, we observe a significant runtime im-
provement on all benchmarks. We first discuss the microbench-
marks. The average improvement in running time inlmbench,
Unixbench, and Unixbench Filesystem microbenchmarks is
263%, 217%, and 160% respectively. The correlation betweenthe
performance improvement and reduction in the total number of
VM exits (Figures 5, 6) is evident. Different microbenchmarks ex-
ecute different number of privileged instructions and showdiffer-
ent corresponding reductions. On macrobenchmarks, we observe
an average runtime improvement of 168%, with the maximum im-
provement seen inecho-spawn, which also shows a corresponding
reduction (89%) in total number of VM exits. For both microbench-
marks and macrobenchmarks, we notice an increase in the number



Benchmark KVM Adapt-PR Adapt-DM

Running Time insec (lower is better)
linux-boot 30.03 14.39 12.39
echo-spawn 21.34 8.9 6.85
find 1.89 1.67 0.83
lame 0.56 0.51 0.50

lmbench Latency inmsec (lower is better)
syscall 0.020 0.003 0.003
stat 0.033 0.023 0.007
fstat 0.021 0.006 0.004
open/close 0.067 0.040 0.023
sig-hndl 0.024 0.004 0.004
pipe 0.066 0.068 0.041
fork 6.641 2.221 1.679
exec 20.543 8.971 6.681
sh 45.164 19.265 14.719

Unixbench Raw Score (higher is better)
dhrystone2 48110141 48988135 48957180
syscall 124854 748931 652829
cswitch 60746 148344 240653
proc-create 2470 6378 8714
pipe 188208 411186 923218
hanoi 8689401 8839987 8836219
Unixbench Filesystem Throughput in KBps (higher is better)
file-read 11524 26286 49830
file-write 10500 16400 38200
file-copy 5432 9783 20070

Table 5. Performance Improvements obtained by Adaptive Page Resizing (Adapt-PR) and Adaptive Data Mirroring (Adapt-DM) optimiza-
tions.
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Figure 5. Percentage reduction in VM exits for macrobenchmarks.

of TLB misses and access violations (due to tracing page faults) on
average. The net effect however remains largely positive.

We analyzeAdapt-PR in more detail. We use three algorithm
parameters for our implementation: a burst is detected if weobserve
more than 5000 faults in a 100ms interval; the dynamic threshold
T (to decide whether to untrace/retrace a page) decreases linearly
with time at the rate of 500 exits per 100ms; and on a split due
to a burst of tracing page faults, the shortest page size is set to
64KB. We found through experimentation that the performance
of our algorithm is largely insensitive to the first two parameters,
i.e., differences in performance are seen only at large changes to
these parameters. For the last parameter dictating the shortest page
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Figure 6. Percentage reduction in VM exits for Unixbench mi-
crobenchmarks.

size on a TLB split due to bursty tracing page faults, we trieda
few different values. Figure 7 shows our results. We found that if
the shortest page is configured to 4KB (the shortest possible), the
number of TLB misses increases significantly due to increased TLB
pressure. If the shortest page is too large (e.g., 256KB), the number
of privileged exits remains high (large number of tracing page-
faults due to false sharing causes the page to get untraced resulting
in a large number of privileged exits). We found a shortest-page
limit of 64KB to work best, and hence use that for our algorithm.
Figure 8 also shows the TLB configuration over time (as decided
by ourAdapt-PR algorithm) forlinux-boot.



One 4MB page (0−4)
Four 1MB pages (4−8)
Two 4MB pages (8−16)
Three 16MB pages (16−64)
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Three 1MB pages (5−8)
Two 4MB pages (8−16)
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Three 64MB pages (64−256)
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Three 1MB pages (5−8)
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Three 64MB pages (64−256)
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Figure 8. TLB configurations over time (as dictated byAdapt-PR algorithm) duringlinux-boot. The numbers in brackets represent
address ranges in MB. KVM starts with one 256MB TLB entry, which is broken into thirteen different TLB entries (1). Steps (2), (3), (4), (5)
are page splits due to scan pattern of tracing page faults. Steps (6) and (7) merge small fragments into larger ones opportunistically. Steps (1)
through (7) finish in the first 1-2 seconds of bootup time. The configuration then shuttles between the last two configurations (8), (9), (10),
(11), ..., splitting on observing bursty tracing page faults and merging opportunistically. Most of the time during this workload is spent in the
second last configuration (thirteen different TLB entries).

Figure 7. Exit profile of Linux boot for different lower bounds on
the shortest-page inAdapt-PR.

Our next optimization,Adapt-DM, further reduces tracing
page faults, resulting in further average runtime improvement of
157%, 112%, and 209% inlmbench, Unixbench, andUnixbench
Filesystem microbenchmarks respectively, and 137% in mac-
robenchmarks. For this optimization, we allocated a 512B cache of
mirrored values (mirror cache) in the shared space. We separately
allocated 60KB of space to mirror the contents of the space stolen
for the translation cache. We allocated the latter separately from
the mirror cache to reduce checking overhead in theAdapt-DM
translation code for accesses to the translation cache space (which
is the common case). The value 60KB was chosen (instead of the
full 64KB of the stolen space) to allow this space to reside inthe
64KB page already reserved for the shared space, hence reduc-
ing the number of extra TLB entries (see Figure 9). Improvements
due toAdapt-DM are seen in almost all our benchmarks with the
highest improvement of 201% recorded onfind among the mac-
robenchmarks. The only exception isUnixbench syscall where
Adapt-DM surprisingly causes a 12% slowdown overAdapt-PR.
On further analysis, we found that this happened because of alarge
number of evictions in the mirror cache.syscall is a synthetic

microbenchmark and incidentally shows an exceptionally large
number of accesses to the last 4KB of the 64KB space stolen for
the translation cache. Because this 4KB region is mirrored in the
mirror cache, this causes cache pressure and evictions. We do not
expect such behavior in real workloads. There is a clear correlation
between the runtime improvement and the reduction in the number
of tracing page faults (Figures 5,6). The average reductionin the
number of tracing page faults is greater than 99% onUnixbench
microbenchmarks and 96% on macrobenchmarks.
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Figure 9. Address space layout before and afterAdapt-DM

Adapt-DM optimization also reduces the number of privileged-
instruction exits and TLB misses on many of our benchmarks. This
happens due to an interesting indirect effect. WithoutAdapt-DM,
certain guest code pages are adaptively broken into smallerpages
and privileged-instruction patches on some of these smaller pages
are removed to reduce tracing page faults. WithAdapt-DM, the
number of tracing page faults decreases. This allowsAdapt-PR
to not have to kick in, allowing pages to remain unbroken and
privileged-instructions to remain patched. This reduces both TLB
misses and number of privileged instruction exits. We observe
this effect in almost all our benchmarks. We notice up to 33%
decrease in the number of TLB misses (forUnixbench cswitch),
and up to 52% decrease in the number of privileged-instruction
exits (forUnixbench pipe). Finally, we note that bothAdapt-PR
and Adapt-DM work together for our optimization solution. As
we have already seen,Adapt-PR alone is unable to provide the
best achievable performance. Similarly,Adapt-DM alone (without



Adapt-PR) causes mirroring of data in large pages causing high
pressure on our mirror cache resulting in significant performance
degradation.

Overall, the three optimizations together provide performance
comparable to paravirtualization, without having to modify the
Linux guest. When compared to bare-metal, the virtualization over-
head is still significant. Much of this overhead is due to extra host-
side processing required for memory management. For example,
all TLB access instructions in the guest need to exit to hypervi-
sor. Similarly, all instructions that switch supervisor/user privilege
levels in guest need to also switch their shadow TLB entries,thus
requiring an exit to the hypervisor. Because almost all our bench-
marks focus intensely on virtualization-sensitive operations, they
all execute many such privileged instructions that requireVM ex-
its, resulting in low performance relative to bare-metal. These over-
heads also existed in VMware’s software and hardware virtualiza-
tion approaches before the introduction of hardware nestedpage
tables [8]. For example, theforkwait benchmark in [4] is similar
to ourecho-spawn and takes 36.9 seconds on VMware’s software
virtualization platform and 106.4 seconds on VMware’s hardware
virtualization platform, compared to 6.0 seconds on bare-metal.
i.e., 6x and 18x slowdowns on software and hardware virtualiza-
tion platforms respectively. The 6x slowdown forforkwait on x86
software virtualization platform is comparable to the 5x slowdown
seen on our system forecho-spawn. The introduction of hardware
nested page tables on newer x86 platforms allows workloads like
forkwait to execute with very few VM exits, thus eliminating
these large overheads. These qualitative comparisons withx86 vir-
tualization lead us to believe that our optimizations achieve close
to the best possible performance for Power Architecture platforms
achievable with software-only techniques. Newer Power Architec-
ture processors optimize memory management for virtualization
[20] and could potentially further bridge this gap between virtu-
alized and bare-metal performance. Our optimizations target the
older Power Architecture processors, which are also expected to
remain highly relevant for many more years for their popularity
due to power and cost advantages.

We next measure the overhead and effectiveness of our adap-
tive page resizing algorithm. We statically configured the shadow
TLB to the best observed configuration for Linux boot benchmark.
In this configuration, we loaded the shadow TLB with 13 entries:
one entry of size 4MB (0xc0000000-0xc03fffff), four entries of
size 1MB each (covering0xc0400000-0xc07fffff), two entries
of size 4MB each (covering0xc0800000-0xc0ffffff), three en-
tries of size 16MB each (covering0xc1000000-0xc3ffffff),
and three entries of size 64MB each (covering
0xc4000000-0xcfffffff). Of these 13 entries, the first two en-
tries were marked execute-only (kernel code is nearly 5MB long)
and the rest remained unmodified. We compared the performance
of this configuration with our adaptive page resizing algorithm. We
disabledAdapt-DM optimization for this experiment. Also, to avoid
effects due to the placement of the translation cache onAdapt-PR
algorithm, we allocated the translation cache in the guest explic-
itly (using our custom “tools” module installed in the guest) for
this experiment. To distinguish this configuration from that used
in previous experiments onAdapt-PR, we call itAdapt-PR+. Ta-
ble 6 summarizes our results. Figures 10 and 11 show the corre-
sponding reduction in VM exits and page faults. Identical config-
urations were used for bothStatic-TLB and Adapt-PR in this
experiment. For Linux boot benchmark, we observe that our re-
sizing algorithm performs within 1-2% of the statically optimal
solution. For other benchmarks, our resizing algorithm performs
within 18% of the static configuration, sometimes outperforming it
by up to 15%. In all cases whereAdapt-PR+ shows overhead over
Static-TLB, we notice that our adaptive algorithm first breaks the

guest into a large number of smaller pages, and then merges them
back. This overhead of splitting and merging and the resulting ex-
tra VM exits is reflected in the runtime comparison. These pro-
grams (esp. microbenchmarks) run for a short time; the overhead of
Adapt-PR+ becomes smaller as the programs run longer. We also
studied the programs whereAdapt-PR+ outperformsStatic-TLB
(e.g.,lmbench sh). In these cases, the static TLB configuration
was not the optimal choice and our page resizing algorithm resulted
in better performance.
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Figure 10. Comparison of VM exits for macrobenchmarks
(Static-TLB vs.Adapt-PR+)
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Figure 11. Comparison of VM exits for Unixbench microbench-
marks (Static-TLB vs.Adapt-PR+)

6. Discussion
6.1 Comparison with Full Binary Translation

We call a binary translator which translates all guest instructions
a full binary translator. VMware’s x86-based binary translator [4]
is an example of such a system. A full binary translator translates
all guest code, and not just the privileged instructions (asdone in
our system). The advantage of our approach is its simplicityand
often higher performance (e.g., indirect branches performpoorly
on a full binary translator). The disadvantage of our approach is
that we change the guest’s address space directly and have tothus
monitor guest’s accesses to our modified regions (which we do
using read/write tracing). As we demonstrate in this work, it is
possible to do this correctly and efficiently using our proposed
optimizations for embedded Power Architecture platforms.

Our in-place binary translation approach relies on the fixed-
length word-aligned nature of Power Architecture instructions. We



Benchmark Static-TLB Adapt-PR+

Running Time insec (lower is better)
linux-boot 12.98 13.02
echo-spawn 8.0 7.80
find 0.90 0.98
lame 0.51 0.51

lmbench Latency inmsec (lower is better)
syscall 0.007 0.009
stat 0.011 0.012
fstat 0.008 0.009
open/close 0.022 0.026
sig-hndl 0.008 0.009
pipe 0.053 0.062
fork 2.068 2.020
exec 7.792 7.457
sh 17.076 16.565

Unixbench Raw Score (higher is better)
dhrystone2 48833854 48904947
syscall 344877 286057
cswitch 160575 159256
proc-create 7101 7679
pipe 557045 469538
hanoi 8835343 8690019
Unixbench Filesystem Throughput in KBps (higher is better)
file-read 28346 24151
file-write 22450 19050
file-copy 12201 10408

Table 6. Measuring the overhead and performance of adaptive page resizing (Adapt-PR+) algorithm, in comparison to a statically configured
TLB (Static-TLB). The static TLB configuration was setup such that it provides the best performance for the Linux boot benchmark. We
disableAdapt-DM optimization and allocate translation cache explicitly from the guest (using guest tools) for this experiment.

ensure that a guest cannot possibly jump to the middle of our trans-
lation by relying on this property. Because the x86 architecture has
variable-sized non-aligned instructions, in-place binary translation
is much harder (or perhaps impossible) to implement correctly on
x86.

We also rely on the ability to read/write trace guest pages
by marking themexecute-only. This is possible on embed-
ded Power Architecture platform due to the availability of sep-
arate read-write-execute page protection bits. In contrast,
the x86 architecture provides onlyread-only andno-execute
(NX) bits, which are less powerful, and insufficient to implement
execute-only privileges at page granularity.

Subtle differences in architectures greatly impact VMM design.
We believe that our approach is perhaps a misfit for the x86 archi-
tecture for reasons outlined above. Similarly, a full binary translator
is perhaps an overkill for embedded Power Architecture virtualiza-
tion, given that our lightweight adaptive in-place binary translator
can achieve the same (or better) effect with less engineering effort.
The interplay of full binary translation with small TLB sizes also
remains to be studied.

6.2 Fidelity Limitations

While our virtualization solution providesnear-completearchitec-
tural fidelity to the guest, there remain two corner-case fidelity lim-
itations:

1. We steal space from the guest OS’s data section to store our
translation cache. As we protect the translation cache only
against read/write access (and not execute access), fidelity
could get violated if the guest OS branches to an address in
its data section. Such behaviour is not expected of a “well-
behaved” OS.

2. The second fidelity violation is due to storage of emulated
guest register state in unused guest VA space. As discussed in
Section 3, fidelity could get violated if the guest accesses this
unused VA spacewithout first creating a corresponding TLB
mapping.

Despite these corner-case fidelity limitations, we guarantee correct-
ness by relying on known behaviour of the guest OS. Similar lim-
itations also exist in VMware’s x86-based virtualization solution
which combines direct execution with binary translation [4].

6.3 Relevance to Other Architectures

Our work provides an interesting contrast to previous work on
x86 virtualization [4], and brings forth interesting implications of
seemingly innocuous architectural differences. These differences
are: x86 platforms have segmentation, embedded Power Archi-
tecture platforms have software-loaded TLB, variable pagesizes,
and orthogonalrwx protection bits; Power Architecture platforms
have fixed length aligned instructions, x86 platforms have vari-
able length instructions. Embedded Power Architecture platforms
share some of these features with other architectures (e.g., MIPS,
SPARC, ARM) and some of our techniques are relevant in these
contexts. However, in our experience, reaching the “optimal” solu-
tion for any architecture typically requires a separate detailed study
of its features and limitations.

Our techniques are also relevant to the newer generation of
Power Architecture processors which have hardware virtualization
support. A combination of software and hardware techniquescan
provide better performance than plain hardware virtualization [5].
Although our implementation and experiments are based on a 32-
bit Power Architecture processor, our solution is also relevant to
64-bit Power Architecture platforms.



6.4 Other Related Work

Binary translation has been previously used in various contexts,
namely cross-ISA portability [7, 21], hardware-based performance
acceleration [12], dynamic runtime compiler optimizations [6],
program shepherding [9], testing and debugging [15]. Binary trans-
lation was first used for efficient virtualization on the x86 archi-
tecture by VMware [4], and our work is perhaps closest to their
approach. The difference is in the translator’s design, as previously
discussed in Section 6.1.

The recent extension to the Linux kernel for Power Architec-
ture paravirtualization contrasts with our approach. While the par-
avirtual modifications require extensive changes to the Linux ker-
nel, our approach can achieve comparable performance with only
host-side optimizations. Unlike the paravirtual approach, we can
optimize dynamically generated/loaded code and ensure correct
behaviour in presence of self-referential and self-modifying guest
code. We also do not require a trusted guest. The host-guest shared
spaces are guest-specific and do not grant a guest any more priv-
ileges than it already has. An untrusted guest can at most crash
itself.

We present our experiments and results on a uniprocessor guest
but our ideas are equally relevant to a multiprocessor guest. For a
multiprocessor guest, these optimizations must be implemented for
each virtual CPU (VCPU). To reduce synchronization overheads,
separate translation and data caches need to be maintained for each
VCPU. This minimizes synchronization overheads at the potential
cost of marginally higher space overheads. We expect our optimiza-
tions to show equivalent performance improvements on a multipro-
cessor.

7. Conclusion
We discuss the design and implementation of an efficient host-side
virtualization solution for embedded Power Architecture proces-
sors. We propose and validate a set of host-side optimizations,
namely in-place binary translation(including stealing of address
space for translation cache and read/write tracing),adaptive page
resizing, and adaptive data mirroring. Of these, in-place binary
translation and adaptive page resizing are new techniques,not
previously used for x86-based software virtualization, highlight-
ing that different architectures offer different opportunities and
challenges, and thus require different optimization solutions. The
Linux/KVM-based prototype system developed on our ideas shows
significant performance improvements on common workloads,
and compares favourably to previously-proposed paravirtual ap-
proaches. We hope our techniques add to the “optimization toolset”
for efficient virtualization on other (newer) instruction set architec-
tures in future.
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Raw Data on Exit Count

Unmodified KVM
Priv. Exits TLB misses Acc. Viol.

------------------------------------------------------
linux-boot 11509859 402274 13823
echo-spawn 9829128 419191 18005
find 802777 2486 46
lame 60312 1932 23
unix-dhrystone2 154460 973 40
unix-syscall 22541901 953 41
unix-cswitch 26459239 1102 49
unix-proc-create 41882 621658 60036
unix-pipe 28714485 979 41
unix-hanoi 4005414 914 40
------------------------------------------------------

In-place-BT + Adapt-PR
Priv. Exits TLB misses Acc. Viol.

------------------------------------------------------
linux-boot 27537 334458 1062541
echo-spawn 36464 503341 536993
find 1487 2889 650758
lame 636 2085 3126
unix-dhrystone2 7663 1186 1224
unix-syscall 5752 1140 1158
unix-cswitch 616643 8288 6020365
unix-proc-create 102315 845228 640888
unix-pipe 19102 1221 10012062
unix-hanoi 224709 1158 2032
------------------------------------------------------

In-place-BT + Adapt-PR + Adapt-DM
Priv. Exits TLB misses Acc. Viol.

------------------------------------------------------
linux-boot 38367 345035 77467
echo-spawn 35014 506295 18624
find 851 2782 4701
lame 644 2114 46
unix-dhrystone2 7648 1140 38
unix-syscall 6324 1159 40
unix-cswitch 610986 5567 49
unix-proc-create 99081 846053 60026
unix-pipe 9185 1165 75
unix-hanoi 224970 1169 876
------------------------------------------------------

KVM-PV
Priv. Exits TLB misses Acc. Viol.

------------------------------------------------------
linux-boot 40451 295672 14181
echo-spawn 34602 427351 17011
find 719 2392 46
lame 625 1916 24
unix-dhrystone2 7667 1001 40
unix-syscall 5197 948 41
unix-cswitch 608549 1059 49
unix-proc-create 98569 652042 60034
unix-pipe 7648 968 42
unix-hanoi 224660 943 41
------------------------------------------------------

Static-TLB
Priv. Exits TLB misses Acc. Viol.

------------------------------------------------------
linux-boot 41770 320941 452482
echo-spawn 35929 485870 513294
find 908 2676 98113
lame 637 2052 3124
unix-dhrystone2 7663 1197 6158
unix-syscall 12791 1135 6006963
unix-cswitch 614104 1260 3608524
unix-proc-create 101427 815074 897920
unix-pipe 15742 1144 6008821
unix-hanoi 224929 1116 151104
------------------------------------------------------

Adapt-PR+
Priv. Exits TLB misses Acc. Viol.

------------------------------------------------------
linux-boot 48560 326825 460001
echo-spawn 35823 492129 518255
find 965 2655 98145
lame 636 2085 3126
unix-dhrystone2 7656 1127 6132
unix-syscall 15105 1130 6008149
unix-cswitch 616684 7702 3609690
unix-proc-create 100796 835408 897302
unix-pipe 18762 1113 6010468
unix-hanoi 225211 1088 151308
------------------------------------------------------


