
Effective use of SMT solvers for Program
Equivalence Checking through Invariant

Sketching and Query Decomposition

Shubhani Gupta, Aseem Saxena, Anmol Mahajan, and Sorav Bansal

Indian Institute of Technology Delhi

Abstract. Program equivalence checking is a fundamental problem in
computer science with applications to translation validation and auto-
matic synthesis of compiler optimizations. Contemporary equivalence
checkers employ SMT solvers to discharge proof obligations generated
by their equivalence checking algorithm. Equivalence checkers also in-
volve algorithms to infer invariants that relate the intermediate states
of the two programs being compared for equivalence. We present a new
algorithm, called invariant-sketching, that allows the inference of the re-
quired invariants through the generation of counter-examples using SMT
solvers. We also present an algorithm, called query-decomposition, that
allows a more capable use of SMT solvers for application to equiva-
lence checking. Both invariant-sketching and query-decomposition help
us prove equivalence across program transformations that could not be
handled by previous equivalence checking algorithms.

1 Introduction

The general problem of program equivalence checking is undecidable. Several
previous works have tackled the problem for applications in (a) translation vali-
dation, where the equivalence checker attempts to automatically generate a proof
of equivalence across the transformations (translations) performed by a compiler
[1,2]; and (b) program synthesis, where the equivalence checker is tasked with
determining if the optimized program proposed by the synthesis algorithm is
equivalent to the original program specification [3,4]. For both these applications,
soundness is critical, i.e., if the equivalence checker determines the programs to
be equivalent, then the programs are guaranteed to have equivalent runtime be-
haviour. On the other hand, completeness may not always be achievable (as the
general problem is undecidable), i.e., it is possible that the equivalence checker
is unable to prove the programs equivalent, even if they are actually equiva-
lent. For example, recent work on black-box equivalence checking [5] involves
comparing the unoptimized (O0) and optimized (O2/O3) implementations of
the same C programs in x86 assembly. While their algorithm guarantees sound-
ness, it does not guarantee completeness; their work reported that they could
prove equivalence only across 72-76% of the functions in real-world programs,
across transformations produced by modern compilers like GCC, LLVM, ICC,

II

C0 int g[144];
C1 int example0 () {
C2 int sum = 0;
C3 for (int i = 0; i < 144; i++)
C4 {
C5 sum = sum + g[i];
C6 }
C7 retval = sum /144; // return
C8 }

A0 example0_compiled:
A1 r1 := 0; //sum’
A2 r2 := 144; //loop index(i’)
A3 r3 := 0; //array index(a ’)
A4 loop:
A5 r1 := r1 + [base_g + 4*r3];
A6 r2 := r2 - 1;
A7 r3 := r3 + 1;
A8 if (r2 != 0) goto loop
A9 rax := mul -shift -add(r1 ,144)

Fig. 1: C-function example0() and abstracted version of its compiled assembly (as
produced by gcc -O2). We use a special keyword retval to indicate the location that
holds the return value of the function. In assembly, sum and i variables are register
allocated to r1 and r2 respectively and r3 is an iterator for indexing the array g.
Division operation in C program is optimized to mul-shift-add instructions in assembly.
base g represents the base address of array g in memory. [x] is short-hand for 4 bytes
in memory at address x.

and CompCert. Our work aims to reason about equivalence in scenarios where
these previous algorithms would fail.

To understand the problem of equivalence checking and the general solu-
tion, we discuss the proof of equivalence across the example pair of programs
in Figure 1. The most common approach to proving that this pair of programs
is equivalent involves the construction of a simulation relation between them. If
ProgA represents the C language specification and ProgB represents the opti-
mized x86 implementation, a simulation relation is represented as a table, where
each row is a tuple ((LA, LB), P) such that LA and LB are program locations
in ProgA and ProgB respectively, and P is a set of invariants on the live pro-
gram variables1 at locations LA and LB . Program locations represent the next
instruction (PC values) to be executed in a program and the live program vari-
ables are identified by performing liveness analysis at every program location.
A tuple ((LA, LB), P) represents that the invariants P hold whenever the two
programs are at LA and LB respectively. A simulation relation is valid if the
invariants at each location pair are inductively provable from the invariants at
all its predecessor location pairs. Invariants at the entry location (the pair of en-
try locations of the two programs) represent the equivalence of program inputs
(Init) and form the base case of this inductive proof. If we can thus inductively
prove equivalence of return values at the exit location (the pair of exits of the two
programs), we establish the equivalence of the two programs. For C functions,
the return values include return registers (e.g., rax and rdx) and the state of
the heap and global variables. Formally, a simulation relation is valid if:

Init⇔ invariants(EntryA,EntryB) (1)

∀
(L

′
A,L

′
B)→(LA,LB)

invariants
(L

′
A,L

′
B)
⇒

(L
′
A,L

′
B)→(LA,LB)

invariants(LA,LB) (2)

1 For assembly code, variables represent registers, stack and memory regions.

III

Location Invariants (P)

(C0, A0) g 7→ base g

(C3, A4) 144-i = i’ , sum = sum’, i = a’, g 7→ base g

(C7, A9) (retvalC = raxA), g 7→ base g

Init: g 7→ base g,MA =∆ MB

Table 1: Simplified simulation relation for the programs in Fig. 1. MA and MB are
memory states in ProgA and ProgB respectively. =∆ represents equivalent arrays except
for ∆, where ∆ represents the stack region.

Here, invariants(LA,LB) is the same as P and represents the conjunction of

invariants in the simulation relation for the location pair (LA, LB), L
′

A and L
′

B

are predecessors of LA and LB in programs ProgA and ProgB respectively, and
⇒

(L
′
A,L

′
B)→(LA,LB)

represents implication over the paths L
′

A → LA and L
′

B → LB

in programs ProgA and ProgB respectively.

Almost all compiler optimizations are similarity preserving, i.e. the optimized
program simulates the original program, and hence approaches that rely on the
construction of a simulation relation usually suffice for computing equivalence
across compiler optimizations. There have been proposals in previous work [6]
to handle transformations that do not preserve similarity (but preserve equiv-
alence), but we do not consider them in this paper. In our experience, modern
compilers rarely (if ever) produce transformations that do not preserve simi-
larity. Table 1 shows a simulation relation that proves the equivalence between
the two programs in Figure 1. Given a valid simulation relation, proving equiv-
alence is straight-forward; however the construction of a simulation relation is
undecidable in general.

Static approaches to equivalence checking attempt to construct a simula-
tion relation purely through static analysis. On the other hand, data-driven
approaches [7,8] extract information from the program execution traces to infer
a simulation relation. In either case, the construction of a simulation relation
involves the inference of the correlation between program locations (i.e., the first
column of the simulation relation table) and the invariants at each correlated
pair of locations (i.e., the second column of the simulation relation table).

A data-driven approach to inferring a correlation involves identifying pro-
gram locations in the two programs where the control-flow is correlated across
multiple execution runs, and where the number and values of the live variables
in the two programs are most similar. Also, the inference of invariants in these
data-driven approaches is aided by the availability of actual runtime values of
the live program variables.

On the other hand, static approaches usually employ an algorithm based
on the guess-and-check strategy. We discuss a static algorithm for automatic
construction of a simulation relation in Section 2. Essentially it involves an in-
cremental construction of a simulation relation, where at each incremental step,

IV

the invariants at the currently correlated program locations are inferred (using
a guess-and-check strategy) and future correlations are guided through the in-
variants inferred thus far. These guess-and-check based approaches are able to
infer only simple forms of invariants and run into scalability bottlenecks while
trying to infer more complex invariants. This is why data-driven approaches are
more powerful because they can sidestep these scalability limitations by being
able to infer more expressive invariants using real execution data.

However, data-driven approaches cannot work in the absence of a sufficient
number of execution traces. Further, these approaches fail if certain portions
(or states) of the program remain unexercised (uncovered) through the execu-
tion runs. We provide a counter-example guided strategy for invariant inference
that allows us to scale our guess-and-check procedure much beyond existing
approaches to guess-and-check. Our strategy resembles previous data-driven ap-
proaches; however, we are able to do this without access to execution traces,
and only through counter-examples provided by modern SMT solvers. In partic-
ular, our algorithm involves sketch generation through syntax-guided synthesis,
where a sketch is a template for an invariant. We use counter-examples to try
and fill the sketch to arrive at a final invariant. To our knowledge, this is the
first sketching-based approach to invariant inference and is the first contribution
of our work. We call our algorithm invariant-sketching.

Several steps during the construction of a simulation relation involve proof-
obligations (or checks) that can be represented as SMT satisfiability queries and
discharged to an SMT solver. We find that modern SMT solvers face tractability
limitations while computing equivalence across several compiler transformations.
This is primarily due to two reasons:

1. Often, equivalence across these types of transformations are not captured in
higher-order decision procedures in SMT solvers, and it appears that mod-
ern SMT solvers resort to expensive exponential-time algorithms to decide
equivalence in these cases;

2. Even if these transformations are captured in SMT solvers, the composition
of multiple such transformations across relatively large program fragments
makes it intractable for the SMT solver to reason about them.

For the transformations that are not readily supported by modern SMT solvers,
we employ simplification passes that can be applied over SMT expression DAGs2,
before submitting them to the SMT solver. Simplification passes involve rewrit-
ing expression DAGs using pattern-matching rules. We find several cases where
the discharge of certain proof obligations during equivalence computation is
tractable only after our simplification passes have been applied. We believe that
our observations could inform SMT solvers and guide their optimization strategy.

The latter scalability limitation is due to the composition of multiple compiler
transformations in a single program fragment. To tackle this, we propose a novel
algorithm called Query-decomposition. Query decomposition involves breaking
down a larger query into multiple sub-queries: we find that while an SMT solver

2 A DAG is a more compact representation of an expression tree where identical
subtrees in the same tree are merged into one canonical node

V

may find it hard to reason about one large query, it may be able to discharge
tens of smaller queries in much less total time. Further, we find that counter-
examples obtained from previous SMT solver queries can be used to signifi-
cantly prune the number of required smaller queries. Using query-decomposition
with counter-example based pruning allows us to decide more proof-obligations
than were previously possible, in turn allowing us to compute equivalence across
a larger class of transformations/programs. The simplification passes and our
query-decomposition algorithm with counter-example based pruning are the sec-
ond contribution of this paper.

In both these contributions, we make use of the get-model feature [9] avail-
able in modern SMT solvers to obtain counter-examples. Previous approaches
to equivalence checking have restricted their interaction with SMT solvers to a
one-bit SAT/UNSAT answer; we demonstrate algorithms that can scale equiva-
lence checking procedures beyond what was previously possible through the use
of solver-generated counter-examples.

Paper organization: Section 2 provides background on automatic construc-
tion of a simulation relation - our work builds upon this previous work to improve
its scalability and robustness. Section 3 presents a motivating example for our
work. Section 4 describes our novel sketching-based invariant inference proce-
dure. Section 5 focusses on some important limitations of SMT solvers while
reasoning about compiler optimizations, and discusses our simplification passes
and the query-decomposition algorithm in this context. Section 6 discusses the
experiments and results. Section 7 summarizes previous work and concludes.

2 Background: automatic generation of simulation proof

Automatic construction of a provable simulation relation between a program
and its compiled output has been the subject of much research with several
motivating applications. Our algorithm resembles previous work on black-box
equivalence checking [5], in that it attempts to construct a simulation relation
incrementally as a joint transfer function graph (JTFG). The JTFG is a graph
with nodes and edges, and represents the partial simulation relation computed
so far. A JTFG node (LA, LB) represents a pair of program nodes LA and LB

and indicates that ProgA is at LA and ProgB is at LB . Similarly, a JTFG edge
(L

′

A, L
′

B)→ (LA, LB) represents a pair of transitions L
′

A → LA and L
′

B → LB in
ProgA and ProgB respectively. Each JTFG node (LA, LB) contains invariants
relating the live variables at locations LA and LB in the two programs respec-
tively. Further, for each JTFG edge, the edge conditions (edgecond) of its two
individual constituent edges (L

′

A → LA and L
′

B → LB) should be equivalent.
An edge condition represents the condition under which that edge is taken, as a
function of the live variables at the source location of that edge.

The algorithm for constructing a JTFG is succinctly presented in Algo-
rithm 1. Section 3 describes the running of this algorithm on an example pair of
programs. The JTFG is initialized with a single node, representing the pair of en-
try locations of the two programs. It also has the associated invariants encoding

VI

Algorithm 1 Algorithm to construct the JTFG (simulation relation). edgesB is a
list of edges in ProgB in depth-first search order. The AddEdge() function returns a
new JTFG jtfg’, formed by adding the edge to the old JTFG jtfg.

Function CorrelateEdges(jtfg, edgesB)
if edgesB is empty then

return LiveValuesAtExitAreEq(jtfg)
end
edgeB ← RemoveFirst(edgesB)
fromPCB ← GetFromPC(edgeB)
fromPCA ← FindCorrelatedPC(jtfg, fromPCB)
edgesA ← GetEdgesTillUnroll(ProgA, fromPCA, µ)
foreach edgeA in edgesA do

jtfg’ = AddEdge(jtfg, edgeA, edgeB)
PredicatesGuessAndCheck(jtfg’)
if IsEqualEdgeConditions(jtfg’) ∧ CorrelateEdges(jtfg’, edgesB) then

return true
end

end
return false

equivalence of program values at entry (base case). The loop heads, function calls
and exit locations in ProgB are then chosen as the program points that need to
be correlated with a location in ProgA. All other program points in ProgB are
collapsed by composing their incoming and outgoing edges into composite edges.
The CorrelateEdges() function picks one (composite) ProgB edge, say edgeB ,
at a time and tries to identify paths in the source program (ProgA) that have
an equivalent path condition to edgeB ’s edge condition. Several candidate paths
are attempted up to an unroll factor µ (GetEdgesTillUnroll()). All candidate
paths must originate from a ProgA location (fromPCA) that has already been cor-
related with the source location of edgeB (fromPCB). The unroll factor µ allows
equivalence computation across transformations involving loop unrolling. The
path condition of a path is formed by appropriately composing the edge condi-
tions of the edges belonging to that path. The edge edgeB is chosen in depth-first
search order from ProgB , and also dictates the order of incremental construc-
tion of the JTFG. The equivalence of the edge condition of ProgB with the path
condition of ProgA is computed based on the invariants inferred so far at the
already correlated JTFG nodes (IsEqualEdgeConditions()). These invariants,
inferred at each step of the algorithm, are computed through a Houdini-style
[10] guess-and-check procedure. The guesses are synthesized from a grammar,
through the syntax-guided synthesis of invariants (PredicatesGuessAndCheck).
These correlations for each edge (edgeB) are determined recursively to allow
backtracking (the recursive call to CorrelateEdges()). If at any stage, an edge
(edgeB) cannot be correlated with any path in ProgA, the function returns with
a failure, prompting the caller frame in this recursion stack, to try another cor-
relation for a previously correlated edge.

VII

PredicatesGuessAndCheck() synthesizes invariants through the following
grammar of guessing: G = { FA ⊗FB }, where operator ⊗ ∈ {<,>,=,≤,≥}
and FA and FB represent the live program values (represented as symbolic ex-
pressions) appearing in ProgA and ProgB respectively. The guesses are formed
through a cartesian product of values in ProgA and ProgB using the patterns in
G. Our checking procedure is a sound fixed-point computation which keeps elim-
inating the unprovable predicates until only provable predicates remain (similar
to Houdini). At each step of the fixed point computation, for each guessed predi-
cate at each node, we try to prove it from current invariants at every predecessor
node (as also done in the final simulation relation validity check in equation 2).

It is worth noting that we need to keep our guessing procedure simple to keep
this procedure tractable; it currently involves only conjunctions of equality and
inequality relations between the variables of the two programs. We find that this
often suffices for the types of transformations produced by production compilers.
In general, determining the right guesses for completing the proof is undecidable:
a simple guessing grammar keeps the algorithm tractable, increasing grammar
complexity significantly increases the runtime of the equivalence procedure. In
our work, we augment the guessing procedure to generate invariant-sketches and
use counter-examples to fill the sketches to arrive at the final invariants.

3 Running example

N0:C0

N1:C3

N2:C7

Cond: True
TF: i=sum=0

Cond: i≥144
TF:

retval=sum/144

Cond: i<144
TF: sum+=g[i]

i++

(a) Specification

N0’:A0

N1’:A4

N2’:A9

Cond: True
TF: r2(i’)=144

r1(sum’)=r3(a’)=0

Cond: r2==0
TF: rax=r1⊕144

Cond: r2!=0
TF: r1+=g[r3]
r2--; r3++

(b) Optimized binary

Fig. 2: TFGs of C program and its optimized implementation for the program in Fig. 1.

Figure 2 shows the abstracted versions (aka transfer function graphs or
TFGs) of the original C specification and its optimized assembly implementation
for the program in Figure 1. TFG nodes represent program locations and TFG

VIII

edges indicate control flow. Each TFG edge is associated with its edge-condition
and its transfer function (labelled as Cond and TF respectively in the figure).
Notably, TFG and JTFG representations are almost identical. Across the two
TFGs, the program has undergone multiple compiler transformations, namely
(a) loop reversal (i counts from [0..144) in the original program but counts
backwards from [144..0) in the optimized program), (b) strength-reduction of
the expensive division operation to a cheaper combination of multiply-shift-add
(represented by ⊕), and (c) register allocation of variables sum and i. All these
are common optimizations produced by modern compilers, and failing to prove
equivalence across any of these (or their composition) directly impacts the ro-
bustness of an equivalence checker. (As an aside, while the general loop-reversal
transformation does not preserve similarity, it preserves similarity in this ex-
ample. In general, we find that modern compilers perform loop-reversal only if
similarity is preserved).

Applying Algorithm 1 to this pair of TFGs, we begin with a JTFG with
one node representing the start node (N0,N0’). Our first correlation involves
correlating the loop heads of the two programs by adding the node (N1,N1’) to
the JTFG. At this point, we need to infer the invariants at (N1,N1’). While all
other invariants can be inferred using the grammar presented in the procedure
PredicatesGuessAndCheck in Section 2, the invariant i’ = 144-i is not gener-
ated by our grammar. This is so because the grammar only relates the variable
values computed in the two programs, but the value 144 - i is never computed
in the body of the source program.

One approach to solving this problem is to generalize our guessing grammar
such that it also generates invariants of the shape {CAFA +CBFB +C1 = 0},
where FA and FB represent program values (represented as symbolic expres-
sions) appearing in ProgA and ProgB respectively, and CA, CB , and C1 are
the coefficients of FA, FB , and 1 respectively in this linear equality relation.
CA, CB , and C1 could be arbitrary constants. We call this extended grammar
G′, the grammar of linear-equality relations. The problem, however, is that this
grammar explodes the potential number of guessed invariants, as the number of
potential constant coefficients is huge. In contrast, a data-driven approach may
identify the exact linear-relation through the availability of run-time values. We
present an algorithm to tractably tackle this in a static setting through the gen-
eration of invariant-sketches in our grammar. An invariant-sketch is similar to
an invariant, except that certain parts of the sketch are left unspecified. e.g., in
our case, the constant coefficients CA, CB , and C1 are left unspecified in the
generated sketch. These unspecified constants are also called holes in the sketch.

We restrict CA to be 1 and CB ∈ {−1, 0, 1} and find that this suffices for the
types of transformations we have encountered in modern compilers. Generalizing
to arbitrary CA and CB requires careful reasoning about bitvector arithmetic
and associated overflows, and we leave that for future work. However, notice that
we place no restrictions on C1 — e.g., for 64-bit arithmetic, C1 ∈ [−263..263−1],
making it prohibitively expensive to enumerate all the possibilities.

IX

4 Invariant sketches and the use of counter-examples

We now discuss a syntax-guided invariant-sketching algorithm that uses counter-
examples generated by SMT solvers to fill the sketches. The guessing grammar
G′ generates invariant-sketches, in addition to the invariants generated by G.
For example, one of the guesses generated using G′ for our running example
will be (i + CBi

′ + C1 = 0). Recall that i represents a variable in ProgA and
i’ represents a variable in ProgB and CB , C1 represent holes in the generated
sketch. Notice that we omit CA as it is restricted to be = 1 in G′.

Algorithm 2 InvSketch algorithm to infer invariant between vary of ProgA and varx
of ProgB at Node N.

Function InvSketch(N, e, varx, vary)
N1A = QuerySatAssignment(e, true)
if N1A is empty then

return (Inv 7→ {False})
end
N2A = QuerySatAssignment(e, (varx, vary) != N1A)
if N2A is empty then

return (Inv 7→ {(varx, vary) = N1A})
end
CoeffCB ,C1 = InferLinearRelation(N1A, N2A)
Inv = FillSketch(CoeffCB ,C1)
return Inv

For each invariant-sketch, we try to infer the potential values of the holes
by querying the SMT solver for a satisfying assignment for the variables at the
current node. A satisfying assignment NA at a node N represents a mapping
from program variables to some constants; this mapping should be satisfiable,
assuming that the invariants at a predecessor node P and the edge condition
for the edge P → N are true. For example, if a predecessor node P has an
inferred invariant x=y and the edge condition and transfer function across the
edge P → N are {true} and {x=x+1, y=y+2} respectively, then the assignment
x=3,y=3 is not satisfiable at N . On the other hand, the assignment x=3,y=4

is satisfiable at N . To obtain satisfying assignments for variables at a node N ,
we first obtain a satisfying assignment PA for the invariants at P and the edge
condition for the edge P → N through an SMT query. We then apply the transfer
function of the edge P → N on PA to obtain NA.

We define a procedure called QuerySatAssignment(e = P → N,

condextra). This procedure generates a satisfying assignment (if it exists) for
N , given the current invariants at P and the edge-condition of edge
e = P → N . Further, the satisfying assignment must satisfy the extra
conditions encoded by the second argument condextra. Algorithm 2 presents
our algorithm to infer the invariant, given an invariant-sketch, using satisfying
assignments generated through calls to QuerySatAssignment(). The algorithm

X

infers the values of the holes CB and C1 (if they exist) in a given
invariant-sketch. At a high level, the algorithm first obtains two satisfying
assignments, ensuring that the second satisfying assignment is distinct from
the first one. Given two assignments, we can substitute these assignments in
the invariant-sketch to obtain two linear equations in two unknowns, namely
CB and C1. Based on these two linear equations, we can infer the potential
values of CB and C1 using standard linear-algebra methods. If no satisfying
assignment exists through any of the predecessors of N , we simply emit the
invariant false indicating that this node is unreachable given the current
invariants at the predecessors (this should happen only if the programs contain
dead-code). Similarly, if we are able to generate only one satisfying assignment
(i.e., the second SMT query fails to generate another distinct satisfying
assignment), we simply generate the invariant encoding that the variables have
constant values (equal to the ones generated by the satisfying assignment). If a
node N has multiple predecessors, we can try generating satisfying assignments
through either of the predecessors.

Thus, for each invariant-sketch generated at each step of our algorithm, we
check to see if the satisfying assignments for program variables at that node
result in a valid invariant. If so, we add the invariant to the pool of invariants
generated by our guessing procedure. Notice that we need at most two SMT
queries per invariant-sketch; in practice, the same satisfying assignment may
be re-usable over multiple invariant-sketches drastically reducing the number of
SMT queries required. For our running example, we will first obtain a satisfying
assignment at node (N1,N1’) using invariants at node (N0,N0’): i=0,i’=144.
However we will be unable to obtain a second satisfying assignment at this stage,
and so we will generate invariants i=0,i’=144 at (N1,N1’). In the next step
of the algorithm, the edge N1’→N1’ will be correlated with the corresponding
ProgA edge N1→N1. At this stage, we will again try the same invariant-sketch,
and this time we can obtain two distinct satisfying assignments at (N1,N1’):
{i=0,i’=144} (due to the edge (N0,N0’)→(N1,N1’)) and {i=1,i’=143} (due
to the edge (N1,N1’)→(N1,N1’)). Using these two satisfying assignments, and
using standard linear-algebra techniques (to solve for two unknowns through two
linear equations), we can infer that CB = 1 and C1 = −144, which is our required
invariant guess. Notice that the output of our invariant-sketching algorithm is an
invariant guess, which may subsequently be eliminated by our sound fixed-point
procedure for checking the inductive validity of the simulation relation. The
latter check ensures that our equivalence checking algorithm remains sound.

5 Efficient Discharge of Proof Obligations

In our running example, after the edges (N1→N1) and (N1’→N1’) have been cor-
related, the algorithm will infer the required invariants correlating the program
values at Node (N1,N1’). After that, the edge (N1’→N2’) will get correlated
with the edge (N1→N2) and we would be interested in proving that the final
return values are identical. This will involve discharging the proof obligation

XI

of the form: (sum=sum’)⇒((sum/144)=(sum’⊕144)). It turns out that SMT
solvers find it hard to reason about equivalence under such transformations; as
we discuss in Section 6, modern SMT solvers do not answer this query even after
several hours. We find that this holds for some common types of compiler trans-
formations such as: (a) transformations involving mixing of multi-byte arith-
metic operations with select/store operations on arrays, (b) transformation of
the division operator to a multiply-shift-add sequence of operations, (c) complex
bitvector shift/extract operations mixed with arithmetic operations, etc.

We implement simplification passes to enable easier reasoning for such pat-
terns by the SMT solvers. A simplification pass converts a pattern in the expres-
sion to its simpler canonical form. We discuss the “simplification” of the division
operator into a sequence of multiply-shift-add operators to illustrate this. Given
a dividend n and a constant divisor d, we convert it to :

n÷ d ≡ (n + (n× Cmul)� 32)� Cshift,

where 0 < d < 232 and 0 ≤ n < 232 and Cmul, Cshift represent two con-
stants dependent on d and are calculated using a method given in Hacker’s
Delight [11]. This simplification ensures that if the compiler performs a trans-
formation that resembles this pattern, then both the original program and the
transformed program will be simplified to the same canonical expression struc-
ture, which will enable the SMT solvers to reason about them more easily. We
find that there exist more patterns that exhibit SMT solver time-outs by default,
but their simplified versions (through our custom simplification passes) become
tractable for solving through modern SMT solvers.

Even after applying the simplification passes, we find that several SMT
queries still time-out because SMT solvers find it difficult to reason about equiv-
alence in the face of several composed transformations performed by the com-
piler. We observe that while SMT solvers can easily compute equivalence across
a smaller set of transformations, they often time out if the number of composed
transformations is too many or too intertwined. Taking a cue from this observa-
tion, we propose the query-decomposition algorithm.

The general form of proof queries in an equivalence checker is: Precond ⇒
(LHS = RHS), where Precond represents a set of pre-conditions (e.g., x=y) and
LHS and RHS expressions (e.g., x+1 and y+2) are obtained through symbolic
execution of the C specification (ProgA) and the optimized program (ProgB) re-
spectively. The RHS expression may contain several composed transformations
for the computation performed in the LHS expression. Query-decomposition in-
volves breaking this one large proof query into multiple smaller queries by using
the following steps:
1. We walk the expression DAGs of LHS and RHS and collect all unique sub-

expressions in LHS and RHS into two different sets, say {lhsSubExprs}
and {rhsSubExprs}.

2. We check the equivalence of each lhsSubExpr ∈ {lhsSubExprs} with each
rhsSubExpr ∈ {rhsSubExprs} (assuming Precond), in increasing order of
size of LHS sub expressions. i.e., Precond⇒ (lhsSubExpr = rhsSubExpr).

XII

The size of an expression is obtained by counting the number of operators in
its expression DAG. If there are m unique sub-expressions in {lhsSubExprs}
and n unique sub-expressions in {rhsSubExprs}, we may need to perform
m ∗ n equivalence checks.

3. For any check that is successful in step 2, we learn a substitution map from
the bigger expression to the smaller expression. For example, if lhsSubExpr
was smaller in size than rhsSubExpr, we learn a substitution mapping
rhsSubExpr 7→ lhsSubExpr. We maintain a set of substitution mappings
thus learned.

4. For any check that is unsuccessful in step 2, we learn a counter-example
that satisfies Precond but represents a variable-assignment that shows that
lhsSubExpr = rhsSubExpr is not provable. We add all such
counter-examples to a set {counterExamples}.

5. In all future equivalence checks (of the total m∗n checks) of type Precond⇒
(lhsSubExpr = rhsSubExpr), we first check the set {counterExamples} to
see if any counterExample ∈ {counterExamples} disproves the query. If
so, we have already decided the equivalence check as false. If not, we rewrite
both expressions lhsSubExpr and rhsSubExpr using the substitution-map
learned in step 3. For a substitution mapping e1 → e2, we replace every
occurrence of e1 in an expression with e2 during this rewriting. After the
rewriting procedure reaches a fixed-point, we use an off-the-shelf SMT solver
to decide the rewritten query.

This decomposition of a larger expression into sub-expressions, and the sub-
stitution of equivalent sub-expressions while deciding equivalence of larger ex-
pressions ensures that the queries submitted to SMT solvers are simpler than
the original query. In other words, through this strategy, the LHS′ and RHS′

expressions that are submitted to an SMT solver are more similar to each other,
as multiple composed transformations have likely been decomposed into fewer
transformations in each individual query. Because we only replace provably-
equivalent sub-expressions during decomposition, the overall equivalence check-
ing algorithm remains sound.

This bottom-up strategy of decomposing a larger query into several smaller
queries would be effective only if (a) we expect equivalent sub-expressions to
appear across LHS and RHS, and (b) the total time to decide equivalence for
multiple sub-expression pairs is smaller than the time to decide equivalence for
a single larger expression-pair. We find that both these criteria often hold while
comparing distinct expressions that differ in the transformations performed by
a compiler. Figure 3 illustrates this with an example. In this example, the proof
query involves deciding equivalence between the top-level expressions E1 and
E5. Also, it turns out that the sub-expressions E3 and E4 (on the left) are
equivalent to the sub-expressions E7 and E8 (on the right) respectively. This
query gets generated when comparing the unoptimized and optimized imple-
mentations generated by GCC for a fragment of a real-world program. Notably,
modern SMT solvers like Z3/Yices/Boolector time-out even after several hours
for such a query. On the other hand, they are able to decide the equivalence

XIII

E1: bvextract

msbE2: bvmul

E4E3

lsb

E5: bvextract

msb

E8E7

lsbE6: bvmul

(a) Before Decomposition

E1: bvextract

msbE2: bvmul

E4E3

lsb

E5: bvextract

msb

E4E3

lsbE2: bvmul

(b) After Decomposition

Fig. 3: Original and result of query-decomposition for a fragment of expression DAGs
for two SMT-expressions.

of individual sub-expressions (E3 = E7 and E4 = E8) within a few seconds.
Experimentally, we have observed that if we substitute E7 and E8 with E3 and
E4 respectively (in the expression DAG of E5), the resulting equivalence check
between E1 and the rewritten E5 (as shown in Figure 3(b)) also completes
within a fraction of a second. In section 6, we discuss more real-world functions
and our results with transformations produced by multiple compilers, to demon-
strate the effectiveness of our query-decomposition procedure. We also evaluate
the fraction of intermediate sub-expression queries that can be pruned through
the use of the counter-example set.

6 Experiments

We evaluate invariant-sketching and query-decomposition algorithms by study-
ing their effectiveness in a black-box equivalence checker across LLVM IR and
x86 assembly code. We compile a C program using LLVM’s clang-3.6 to generate
unoptimized (O0) LLVM IR bitcode and using GCC, LLVM, ICC (Intel C Com-
piler), and CComp (CompCert [12]) with O2 optimization to generate the x86
binary executable code. We have written symbolic executors for LLVM bitcode
and x86 instructions to convert the programs to their logical QF AUFBV SMT-
like representation. In this representation, program states including the state
of LLVM variables, x86 registers and memory are modelled using bit-vectors
and byte-addressable arrays respectively. Function calls are modelled through
uninterpreted functions. The black-box equivalence checking tool employs the
algorithm discussed in Section 2 with µ = 1. The tool also models undefined-
behaviour semantics of the C language [13] for improved precision in equivalence
checking results. Proof obligations are discharged using Yices [14] (v2.5.4) and
Z3 [15] (commit 0b6a836eb2) SMT solvers running in parallel: each proof obli-
gation is submitted to both solvers, and the result is taken from the solver that
finishes first. We use a time-out value of five hours for each proof obligation.

Benchmarks and Results: For evaluation, we use C functions from the SPEC
CPU Integer benchmarking suite [16] that contain loops and cannot be han-
dled by previous equivalence checking algorithms. Previous work on black box
equivalence checking [5] fails to compute equivalence on all these functions. We
also include the benchmarks used by previous work on data-driven equivalence

XIV

S.No. Benchmark Function SLOC ALOC
Checking Time (sec)

Tgcc Tclang Ticc Tccomp
B1 knucleotide ht hashcode 5 28 17 18 215 10
B2 nsieve main 11 39 1343 1687 2265 868
B3 sha1 do bench 11 49 338 320 385 383
B4 DDEC lerner1a 12 22 37 13 36 12
B5 twolf controlf 8 16 73 79 75 7
B6 gzip display ratio 21 78 738 121 677 570
B7 vpr is cbox 8 48 24 25 24 24
B8 vpr get closest seg start 14 57 27 27 27 27
B9 vpr get seg end 16 63 28 29 29 30
B10 vpr is sbox 16 79 34 33 32 Fail
B11 vpr toggle rr 7 25 131 121 99 7
B12 bzip2 makeMaps 11 39 217 240 214 221

Table 2: Benchmarks characteristics. SLOC is source lines of code and determined
through the sloc count tool. ALOC is assembly lines of code and is based on gcc-O0
compilation. TX represents equivalence checking time taken for executable generated
by ”X” compiler in seconds. 7 represents that the function could not be compiled with
that particular compiler.

checking [7] in our evaluation; we are able to statically compute equivalence for
these benchmarks, where previous work relied on execution data for the same.
The selected functions along with their characteristics and results obtained for
each function-compiler pair are listed in Table 2.

The results in bold-red typeface depict the function-compiler pairs for which
previous work fails to prove equivalence statically. Computing equivalence for
these programs requires either sophisticated guessing procedures (which we ad-
dress through our invariant-sketching algorithm) or/and involves complex proof
queries that would time-out on modern SMT solvers (addressed by our sim-
plification and query-decomposition procedures). The results in non-bold face
depict the function-compiler pairs for which equivalence can be established even
without our algorithms — in these cases, the transformations performed by
the compiler require neither sophisticated guessing nor do their proof obliga-
tions time-out. For most cases, by employing our algorithms, the execution time
for establishing equivalence is reasonably small. In general, we observe that
the equivalence checking time depends on the size of the C program and the
number and complexity of transformations performed by the compiler. For one
of the benchmarks (is sbox compiled through CComp), equivalence could not
be established even after employing our invariant-sketching, simplification and
query-decomposition algorithms. We next evaluate the improvements obtained
by using counter-examples to prune the number of queries discharged to SMT
solver. Recall that additional queries are generated by both invariant-sketching
and query-decomposition algorithms. Also, the query-decomposition algorithm
maintains a set of counter-examples and a substitution-map learned so far, to

XV

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Q
ue

ry
 P

ro
po

rti
on

 (%
)

Counterexample Syntactic Techniques SMT Solver

Fig. 4: Proof queries statistics. The bar represents the percentage of queries solved by
each strategy for each benchmark-compiler pair in the same order as in Table 2.

reduce the time required to discharge a query. For each query, we first check to
see if the query can be answered through the set of currently-available counter-
examples. If not, the second step involves rewriting the query through simplifi-
cation passes and the currently-available substitution-map to see if the resulting
query can be answered syntactically. Finally, if equivalence is not decidable even
after simplification and substitution, we submit the simplified query to the SMT
solver. Figure 4 provides a break-down of the fraction of queries answered by
counter-examples, by syntactic simplification and substitution, and by the SMT
solver. The counter-example set is able to answer more than 85% of the to-
tal proof queries, including the ones generated by our invariant-sketching and
query-decomposition algorithms. Similarly, syntactic simplification and substitu-
tion are able to answer 3% of the queries, while the remaining 12% of the queries
are answered by the SMT solver. Recall that the simplification and substitution
passes help ensure that the 12% queries can be answered by the SMT solver
efficiently; the SMT solver would often time-out without these simplifications
and substitutions.

7 Related Work and Conclusions

Combinational equivalence checking through SAT-based algorithms has been
studied extensively both in hardware verification [17] and in software verification
[18]. Equivalence checking for sequential programs (e.g., programs with loops)
has also been studied extensively in the context of translation validation [2,19],
design and verification of compiler optimizations [20,21], and program synthe-
sis and superoptimization [3,4,22,23,24,25]. Modern SMT solvers have further
facilitated these applications (over traditional SAT solvers) by raising the level
of abstraction at the interface of the SMT solver and the equivalence checker.
Improving the capabilities of SMT solvers for various practical applications re-
mains an important field of research [26,27]. For example, Limaye and Seshia
[27] describe word-level simplification of queries before submitting them to SMT
solvers; our simplification passes are similar to such previous work.

XVI

Our work studies the effective utilization of SMT solvers for the problem
of equivalence checking for sequential programs containing loops. We demon-
strate techniques that allow an equivalence checker to decide equivalence across
a wider variety of programs and transformations; our invariant-sketching and
query-decomposition algorithms are novel contributions in this context.

Data-driven equivalence checking and data-driven invariant inference are re-
cent approaches ([7,28,8,29]) that utilize the information obtained through run-
ning the programs on real inputs (execution traces), for inferring the required
correlations and invariants across the programs being compared for equivalence.
It is evident that data-driven approaches are more powerful than static ap-
proaches in general; however they limit the scope of applications by demanding
access to high-coverage execution traces. Our invariant-sketching algorithm al-
lows us to obtain the advantages of data-driven approaches in a static setting,
with no access to execution traces. Our experiments include the test programs
used in these previous papers on data-driven equivalence checking, and demon-
strate that a counter-example guided invariant-sketching scheme can achieve the
same effect without access to execution traces. Further, some of the data-driven
techniques, such as CEGIR [29] and Daikon [30], are unsound, i.e., they may
return invariants that are not inductively provable but are only good enough for
a given set of execution traces or the capabilities of a given verification tool. Un-
sound strategies are not useful for several applications of equivalence checking,
such as translation validation and program synthesis. Both invariant-sketching
and query-decomposition algorithms preserve soundness.

Recent work on synthesizing models for quantified SMT formulas [31]
involves a similar computational structure to our invariant-sketching technique;
the primary differences are in our use of a linear interpolation procedure
(InferLinearRelation), and consequently the small number of
invariant-synthesis attempts (at most two) for each invariant-sketch. These
techniques make our procedure tractable, in contrast to the approach of
synthesizing models for general quantified SMT formulas outlined in [31].
Invariant-sketching also has a parallel with previous approaches on
counter-example guided abstraction refinement, such as recent work on
worst-case execution time analysis [32]. From this perspective of abstraction
refinement, our invariant-sketching algorithm refines an invariant from (Inv 7→
{False}) to (Inv 7→ {(varx, vary) = N1A}) to the final
linearly-interpolated invariant based on the invariant-sketch. This
counter-example guided refinement is aided by invariant-sketches involving
linear relations, that are designed to capture the underlying structure of the
equivalence checking problem.

The query-decomposition algorithm for effective utilization of SMT solvers is
based on our experiences with multiple SMT solvers. It is indeed interesting to
note that SMT solvers can decide many smaller queries in much less time than
one equivalent bigger query. This observation has motivated our decomposition
algorithm, and our experiments show its efficacy in deciding equivalence across
programs, where previous approaches would fail.

XVII

References

1. Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for llvm. In: Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’11, New York, NY,
USA, ACM (2011) 295–305

2. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. In: POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, New York, NY,
USA, ACM (2009) 264–276

3. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In:
Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XII, New York, NY,
USA, ACM (2006) 394–403

4. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proceedings
of the Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’13, New York, NY, USA, ACM
(2013) 305–316

5. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimiza-
tions. In: Programming Languages and Systems - 15th Asian Symposium, APLAS
2017, Suzhou, China, November 27-29, 2017, Proceedings. (2017) 127–147

6. Zuck, L., Pnueli, A., Goldberg, B., Barrett, C., Fang, Y., Hu, Y.: Translation
and run-time validation of loop transformations. Form. Methods Syst. Des. 27(3)
(November 2005) 335–360

7. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence check-
ing. In: Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications. OOPSLA
’13, New York, NY, USA, ACM (2013) 391–406

8. Padhi, S., Sharma, R., Millstein, T.: Data-driven precondition inference with
learned features. In: Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’16, New York, NY, USA,
ACM (2016) 42–56

9. Barrett, C., Stump, A., Tinelli, C.: The smt-lib standard - version 2.0. In: Proceed-
ings of the 8th international workshop on satisfiability modulo theories, Edinburgh,
Scotland. (2010)

10. Flanagan, C., Leino, K.: Houdini, an annotation assistant for esc/java. In: FME
2001: Formal Methods for Increasing Software Productivity. Volume 2021 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg (2001) 500–517

11. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2002)

12. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd ACM symposium on Principles of Programming
Languages, ACM Press (2006) 42–54

13. Dahiya, M., Bansal, S.: Modeling undefined behaviour semantics for checking
equivalence across compiler optimizations. In: Hardware and Software: Verification
and Testing - 13th International Haifa Verification Conference, HVC 2017, Haifa,
Israel, November 13-15, 2017, Proceedings. (2017) 19–34

14. Dutertre, B.: Yices2.2. In Biere, A., Bloem, R., eds.: Computer Aided Verification,
Cham, Springer International Publishing (2014) 737–744

XVIII

15. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08,
Berlin, Heidelberg, Springer-Verlag (2008) 337–340

16. Henning, J.L.: Spec cpu2000: Measuring cpu performance in the new millennium.
Computer 33(7) (July 2000) 28–35

17. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Commun. ACM 17(7) (July 1974) 412–421

18. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation. OSDI’08,
Berkeley, CA, USA, USENIX Association (2008) 209–224

19. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-
ized program equivalence. In: Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’09, New York, NY,
USA, ACM (2009) 327–337

20. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation. PLDI ’00, New York, NY, USA, ACM (2000) 83–94

21. Tate, R., Stepp, M., Lerner, S.: Generating compiler optimizations from proofs. In:
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL ’10, New York, NY, USA, ACM (2010)
389–402

22. Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In:
Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation. OSDI’08, Berkeley, CA, USA, USENIX Association (2008) 177–
192

23. Massalin, H.: Superoptimizer: A look at the smallest program. In: ASPLOS ’87:
Proceedings of the Second International Conference on Architectural Support for
Programming Languages and Operating Systems. (1987) 122–126

24. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: Scaling up superopti-
mization. In: Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ASPLOS
’16, New York, NY, USA, ACM (2016) 297–310

25. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Conditionally correct superopti-
mization. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA
2015, New York, NY, USA, ACM (2015) 147–162

26. Slflow, A., Khne, U., Fey, G., Groe, D., Drechsler, R.: Wolfram- a word level
framework for formal verification. In: 2009 IEEE/IFIP International Symposium
on Rapid System Prototyping. (June 2009) 11–17

27. Jha, S., Limaye, R., Seshia, S.A.: Beaver: Engineering an efficient smt solver for
bit-vector arithmetic. In: Proceedings of the 21st International Conference on
Computer Aided Verification. CAV ’09, Berlin, Heidelberg, Springer-Verlag (2009)
668–674

28. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Proceedings of the 22Nd Eu-
ropean Conference on Programming Languages and Systems. ESOP’13, Berlin,
Heidelberg, Springer-Verlag (2013) 574–592

XIX

29. Nguyen, T., Antonopoulos, T., Ruef, A., Hicks, M.: Counterexample-guided ap-
proach to finding numerical invariants. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2017, New York,
NY, USA, ACM (2017) 605–615

30. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3) (December 2007) 35–45

31. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In
Legay, A., Margaria, T., eds.: Tools and Algorithms for the Construction and
Analysis of Systems, Berlin, Heidelberg, Springer Berlin Heidelberg (2017) 264–
280

32. Černý, P., Henzinger, T.A., Kovács, L., Radhakrishna, A., Zwirchmayr, J.: Seg-
ment abstraction for worst-case execution time analysis. In Vitek, J., ed.: Pro-
gramming Languages and Systems, Berlin, Heidelberg, Springer Berlin Heidelberg
(2015) 105–131

	Effective use of SMT solvers for Program Equivalence Checking through Invariant Sketching and Query Decomposition

