
MODELING DYNAMIC ALLOCATIONS

AND DEALLOCATIONS OF LOCAL

MEMORY FOR TRANSLATION

VALIDATION

ABHISHEK ROSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY DELHI

FEBRUARY 2025

MODELING DYNAMIC ALLOCATIONS

AND DEALLOCATIONS OF LOCAL

MEMORY FOR TRANSLATION

VALIDATION

by

Abhishek Rose

Department of Computer Science and Engineering

Submitted

in fulfillment of the requirements of the degree of

Doctor of Philosophy

to the

Indian Institute of Technology Delhi

FEBRUARY 2025

Certificate

This is to certify that the thesis titled Modeling Dynamic Allocations and Deal-

locations of Local Memory for Translation Validation being submitted by Mr.

Abhishek Rose for the award of Doctor of Philosophy in Computer Science

and Engineering is a record of bona fide work carried out by him under my guidance

and supervision at the Department of Computer Science and Engineering, Indian Insti-

tute of Technology Delhi. The work presented in this thesis has not been submitted

elsewhere, either in part or full, for the award of any other degree or diploma.

Prof. Sorav Bansal

Microsoft Chair Professor

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

New Delhi 110016

i

Acknowledgements

I would like to thank all who contributed to this dissertation.

My sincere gratitude goes to my supervisor, Prof. Prof. Sorav Bansal, for expert

guidance, insightful feedback, and unwavering support.

I also appreciate the valuable input of my committee members, Prof. Sanjiva Prasad,

Prof. Rahul Purandare, and Prof. Subodh Sharma, whose critiques greatly improved

this work.

I am grateful to my fellow students, Shubhani, Indrajit, Vaibhav, and Pratik, for their

collaboration and stimulating discussions.

I also acknowledge the staff of the Department of Computer Science and Engineering

for their administrative and technical support.

Finally, I thank the reviewers for their thorough evaluations and constructive comments,

which helped refine the final dissertation.

Abhishek Rose

iii

iv

Abstract

End-to-End Translation Validation is the problem of verifying the executable code

generated by a compiler against the corresponding input source code for a single

compilation. This becomes particularly hard in the presence of dynamically-allocated

local memory where addresses of local memory may be observed by the program. In the

context of validating the translation of a C procedure to executable code, a validator

needs to tackle constant-length local arrays, address-taken local variables, address-taken

formal parameters, variable-length local arrays, procedure-call arguments (including

variadic arguments), and the alloca() operator.

We make the following contributions in our work:

1. A formalization of the execution semantics for an unoptimized intermediate repre-

sentation (IR) of a C program and its compiled 32-bit x86 assembly in the presence

of dynamically (de)allocated local memory. This includes modeling of the various

dynamic allocation constructs in C, such as address-taken local variables, constant-

and variable-length local arrays, address-taken formal parameters, procedure-call

arguments (including variadic arguments), and the alloca() operator.

2. A notion of correct translation from the IR to the assembly through a refinement

definition. The definition incorporates the concept of undefined behavior (UB) within

the IR program, originally translated from C, where refinement is permitted to hold

v

trivially.

3. An algorithm that converts the correct translation check to first-order logic queries

over bitvectors, arrays, and uninterpreted functions that can be discharged using

off-the-shelf SMT solvers. The algorithm is capable of operating in both blackbox

and whitebox modes, with the blackbox mode enabling its usage with third-party

compilers that may not employ a specific allocation strategy, such as preallocation.

In particular, we are perhaps the first to enable support for dynamic stack allocation

strategy for procedure-call arguments used by almost all production compilers (e.g.,

GCC, Clang/LLVM).

4. A prototype implementation of the algorithm and its comprehensive evaluation on a

set of diverse benchmarks, including both micro-benchmarks and a real-world bzip2

program. Our prototype performs blackbox translation validation of C procedures

with up to 100+ SLOC against their corresponding assembly implementations with

up to 140+ instructions generated by an optimizing production compilers (such as

GCC, Clang/LLVM, ICC) with complex loop and vectorizing transformations.

vi

Contents

Acknowledgements iii

Abstract v

List of Figures xviii

1 Introduction 1

1.1 Problem Statement and Motivating Example 4

1.1.1 An address-taken local example 5

1.1.2 Establishing Correct Translation 7

1.1.3 Subtleties . 9

1.1.4 A sketch of proposed solution 12

1.2 Prior Work . 13

1.2.1 IR-to-IR Translation Validation 13

1.2.2 IR-to-Assembly and Assembly-to-Assembly Translation Validation 14

vii

viii CONTENTS

1.2.3 Verified Compilation . 15

1.3 Contributions . 15

1.4 Outline . 17

2 Execution Semantics and Notion of Correct Translation 19

2.1 Intermediate Source and Assembly Representations 19

2.1.1 Unoptimized IR . 21

2.1.2 Assembly . 25

2.1.3 Allocation and Deallocation . 25

2.2 Transition Graph Representation . 26

2.2.1 Address Set . 27

2.2.2 Memory Regions . 27

2.2.3 Ghost Variables . 29

2.2.4 Error Codes . 30

2.2.5 Outside world and observable trace 30

2.2.6 Expressions . 31

2.2.7 Graph Instructions . 31

2.3 Translations of C and A to their Graph Representations 33

2.3.1 Translation of C . 34

2.3.2 Translation of A . 40

CONTENTS ix

2.4 Observable traces and Refinement Definition 44

2.5 Refinement Definition in the presence of local variables and procedure

calls when all local variables are allocated on the stack in A 47

2.5.1 (De)Allocation indicating alloc𝑠 and dealloc𝑠 instructions . . 48

2.5.2 Annotated procedure-call instruction 50

2.5.3 Refinement Definition with only stack-allocated locals and proce-

dure calls . 51

2.5.4 Capabilities and Limitations of C ¤⊒ A 53

2.6 Refinement in the presence of potentially register-allocated or eliminated

local variables in A . 57

2.6.1 Virtual (de)allocations through alloc𝑣 and dealloc𝑣 instructions 57

2.6.2 Revised semantics for assembly procedure instructions 60

2.6.3 Refinement Definition with both stack-allocated and register-

allocated or eliminated locals 62

2.7 Towards A More General Refinement Definition and Execution Semantics 66

2.7.1 Comparison with C ¥⊒ A . 69

3 Witnessing Refinement through a Determinized Cross-Product 75

3.1 Program Paths . 76

3.2 Determinized Product Graph as a Transition Graph 77

3.3 Analysis of the determinized product graph 78

x CONTENTS

3.3.1 X requirements . 79

3.3.2 Soundness of X requirements . 82

3.3.3 Global Invariants in C, ¥A, and X 88

3.4 Callers’ Virtual Smallest Semantics . 90

3.4.1 Soundness of Callers’ Virtual Smallest semantics 91

3.5 Safety-Relaxed Semantics . 93

3.5.1 Soundness of Safety-Relaxed Semantics 94

4 Automatic Construction of a Product-Program 101

4.1 The Dynamo algorithm . 101

4.1.1 Enumerating A paths . 105

4.1.2 Correlating C paths . 107

4.1.3 Identifying A annotation . 114

4.1.4 Validating structure of identified paths 118

4.1.5 Incremental construction of (¥A,X) 120

4.1.6 Checking requirements on partial X 122

4.1.7 Correlating paths to error nodes due to annotated instructions . 125

4.1.8 Soundness of Dynamo algorithm 125

4.1.9 Counterexample Guided Best-First Search 125

4.2 Invariant Inference . 126

CONTENTS xi

4.2.1 Global Invariants . 128

4.3 Running Example of the Algorithm . 130

5 SMT Encoding 141

5.1 Preliminary Steps . 141

5.2 Representing address sets using allocation state array 143

5.2.1 Encoding of address set updating instructions 144

5.2.2 Full-array encoding . 145

5.3 Interval Encoding . 146

5.3.1 Interval encoding for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍𝑙 ∪ {𝑠𝑡𝑘} 146

5.3.2 Interval encoding for 𝑟 ∈ {ℎ𝑝, 𝑐𝑙, 𝑐𝑠} 146

5.3.3 Soundness of Interval Encoding 148

5.4 Semantics with Simpler SMT Encoding for 𝑠𝑡𝑘 Region of ¥A 157

6 Evaluation 161

6.1 Implementation of Dynamo . 161

6.1.1 System components . 161

6.1.2 Discharging Proof Obligations 163

6.1.3 Pseudo-register allocation in LLVM𝑑 164

6.1.4 Instrumentation of Clang/LLVM for generating annotation hints 164

xii CONTENTS

6.2 Experiments . 164

6.2.1 Evaluating efficacy of Dynamo 165

6.2.2 Evaluating modeling cost of local allocations 168

6.2.3 Evaluating Dynamo on a real-world program 170

6.2.4 Analysis of Failures . 172

6.3 Other Applications . 178

7 Conclusion 181

7.1 Summary . 181

7.2 Limitations and Directions for Future Work 182

Appendices 185

A Soundness and Completeness Implications of isPush() Choice 187

A.1 K needs to be at least 2𝑑−1 in the presence of VLAs 188

A.2 K = 2𝑑−1 can still lead to completeness problems 189

A.3 K = 2𝑑−1 can also lead to soundness problems 189

A.4 Solution . 190

B More details of the experiments 191

B.1 Command-line used for compiling benchmarks in experiments 191

B.2 Full results for the bzip2 experiment 195

CONTENTS xiii

C Full source code of the benchmarks 199

List of Publications 205

Biography 207

Bibliography 218

xiv CONTENTS

List of Figures

1.1 Two ways of obtaining a certified executable from an input source code.

The certified executable is guaranteed to have identical semantics as the

input source code. 3

1.2 C program with an address-taken local and its IR and 32-bit x86 assembly

lowerings. @STR denotes the address of the format string "%d". mem4 [𝑎]
denotes a 4-byte memory access to address 𝑎. 5

1.3 C program with variable-length array (VLA) and its assembly lowerings.

mem4 [𝑎] denotes a 4-byte memory access to address 𝑎. An execution where

m ≥ n triggers undefined behavior in the C program and C semantics do

not put restriction on behavior of the translated assembly program in

such an execution. 10

1.4 Conceptual representation of the flow of information from high-level

source program and the low-level assembly program to the compiler/-

translation validator. 11

1.5 High-level components and flow of our translation validation approach. 12

xv

xvi LIST OF FIGURES

2.1 C program with variable-length array (VLA) and its lowerings to unopti-

mized IR and assembly. Subscript ‘𝑠’ denotes signed comparison. Red

font (parts of) instructions in assembly are added by our algorithm. . 20

2.2 Pseudo-code for translation of a C procedure-call expression to LLVM𝑑

instructions. alloc, dealloc, call, va start ptr, etc. are LLVM𝑑 in-

structions. 23

2.3 Translation of C’s variadic macros to LLVM𝑑 instructions. roundup4(𝑎)
returns the closest multiple of 4 greater than or equal to 𝑎. 24

2.4 Translation rules for converting LLVM𝑑 instructions to graph instructions.

op represents an arithmetic, logical, or relational operator. 𝑐 represents

a constant. 36

2.5 Translation rules for converting LLVM𝑑 instructions to graph instructions. 38

2.6 Translation rules for converting pseudo-assembly instructions to graph

instructions. op represents an arithmetic, logical, or relational operator. 41

2.7 Translation rules for converting pseudo-assembly instructions to graph

instructions. 43

2.8 Additional translation rules for converting pseudo-assembly instructions

to graph instructions for procedures with only stack-allocated locals. . 49

2.9 Example of transformation where relative order of (de)allocations and

procedure calls is not preserved. The refinement definition will not admit

the hypothetical assembly but will admit the compiler generated one. . 54

2.10 Translation rules for converting the alloc𝑣 and dealloc𝑣 instructions

instructions to graph instructions. 58

LIST OF FIGURES xvii

2.11 Revised translation rules for converting pseudo-assembly instructions to

graph instructions. The IF{𝑧 ∈ 𝑍𝑙}{. . .}ELSE{. . .} construct selects one
of the translation depending on the result of syntactic predicate 𝑧 ∈ 𝑍𝑙 . 60

2.12 Translation rules for the converting pseudo-assembly instructions to graph

instructions for Ä. (AllocV’) is derived from (AllocV) in fig. 2.10. 67

4.1 C source fragment and its abbreviated control-flow graph. 113

4.2 Predicate grammar for constructing candidate invariants. 𝑣 represents a

bitvector variable (registers, stack slots, and ghost variables), 𝑐 represents

a bitvector constant. ⊙ ∈ {≤𝑠,𝑢, <𝑠,𝑢, >𝑠,𝑢, ≥𝑠,𝑢}. 𝑣∗ represents a bitvector

value drawn from a restricted grammar (explained in text). 127

4.3 Global invariants that hold at each non-entry, error-free node 𝑛X ∈ NHH𝑈𝑊
X

.128

4.4 Reproduced C program and its unoptimized IR and assembly from fig. 2.1. 131

4.5 Abbreviated Transition Graphs for the unoptimized IR and assembly of

the fib procedure from fig. 4.4. 132

5.1 Revised translation rules for the new 𝑠𝑡𝑘+-based semantics for ¥A. 158

6.1 High-level components of Dynamo implementation. Trusted Code Base

(TCB) blocks have double border and a red background. 162

6.2 Comparison of running times of procedures in table 6.1 with full-interval

(filled bars), partial-interval (thick black lines), and full-array (empty

bars) encoding. Y-axis is logarithmically scaled. 167

6.3 Summary of refinement check results for the programs in table 6.1. . . 168

xviii LIST OF FIGURES

6.4 Procedure s122 from ‘globals’ version of (modified) TSVC suite. . . . 169

6.5 Comparison of running times of TSVC benchmarks with exactly same

code modulo allocation strategy. Y-axis is logarithmically scaled. 170

6.6 Scatter plot of refinement time (in minutes) vs assembly lines of code

(ALOC). Both axes are logarithmically scaled. 172

6.7 vsl1 procedure from table 6.1 (appears as vsl𝑁) and the control-flow

graph (CFG) of its GCC compiled assembly. 174

C.1 Benchmarks with VLAs. 200

C.2 Benchmarks with use of alloca . 201

C.3 Benchmark rod with mixed use of VLA and address-taken variable. . . 202

C.4 Benchmarks mp and ms with variable argument list. mp is adapted from

minprintf of K&R[24] . 203

C.5 Structure of bzip2’s functions . 204

LIST OF FIGURES xix

Chapter 1

Introduction

Safety and mission-critical software systems such as those found in medical equipment

and nuclear reactors require strong correctness guarantees. Techniques in formal

methods can provide mathematically-sound guarantees on the behavior of a software

artifact. Absence of null-pointer dereference, buffer and integer overflow are examples

of behavior-bounding guarantees ensured by formal techniques. Such techniques are

typically applied on the source code, e.g., C source code, which is different from the

machine executable code, e.g., x86 assembly code, that is executed on physical hardware.

The translation of the source code into machine executable code is performed by a

compiler in an act of compilation. A compilation (is expected to) preserves the semantics

of the input source code in the output executable code. This semantics preservation or

correctness property of compilation enables transfer of a behavior bounding guarantee,

assured by formal methods techniques applied on the source code, from the source code

to the executable code. A bug in the compilation process, however, can impede this

transfer thereby giving a false sense of assurance. For example, a miscompilation may

introduce an error that was absent in the original source program. Thus, application of

formal methods on the source code is ineffective until the compiler or, more specifically,

a desired instance of compilation itself is validated to be correct.

Besides upholding the semantic preservation or correctness property, compilers are also

expected to perform optimizing transformations (optimizations) such that the compiled

program exhibits certain performance characteristics, e.g., fast execution, power and

memory efficiency, etc. An overwhelming majority of the complexity of modern opti-

mizing compilers lies in this optimizing phase [16]. This additional responsibility of

1

2 Introduction

optimization makes ensuring correctness harder. Indeed, correctness bugs in optimizing

compilers are not uncommon [52, 46, 27, 45].

A way to validate a compilation, to ensure semantics preservation, is to formally verify

the compiler itself. Such a verified compiler will only produce an output executable code,

a certified executable, if it can ensure, through a formal argument, that the semantics of

the input source code are preserved in the output executable code. However, writing

a verified compiler is a formidable task. Modern non-verified optimizing compilers

such as GCC [15] and Clang/LLVM[10] are multi-million lines of source code projects

with thousands of changes being made with every release. Verifying the semantic

preservation property on them or rewriting them to be easily verifiable while keeping

with the pace of development seems impractical. Though there exist verified compilers

such as CompCert [29] and CakeML [25], the optimization they perform and the source

code language constructs they support are relatively limited in scope, prohibiting their

large scale adoption. Another difficulty in development of verified compilers lies in the

amount of expertise they require: writing formal proofs using proof assistants and/or

using semi-automated verification tools arguably requires higher expertise than required

of a typical compiler engineer.

Translation validation (TV for short) [37, 36] is an alternative approach where instead

of verifying the entire compiler, an instance of compilation or translation is verified. A

translation validation tool, i.e., a translation validator, takes two programs as input:

(1) the source program passed as input to a translator; and (2) the target program

emitted as output by the translator. The target program is compared against the

input source program to verify the semantics preservation property. The validation, if

successful, is accompanied by a proof of correctness that can be independently verified.

The generation of an externally verifiable artifact allows the TV tool itself to potentially

remain unverified while still being able to produce sound results. In the end-to-end

translation validation setting, source represents the source code of a program written in

a high-level language, such as C, and target represents the translated machine executable

code, such as x86 machine code, obtained after compiling source. In contrast, translation

validation can also be performed in a “pass-by-pass” manner, where the validator is

invoked at the end of a transformation pass in the compiler. In this setting, source and

target denote the programs before and after the transformation, respectively.

A verified compiler can also be obtained using a combination of a non-verified compiler

and an end-to-end translation validator; fig. 1.1b shows a construction. In such a verified

Introduction 3

Verified
compiler

Source
code

Certified
executable

Compiler
error

(a) Block diagram of a verified
compiler.

Source
code

Compiler
Executable

code

Translation
validator

Certified
executable

Compiler
Error

(b) Block diagram of a verified compiler realized using
a combination of a non-verified compiler and an end-
to-end translation validator.

Figure 1.1: Two ways of obtaining a certified executable from an input source code.
The certified executable is guaranteed to have identical semantics as the input source
code.

compiler, the end-to-end translation validator is invoked at the end of each compilation

by the non-verified compiler to validate the output compilation. If the translation

validator is able to successfully validate the compilation, the combined tool produces

a certified executable. This separation of compilation and its validation afforded

by translation validation makes the combined construction an appealing practical

alternative to the verified compiler approach.

A major challenge in the construction of an end-to-end translation validator lies in the

difference between the levels of abstractions in the two input programs’ representations.

In the context of translation from an unoptimized intermediate representation (IR)

of a C program to an assembly code representation of executable code, which is the

focus of this work, this manifests as difference in the abstractions available in the C

programming language (equivalently, in its unoptimized IR) and the assembly language.

Prior work on translation validation relates the two programs through construction

of a product program that correlates the program points of the constituent programs.

While the control-flow constructs could potentially be rather directly mapped to or

modeled through a combination of conditional and unconditional jump operations

available in the assembly language[57, 6, 54], the translation or modeling of concepts

such as objects (their allocation and deallocation), types (that may affect aliasing), and

pointer provenance [19] (for determining aliasing) is not immediately clear. For example,

instead of a potentially infinite set of pseudo-registers or local variables, assembly

has a finite set of machine registers and a stack region delineated by a stackpointer

4 Introduction

register. Furthermore, C allows taking (and observing) address of a variable. Translation

validation of programs with such constructs requires identification of relations between

stack addresses in assembly and addresses of the variables in the C program. This

identification and modeling of the relation between an address-taken variable in C and its

corresponding implementation somewhere in the assembly stack is not straightforward.

The difficulty of this problem has been acknowledged in previous work on end-to-end

translation validation with [40] calling it their “largest limitation” and other works

assuming that the input programs do not exhibit such programming patterns [8, 17].

We motivate and describe the problem clearly through an example.

1.1 Problem Statement and Motivating Example

The goal of this work is end-to-end validation of a compilation from a C program to an

assembly program where the C program may contain dynamic allocation and dealloca-

tion of local memory through local variable declaration including C99’s variable-length

arrays (VLAs), procedure-call arguments including variable-length arguments (variadic

arguments), and the alloca() operator [2]. We transform the C program into an

unoptimized intermediate representation (IR) where the allocation and deallocation

of local memory is made explicit through IR instructions, and implementation-defined

constructs such as types and their representation have been determinized. This unopti-

mized IR is obtained using a syntactic translation and does not involve any optimization.

We use 32-bit x86 assembly with cdecl calling conventions, described in System V

Application Binary Interface (ABI) for i386 systems [32], as a concrete assembly program

representation. The translation from C to unoptimized IR uses the specifics of 32-bit

x86 assembly ABI1.

Thus, we are interested in showing that a 32-bit x86 assembly program A is a correct

translation of the unoptimized IR C of a C program where C may dynamically allo-

cate and deallocate local memory and may contain constructs such as constant-length

and variable-length local arrays, address-taken local variables and formal parame-

ters, procedure-call arguments including variable-length (variadic) arguments, and the

alloca() operator.

1For example, the pointer type void* is determinized to a 32-bit bitvector representation matching
the pointer representation in 32-bit x86.

Introduction 5

C0: int read_int() {

C1: int x;

C2: scanf("%d", &x);

C3: return x;

C4: }

(a) C program with an address-taken
local variable x.

I0: int read_int():

I1: x = alloc int;

I2: t1 = @STR; // address of "%d"

I3: t2 = call scanf(t1, x);

I4: r = *x;

I5: dealloc I1;

I6: ret r;

(b) (Abstracted) Unoptimized IR.

A0: read_int:

; allocate 36 bytes on stack

A1: esp -= 36;

A2: eax = esp + 20;

; push procedure arguments on stack

A3: push eax;

A4: push @STR; ; address of "%d"

; (implicit) arguments to scanf:

; mem4[esp], mem4[esp+4]

A5: call scanf;

A6: eax = mem4[esp+28];

; deallocate 44 bytes from stack

A7: esp += 44;

; return value in register eax

A8: ret;

(c) (Abstracted) 32-bit x86 assembly of fig. 1.2a.

Figure 1.2: C program with an address-taken local and its IR and 32-bit x86 assembly
lowerings. @STR denotes the address of the format string "%d". mem4 [𝑎] denotes a
4-byte memory access to address 𝑎.

1.1.1 An address-taken local example

Consider the C program and its unoptimized IR and 32-bit x86 assembly shown in fig. 1.2.

The read int() procedure in fig. 1.2a defines a local integer x, passes the address of x

to an external callee scanf(), and finally returns the value of x. Because the address

of variable x is taken, through the address-of operator &, x is an address-taken local.

Unoptimized IR: The unoptimized IR of read int(), shown in fig. 1.2b, is similar

to LLVM IR [48] and has explicit instructions alloc and dealloc for local memory

allocation and deallocation — the latter instruction is not available in LLVM IR. The

alloc instruction in line I1 performs allocation of an int object and returns the start

address of the allocated region in x. Both the allocated region and its initial memory

contents are non-deterministic but subject to two well-formedness conditions :

(1) the freshly allocated region is disjoint from other currently allocated regions;

(2) the start address of the allocated region is aligned by the alignment requirement

for the allocated type (e.g., x of type int should be aligned by 4).

6 Introduction

An allocation due to execution of alloc is expected to satisfy these well-formedness

conditions. Unlike C, the identifier x in IR represents the address of variable x so that

the call to scanf in line I3 accepts x as argument (and not &x as in fig. 1.2a). The value

of the variable x is obtained by dereferencing (*x in line I4). An allocation is uniquely

identified by the location or PC of the alloc instruction. The dealloc instruction

deallocates all allocated space due to execution(s) of an alloc instruction identified by

its PC. In fig. 1.2b, dealloc I1 deallocates the address region allocated by execution

of instruction I1.

Assembly: Figure 1.2c shows the (abstracted) 32-bit x86 assembly of read int() as

generated by GCC. In the compiled assembly, the local x is allocated on the assembly

stack which is a distinguished region in the machine address space. The lower, flexible

end-point of the assembly stack region is identified by the stackpointer register esp so

that decrementing esp allocates stack space and incrementing esp deallocates stack

space. The stackpointer decrement in line A1 allocates 36 bytes on the stack — 4 bytes of

this allocated space are reserved for the local x (an analysis of the next few instructions

reveal that x is located at an offset of 20 bytes in this newly allocated space). Unlike

its IR counterpart, the x86 call instruction does not accept arguments other than the

callee label (or address); instead, the arguments are passed implicitly through the stack.

The stack addresses used for passing the arguments are specified in the ABI’s calling

conventions which enable identification of the passed arguments in the callee procedure.

esp at A0
= esp+ 44 return address

x 36 bytes
allocation

esp+ 28

esp+ 4

esp

eax = esp+ 28

@STR

4 bytes per
location

The push instructions in A3 and A4 set up

the two arguments to scanf on stack —

notice that the arguments are pushed in

reverse order so that A3 pushes the second

argument, address of x, and A4 pushes the

first argument @STR, address of the format

string. The figure on the right shows the

layout of stack just before the call instruc-

tion: at the bottom of stack, labeled by

esp, is @STR, above it is eax which con-

tains the address esp+28 of x (assigned

as esp+20 in A2) and so on. The stack-

pointer increment in line A7 deallocates

the stack space allocated due to the two push instructions and instruction A1 in a single

step (thereby deallocating both arguments to scanf() and the local x). The return

Introduction 7

value of an assembly procedure is passed in register eax which is set to value of x in A6

(just before deallocation).

1.1.2 Establishing Correct Translation

Let C denote the IR procedure read int() in fig. 1.2b and A denote the assembly

procedure read int() in fig. 1.2c. In this section, we attempt to define a notion

of correct translation and present an (loosely formal) argument that A is a correct

translation of C. We will illustrate some key problems in validating a translation from

C to A through this exercise.

According to the C standard [21], A will be considered a correct translation of C if for

each execution of A, there exists an execution of C such that both executions produce

identical observables — the observables produced by an execution of C constitute its

observable behavior (para 6 in §5.1.2.3 of [21]). Notice that this definition implies a

subset relationship for behaviors which makes sense because C is non-deterministic2.

Thus, correct translation is defined in terms of refinement of observable behaviors —

the assembly program refines (for e.g., by determinization) the behavior present in the

C program.

The observables produced by an execution of C are (in order):

O1. the occurrence of procedure-call to scanf();

O2. the program state passed to or accessible to the external callee scanf(), which

includes the arguments @STR and x (line I3 in fig. 1.2b);

O3. the return value *x.

Because the definition of the scanf() procedure is external to the translation unit, no

assumptions can be made about its behavior. Therefore, we conservatively consider

both the occurrence of the call to scanf() and the program state accessible to scanf()

as observables.

To establish correct translation, each execution of A must produce observables such that

an execution of C also produces identical observables (recall that C is non-deterministic).

Consequently, an execution of Amust produce the observablesO1, O2, O3 (in sequence).

It can be observed that A produces O1: there is a call to scanf() at A5 in fig. 1.2b

2Recall that the alloc instruction returns a region with non-deterministic start address and
non-deterministic memory contents.

8 Introduction

with no observable event3 before it. Thus, every execution of A at least produces O1.

Next, we must witness production of observable O2 in (an execution of) A.

Recall that O2 observes the program state passed to scanf() which includes both the

address and the value of variable x, both of which are non-deterministic in C — the

value of x is included because passing the address makes the variable reachable from

scanf() (through a dereference). To produce an identical observable, (an execution of)

A must also pass identical program state to scanf(). Recall that in A the arguments

are passed implicitly through stack so that the number of passed arguments is not

identifiable solely from the call instruction in A; the calling conventions specify the

addresses of the arguments but not their count. This problem is exacerbated by the fact

that scanf() is a variadic procedure so it may accept a variable number of arguments

and even the type signature of scanf() in C cannot be used for determining the number

of arguments. Even if we assume that only two arguments (as set up in A3 and A4 of

fig. 1.2c) are passed to scanf(), we need to relate the (stack) address esp+20 (set up in

A3) with the non-deterministic address x in C. While x is subject to the well-formedness

conditions, there is no guarantee that esp+20 respects the same conditions so that it

is possible for esp+20 and x to not agree on the same value — recall that we want to

establish that an execution of C may always produce a value x that is equal to the

value esp+20 produced by an execution of A. Moreover, as the stack is shared by both

the allocated locals and spilled pseudo-registers, discriminating different stack writes

becomes a problem. For example, it needs to be ascertained that the stack writes at

lines A3 and A4 of fig. 1.2c do not mutate the stack region corresponding to the local x4.

Further, because we are not able to ascertain the number of arguments passed to

scanf() in A, we must conservatively assume that it may read an arbitrary number of

arguments (by reading the stack addresses specified in the calling conventions). The

external call to scanf() can be soundly (and over-approximately) modeled (in both

C and A) as an arbitrary but deterministic mutation of the accessible program state

subject to the input and accessible program state. With this modeling, the difference

in number of arguments makes the observable O2 in A different from the observable

O2 in C.

Lastly, the observable O3 is also related to the modeling of procedure call to scanf():

3Observable events include a call to an external procedure and a procedure return.
4While in this particular example it is easy to distinguish the writes due to use of the push

instruction that writes to a freshly allocated region, doing so in presence of stack spills require tracking
of addresses belonging to an allocated variable.

Introduction 9

the return value of procedure A is obtained by reading machine memory at address

esp+28 immediately after the procedure call (line A6 in fig. 1.2c); in C the return value

is identified as the value *x. As both values are mutated arbitrarily by scanf(), due to

difference in the number of arguments passed to scanf(), O3 in A cannot be related

to observable O3 in C.

To summarize, we identified the following problems in relating the observables (O2 and

O3) in an execution of A with an execution C:

• In relating a stack allocation in A with an allocation in C so that a stack region

in A can be distinctly identified and related to a non-deterministic but constrained

allocated region in C.

• In identifying the behavior of a procedure call in A so that the program state

accessible to an assembly callee can be precisely identified.

1.1.3 Subtleties

In this section, we take a closer look at the two programs in figs. 1.2a and 1.2c and

consider some subtleties associated with a valid translation.

Assembly program may allocate more memory

Consider the stack allocation of 36 bytes at line A1 in fig. 1.2c. It is possible for this

stack allocation to overflow into other allocated space (e.g., heap) leading to abnormal

termination of A’s execution. Recall that correct translation requires every observable

behavior of A, including abnormal termination, to be an observable behavior of C.

We observe that C in fig. 1.2b may similarly terminate due to allocation failure while

executing alloc. Recall that an alloc instruction allocates a region that does not

overlap with currently allocated space; if it is not possible to meet this requirement, the

execution terminates abnormally. Notice, however, that A allocates more memory than

C: 36 bytes in A, compared to 4 bytes in C5. Thus, it is possible for a given execution

of an assembly program starting at read int() to run out of memory but a similar

execution of the unoptimized IR program to terminate normally. A correct translation

definition, therefore, must take into consideration abnormal termination of an assembly

program due to running out of memory as an admissible observable behavior.

5The extra allocation, in this particular example, is to align the stackpointer to a 16 byte boundary
for the procedure-call at A5

10 Introduction

C0: int foo(int n, int m)

C1: {

// VLA with n elements

C2: char buf[n];

C3: buf[m] = 0;

C4: return bar(buf, n);

C5: }

(a) C program with VLA

A0: foo:

A1: push ebp; ebp = esp;

A2: esp -= 8;

A3: edx = mem4[ebp+8]; ; argument ‘n’

A4: ecx = mem4[ebp+12]; ; argument ‘m’

; variable-sized stack allocation

A5: esp -= 0xFFFFFFF0 & (edx+15);

A6: mem1[esp+ecx] = 0;

A7: eax = esp;

A8: esp -= 8;

A9: push edx; push eax;

A10: call bar;

A11: esp = ebp; pop ebp;

A12: ret;

(b) (Abstracted) 32-bit x86 assembly

Figure 1.3: C program with variable-length array (VLA) and its assembly lowerings.
mem4 [𝑎] denotes a 4-byte memory access to address 𝑎. An execution where m ≥ n

triggers undefined behavior in the C program and C semantics do not put restriction
on behavior of the translated assembly program in such an execution.

We wish to point out this peculiarity arises due to the finite machine state available to

an assembly program: while an unoptimized IR program may utilize an infinite set of

pseudo-registers, the assembly has a finite set of registers and has to spill additional

state into the stack. A notable consequence of having such a definition is that it is

easy to construct a sound but vacuous translation for every C program that always

terminates abnormally due to out-of-memory.

C program may trigger Undefined Behavior (UB)

C has undefined behavior semantics [51]. Consider the C program and its compiled

assembly in fig. 1.3. The foo() procedure in fig. 1.3a accepts two integers n and m as

parameters, allocates a variable-length array (VLA) buf with n characters and calls an

external procedure bar, passing buf as an argument. Figure 1.3b shows the compiled

assembly of the foo procedure. The assembly procedure receives the two parameters n

and m on stack and reads them into registers edx and ecx in A3 and A4 respectively. The

VLA is allocated on stack via a stackpointer decrement in A5 — the extra arithmetic

ensures that the resulting stackpointer value remains aligned by 16. The write to stack

address esp+ecx in A6 corresponds to the zero initialization of m𝑡ℎ element of the VLA

(C3 in fig. 1.3a) in the assembly program.

Introduction 11

High-level Language

Assembly Language (Hardware)

Translation Validator/Compiler

Absence of UB assumptions

Absence of out-of-memory assumptions

Figure 1.4: Conceptual representation of the flow of information from high-level source
program and the low-level assembly program to the compiler/translation validator.

Let C and A denote the C and assembly foo() procedures in figs. 1.3a and 1.3b

respectively. Consider an execution of A where m ≥ n. In such an execution, the write

at A6 may potentially overstep stack bounds, accessing a memory location that is

not mapped and thereby causing termination. Another possibility is that the write

address remains within stack bounds, overwriting some address in the caller stack of

the foo(), breaking some program invariant and eventually leading to some logic error.

An execution of C under the same input (m ≥ n) will trigger an out-of-bounds write

at C3. An out-of-bounds access is undefined behavior (UB) in C and the C semantics

do not put any restriction on valid translation for such executions. As a result, any

behavior, including termination or a logic error, of the translated assembly program

is considered a valid translation for a construct that causes undefined behavior in C.

A correct translation definition must accommodate handling of undefined behavior in

order to cater to the various possibilities available to the compiler.

Figure 1.4 summarizes the flow of information due to semantics of C and A. The

undefined behavior semantics in C enable both the compiler and the translation validator

to make certain “absence of UB” assumptions about the error-free execution of C —

the information flowing downwards from “High-level Language” in fig. 1.4. Similarly,

both the compiler and the translation validator may assume availability of adequate

stack space; shown as “absence of out-of-memory assumptions” flowing from “Assembly

Language (Hardware)” in fig. 1.4. A compiler performs a translation under these

conditions and, therefore, the translation validator must assume them while validating

the transformations produced by the compiler.

12 Introduction

1.1.4 A sketch of proposed solution

Prior TV efforts identify a lockstep correlation between (potentially unrolled) iterations

of loops in the two procedures to show equivalence [8]. These correlations can be

represented through a product program that executes procedures C and A in lockstep,

using a careful choice of program path correlations, to keep the machine states of both

procedures related at the ends of correlated paths [54, 17].

DYNAMO algorithm

Unoptimized
IR

C graph

A graph

C source

C-to-x86
compiler

x86
assembly

SMT Solver Proof found
(Refinement
established)

Failure

Product
graph and

annotated A

Translation Validation tool

Figure 1.5: High-level components and flow of our translation validation approach.

Our TV algorithm, called Dynamo, additionally attempts to identify a lockstep corre-

lation between the dynamic (de)allocation events and procedure-call events performed

in both procedures, i.e., we require the order and values of these execution events to be

identical in both procedures. To identify a lockstep correlation, our algorithm annotates

assembly procedure A with two kinds of annotations:

• (de)allocation instructions for identifying (de)allocation of a region in assembly;

• procedure-call annotations for identifying procedure-call arguments and memory

regions accessible to an assembly callee.

Our key insight is to define a refinement relation between C and A through the existence

of an annotated A. We carefully define the semantics for these annotations so that the

refinement relation holds only if an annotation correctly captures the (de)allocation and

procedure-call events in A. We also generalize the definition of a product program so it

can be used to witness refinement in the presence of non-determinism due to addresses

of dynamically-allocated local memory, undefined behavior (UB), and stack overflow in

A. For example, our product program encodes the UB semantics that allow anything to

happen in assembly (including out-of-bound stack access) if UB is triggered in C.

Introduction 13

Our proof obligations are expressed in first-order SMT (Satisfiability Modulo Theories)

logic over bitvectors, arrays, and uninterpreted functions that can be discharged by an

off-the-shelf SMT solver. On successful execution, our algorithm produces two artifacts:

(1) a product program encoding lockstep execution of unoptimized IR C and assembly

procedure A in the form of a product graph and (2) an annotated version of A that

satisfies the refinement relation with C. Figure 1.5 shows the high-level components of

our translation validation approach.

1.2 Prior Work

Translation validation (TV) was proposed by Pnueli, Siegel, and Singerman [37] for

validating translation of programs written in Signal (a synchronous multi-clock data-

flow language) to C code. This was followed shortly by Necula [36] who validated GCC

optimization passes. Since then there has been much development in this area [54, 41,

49, 44, 56, 55, 35, 23]. TV has been successfully applied for finding bugs in real-world

compilers [31, 34, 22], verifying complex loop unrolling and vectorizing transformations

[8, 17], verification of individual passes inside a verified compiler [50], and, perhaps

most ambitiously, in translation validation of a verified OS kernel [40]. However, no

prior work tackled the problem of modeling dynamic local memory allocation and

deallocation in the context of IR-to-assembly translation.

We give a brief survey of the prior TV approaches in rest of the section. We discuss

their capability with respect to handling of dynamic local memory (de)allocations and

highlight differences from an end-to-end IR-to-assembly TV such as ours.

1.2.1 IR-to-IR Translation Validation

An IR-to-IR translation validator (TV) validates transformation of a program repre-

sented in an intermediate language (IR)6 into a program represented using (usually)

same or (rarely) different IR [36, 31, 49, 44, 56, 55, 34, 35, 23]. Unlike IR-to-assembly,

modeling dynamic local memory allocations is significantly simpler for IR-to-IR TV.

For example, (pseudo)register-allocation of local variables can be tackled by identifying

relational invariants that equate the value contained in a local variable’s memory region

6In our discussion, we use intermediate language (IR) to denote a language suitable for use in
target-independent phases of a compiler transformation pipeline. Typical characteristics of such a
language include infinite pseudo-registers, types, and abstract mechanisms for representing allocation
and deallocation of memory.

14 Introduction

(in the original program) with the value in the corresponding pseudo-register (in the

transformed program) [22, 23]. If the address of a local variable is observable by the C

program (e.g., for an address-taken local variable), we need to additionally relate the

variable addresses across both programs. These address correlations can be achieved

by first correlating the corresponding allocation statements in both programs (e.g.,

through their names as identifiers) and then assuming that their return values are equal.

Provenance-based syntactic pointer analyses, that show separation between distinct

variables [3, 43], thus suffice for translation validation across IR-to-IR transformations.

Recent work on bounded TV7 by Lee et al. [28] presents an efficient SMT encoding for

modeling memory where memory is segmented into separate blocks and each allocation

is identified distinctly using a block-ID. As the number of allocations is bounded,

a pointer is represented as a combination of a block-ID and an offset into a block.

While this suffices for the bounded TV setting, our problem setting with potentially

unbounded allocations (e.g., due to use of alloca() in a loop) requires a more general

representation of a dynamically-allocated variable and a more general SMT encoding.

1.2.2 IR-to-Assembly and Assembly-to-Assembly Translation

Validation

Prior work on IR-to-assembly and assembly-to-assembly TV [40, 41, 39, 13, 8, 17, 42]

assumes that local variables are either absent or their addresses are not observed in the

program and so they are removed through (pseudo)register-allocation. This assumption

simplifies the validation effort as the required relations are between (pseudo)registers and

spilled pseudo-registers on stack — the stack addresses of these spilled pseudo-registers

are not relevant and do not need to be related.

A problem that arises uniquely in case of IR-to-assembly TV is disambiguation of a

stack memory access from a non-stack (or heap) memory access. Sewell [39] employs a

trusted static analysis over the assembly program to label each memory access as either

aliasing with stack or not aliasing with stack. This distinction enables identification of

the stack as separate from rest of the memory array such that any write to stack does

not affect the rest of the memory state and vice versa. A similar approach of using two

7In bounded TV, the behavior of the input programs is bounded. For example, the programs are
made acyclic by unrolling all loops by a finite unroll factor. This limits both execution and memory
consumption of the programs. As a result, the validation guarantee is limited to executions that fall
within the specified bounds.

Introduction 15

memory arrays, one for stack and another for non-stack, is used in [42].

Other cases of address-taken parameters including the variadic parameter, where the

correlation of the stack address representing the currently-iterated parameter in the

variable-argument list is required, are also assumed to be absent in these prior works.

Our work targets both constructs.

1.2.3 Verified Compilation

Prior work on verified compilation, embodied in CompCert [29], validates its own

transformation passes from IR to assembly, and supports both address-taken local

variables and variadic parameters. However, CompCert sidesteps the task of having to

model dynamic allocations by ensuring that the generated assembly code preallocates

the space for all local variables and procedure-call arguments at the beginning of a

procedure’s body. Because preallocation is not possible if the size of an allocation is

not known at compile time, CompCert does not support variable-sized local variables

or alloca(). Moreover, preallocation is prone to stack space wastage. In contrast to

a verified compiler, TV needs to validate the compilation of a third-party compiler,

and thus needs to support an arbitrary allocation strategy. In particular, almost all

production compilers use dynamic allocation strategy for procedure call arguments. An

end-to-end TV must support dynamic (de)allocation to be a useful alternative.

1.3 Contributions

The central focus of this thesis is to investigate the applicability of translation validation

as an alternative to verified compilation. Recent work [40, 17] has demonstrated

that end-to-end translation validation is a feasible option for validating third-party

compilations. However, as discussed in previous sections, the lack of support for handling

(dynamic) local allocation restricts the applicability of the approach to the wide array

of programs found in real-world. This work aims to rectify this limitation. We offer the

following high-level contributions in this space.

• A formalization of the execution semantics for the unoptimized IR translation of

a C program and its compiled 32-bit x86 assembly in the presence of dynamically

(de)allocated local memory. This includes modeling of the dynamic local allocation

constructs in C and assembly, such as constant and variable-length local arrays, and

16 Introduction

alloca() operator in C and stack-allocated procedure-call arguments (including

variadic arguments) in assembly. Our modeling is sound in the sense that we do

not make any simplifying assumptions and model various constructs precisely. For

example, we model C integers as bitvectors with wrap-around semantics (instead

of mathematical integers) and the assembly stack is modeled as a part of the byte-

addressable memory and not as a separate entity as done in prior work [40].

• A notion of correct translation from unoptimized IR to assembly through a refinement

definition. The definition incorporates the concept of Undefined Behavior (UB) within

the IR program (originally translated from C) where refinement is permitted to hold

trivially when the IR program triggers UB. Similarly, the definition assumes the

absence of stack overflow in assembly — the OS (or runtime environment) is expected

to ensure the availability of sufficient stack space, and a translation validation is

predicated on the availability of this space. A key limitation of this refinement

definition is its failure to support interprocedural transformations (e.g., inlining,

tail-call elimination, etc.).

• An algorithm that converts the correct translation check to first-order logic queries

over bitvectors, arrays, and uninterpreted functions (AUFBV in SMT) through the

automatic construction of a “product graph”. These first-order logic queries are

discharged using off-the-shelf SMT solvers. The algorithm is capable of operating

in both blackbox and whitebox modes, with the blackbox mode enabling its usage

with third-party compilers with arbitrary allocation strategies (with some limitations

described later). This is in contrast to the verified compiler CompCert [29] that

only employs the preallocation strategy for local allocations. In particular, we are

perhaps the first effort to enable support for dynamic stack allocation strategy

for procedure-call arguments used by almost all production compilers (e.g., GCC,

Clang/LLVM, ICC).

• A prototype implementation of the algorithm and its comprehensive evaluation on a

set of diverse benchmarks, including both micro-benchmarks and a real-world bzip2

program. Our prototype is capable of performing blackbox translation validation

of C procedures with up to 100+ SLOC against their corresponding assembly

implementations with up to 140+ instructions generated by an optimizing production

compilers (such as GCC, Clang/LLVM, ICC) with complex loop and vectorizing

transformations.

Introduction 17

1.4 Outline

The remainder of this thesis is divided into chapters as follows. We also provide a

summary in each case.

• In chapter 2, we formalize the execution semantics of the unoptimized IR C obtained

from translation of a C program and its compiled 32-bit x86 assembly A, and present

the definition of our refinement relation for encoding the notion of correct translation.

The execution semantics of a procedure C of C and corresponding assembly procedure

A of A are described in terms of translation of C and A to a labeled transition graph

representation. The refinement relation is defined through existence of an annotation

in A such that its observable behaviors matches with C.

• In chapter 3, we describe a cross-product or product program X between the annotated

assembly A and unoptimized IR C. We impose a set of requirements on X so that

the construction of X implies the existence of a refinement relation between C and A.

We further describe callers’s virtual smallest and safety relaxed semantics of A and

C that help in realizing an efficient automatic construction algorithm for the product

program between the modified A and C. We show that it is possible to construct a

product program between the original A and C from a product program between A

and C with modified semantics.

• In chapter 4, we describe our algorithm Dynamo for the simultaneous automatic

construction of the product program X and annotations for A.

Dynamo builds both the annotated A and product program X incrementally. This

incremental construction enables use of counterexample-guided heuristics described

in prior works.

• In chapter 5, we describe the SMT encoding for the proof obligations generated by

Dynamo.

We describe an allocation state array based encoding, which uses quantifiers over

SMT arrays, and a faster interval encoding, which uses SMT bitvectors.

• In chapter 6, we present an implementation of Dynamo and its comprehensive

evaluation over a set of varied benchmarks.

Our benchmarks include C procedures sourced from various sources including prior

work on translation validation adapted suitably for our setting and the bzip2 program

18 Introduction

from SPEC2000 [20] with up to 100+ SLOC. The compiled 32-bit x86 assemblies for

these C procedures include vectorized code with up to 140+ instructions.

• In chapter 7, we give concluding remarks and some directions for future work.

Chapter 2

Execution Semantics and Notion of

Correct Translation

Our objective is to show that an x86 executable A is a correct translation of a C

program C. Towards it, we first formalize the execution semantics of C and A in terms

of translation to a transition graph representation. We then define correct translation

in terms of refinement of behavior from C to A. Our novel contribution here is showing

refinement through existence of an annotation of A such that the annotated A refines

C.

This chapter is organized as follows: in section 2.1, we present our unoptimized IR and

assembly representations; in section 2.2, we introduce our transition graph representation

and in section 2.3, we formalize the execution semantics of IR and assembly through

translation to transition graph. We present and discuss our refinement definition in

sections 2.4 to 2.7.

2.1 Intermediate Source and Assembly Representa-

tions

As our very first step, we translate the C program C to an unoptimized intermediate

representation (IR), which we also refer to as C — this translation is syntactic and

does not involve any analysis or optimization over the C program C. Similarly, we

disassemble the x86 executable to obtain assembly program A. In the section, we

19

20 Execution Semantics and Notion of Correct Translation

int printf(const char*, ...);

C0: int fib(int n, int m) {

C1: int v[n+2];

C2: v[0]=0; v[1]=1;

C3: for(int i=2; i<=m; ++i)

C4: v[i]=v[i-1]+v[i-2];

C5: printf("fib(%d)␣=␣%d", m, v[m]);

C6: return v[m];

C7: }

(a) C program with VLA.

I0: int fib(int* n, int* m):

I1: i=alloc 1, int, 4;

I2: v=alloc *n+2, int, 4;

I3: v[0]=0; v[1]=1;

I4: *i=2;

I5: if(*i >𝑠 *m) goto I9;

I6: v[*i]=v[*i-1]+v[*i-2];

I7: ++(*i);

I8: goto I5;

I9: 𝑝I9=alloc 1, char*, 4;

I10: 𝑝I10=alloc 1, struct{int;int;}, 4;

I11: *𝑝I9=__S__; /* __S__ is the

address of the

format string */

I12: *𝑝I10=*m; *(𝑝I10 + 4)=v[*m];
I13: t=call int printf(𝑝I9, 𝑝I10);

I14: dealloc I10;

I15: dealloc I9;

I16: r=v[*m];

I17: dealloc I2;

I18: dealloc I1;

I19: ret r;

(b) (Abstracted) Unoptimized IR.

A0: fib:

A1: push ebp; ebp = esp;

A2: push {edi, esi, ebx};

A3: esp -= 12;

A31: vI1 = alloc𝑣 4, 4, I1;

A4: eax = mem4[ebp+8]; ebx = mem4[ebp+12];

A5: esp -= 0xFFFFFFF0 & (4*(eax+2)+15));

A51: alloc𝑠 esp, 4*(eax+2), 4, I2;

A6: esi = ((esp+3)>>2)*4;

A7: mem4[esi] = 0; mem4[esi+4] = 1;

A8: if(ebx ≤𝑠 1) jmp A15;

A9: edi = 0; edx = 1; eax = 2;

A10: ecx = edx+edi;

A11: edi = edx; edx = ecx;

A12: mem4[esi+4*eax] = ecx;

A13: ++eax;

A14: if(eax ≤𝑠 ebx) jmp A10;

A15: edi = mem4[esi+4*ebx];

A16: esp -= 4;

A17: push {edi, ebx, __S__};

A171: alloc𝑠 esp, 4, 4, I9;

A172: alloc𝑠 esp+4, 8, 4, I10;

A18: call int printf

(<char*> esp,

<struct{int; int;}> esp+4)

{ℎ𝑝, 𝑐𝑙, I9, I10};
A181: dealloc𝑠 I10;

A182: dealloc𝑠 I9;

A19: eax = edi;

A191: dealloc𝑠 I2;

A192: dealloc𝑣 I1;

A20: esp = ebp-12;

A21: pop {ebx, esi, edi, ebp};

A22: ret;

(c) (Abstracted) 32-bit x86 assembly code.

Figure 2.1: C program with variable-length array (VLA) and its lowerings to unopti-
mized IR and assembly. Subscript ‘𝑠’ denotes signed comparison. Red font (parts of)
instructions in assembly are added by our algorithm.

describe the unoptimized intermediate source and assembly representations and the

programming constructs we support through them. We discuss our logical model in the

context of compilation to 32-bit x86 for the relative simplicity of the calling conventions

in 32-bit mode.

Execution Semantics and Notion of Correct Translation 21

We use the example shown in fig. 2.1 in our exposition. Figure 2.1 includes a C

program, its unoptimized IR, and compiler generated assembly. The fib procedure in

fig. 2.1a accepts two integers n and m, allocates a variable-length array (VLA) v of n+2

elements, computes the first m+1 Fibonacci numbers in v, calls printf(), and returns

the 𝑚𝑡ℎ Fibonacci number. Notice that for a UB-free execution, both n and m must be

non-negative and m must be less than (n+2). The memory for local variables (v and

i) and procedure-call arguments (for the call to printf()) is allocated dynamically

through the alloc instruction in the IR program (fig. 2.1b). In the assembly program

(fig. 2.1c), memory is allocated through instructions that manipulate the stackpointer

register esp. We will continue to refer figs. 2.1b and 2.1c in remaining text.

2.1.1 Unoptimized IR

The unoptimized IR we use in our representation of the C program is mostly a subset

of LLVM[48] — it supports all the primitive types (integer, float, code or PC labels)

and the derived types (pointer, array, struct, procedure) of LLVM. Being unoptimized,

our IR does not need to support LLVM’s fine-grained undefined behavior semantics

enabled by undef and poison values, it instead treats all error conditions identically

as undefined behavior (UB). Syntactic conversion of C to LLVM IR entails the usual

conversion of types and operators. A global variable name 𝑔 or a parameter name 𝑦

appearing in a C procedure body is translated to the variable’s start address in IR,

denoted lb.𝑔 and lb.𝑦 respectively1. A local variable declaration or an invocation

of the alloca() operator [2] is converted to LLVM’s alloca[1] instruction, and to

distinguish the two, we henceforth refer to the latter as the “alloc” instruction. Unlike

LLVM, our IR also supports a dealloc instruction that deallocates a variable at the end

of its scope — we describe the semantics of both alloc and dealloc in section 2.1.3.

Henceforth, we refer to our IR as LLVM𝑑, short for LLVM + dealloc.

We use a modified Clang[10], the de facto frontend for C in LLVM project, for our

translation from C to LLVM𝑑. We use LLVM’s stacksave and stackrestore intrin-

sics generated by Clang to introduce an explicit dealloc instruction for each alloc

instruction that corresponds to a variable allocation. These intrinsics are inserted by

Clang roughly at scope boundaries and we use them as proxy for scope while inserting

dealloc instructions. The allocations due to alloca() operator are deallocated at the

1As we will also see later in section 2.2.3, lb.𝑣 denotes the lower bound of the memory addresses
occupied by variable with name 𝑣.

22 Execution Semantics and Notion of Correct Translation

end of the procedure and do not require scope tracking.

In fig. 2.1b, explicit alloc and dealloc instructions are inserted for locals v and i in

fig. 2.1a. The dealloc instructions for these alloc instructions are inserted just before

the end of procedure at I7 and I8.

Translation from C to LLVM𝑑 for Procedure Definitions and Calls

Like LLVM, a procedure definition in LLVM𝑑 can only return a scalar value — aggregate

return value (of struct type) is passed in memory. Unlike LLVM, where a procedure

takes parameters by value, LLVM𝑑 takes all parameters through pointers of corresponding

types, e.g., both n and m are passed through pointers of type int in fig. 2.1b. This makes

the translation of a procedure call from C to LLVM𝑑 slightly more verbose, as explicit

instructions to (de)allocate memory for the arguments are required at the callsite. The

LLVM𝑑 call instruction takes the pointers returned by these allocations as operands.

Figure 2.2 shows the pseudo-code for translation of a C procedure-call expression to

LLVM𝑑. The procedure-call expression is represented by 𝜌(𝑒1, 𝑒2, . . . , 𝑒𝑚) (shown at the

top in fig. 2.2) where 𝜌 is either the procedure name or a pointer to a procedure. The

type of 𝜌 is (𝜏1, . . . , 𝜏𝑛) → 𝛾 where 𝜏1, . . . , 𝜏𝑛 represents the parameters’ types and 𝛾

represents the return type. A well-formed expression should have 𝑚 ≥ 𝑛. A code frag-

ment with a shaded background represents a templatized IR instruction with template

slots (to be filled at runtime) marked by ⟨| ⟨|, e.g., 𝑝𝑟 := alloc 1, ⟨|𝛾 ⟨| , ⟨|ALIGNOF(𝛾) ⟨|;
represents an IR instruction where ⟨|𝛾 ⟨| and ⟨|ALIGNOF(𝛾) ⟨|, are instantiated for a con-

crete type 𝛾 — the instruction corresponds to allocation of an element of type ⟨|𝛾 ⟨| and
alignment ⟨|ALIGNOF(𝛾) ⟨|.

LLVM𝑑 instructions alloc, store, and call have similar syntactical structure as their

LLVM counterparts: alloc takes the number of elements to be allocated, the LLVM𝑑

type, and required alignment respectively as parameters (see section 2.1.3 for semantics);

store accepts the type of store target, its alignment, the target value, and the target

pointer respectively as its parameters; and the return type-parametric call instruction

takes the callee label or address and the call arguments as parameters and returns a

value if the return type is non-void.

GEN𝜏 (𝑒) returns the LLVM𝑑 variable holding value of expression 𝑒 after casting it to type

𝜏; promoted type(𝑒) returns the promoted type of C expression 𝑒 obtained after appli-

cation of default argument promotion rules (see §6.5.2.2 of [21]); mk struct x86 cc(. . .)

Execution Semantics and Notion of Correct Translation 23

𝜌(𝑒1, 𝑒2, . . . , 𝑒𝑚) (𝜏1, . . . , 𝜏𝑛) → 𝛾 is the type of 𝜌, 𝑚 ≥ 𝑛

𝑎𝑟𝑔𝑠𝑃 := []; // list of argument pointers
if is aggregate type(𝛾) {

EMIT(𝑝𝑟 := alloc 1, ⟨|𝛾 ⟨| , ⟨|ALIGNOF(𝛾) ⟨|;)
𝑎𝑟𝑔𝑠𝑃 := 𝑎𝑟𝑔𝑠𝑃 · 𝑝𝑟 ; // add pointer to allocated region as first argument

}
for 𝑖 in 1 . . . 𝑛 { // non-variadic arguments

EMIT(𝑝𝑖 := alloc 1, ⟨|𝜏𝑖 ⟨| , ⟨|ALIGNOF(𝜏𝑖) ⟨|;)
EMIT(store ⟨|𝜏𝑖 ⟨| , ⟨|ALIGNOF(𝜏𝑖) ⟨| , ⟨|GEN𝜏𝑖 (𝑒𝑖) ⟨| , 𝑝𝑖;)
𝑎𝑟𝑔𝑠𝑃 := 𝑎𝑟𝑔𝑠𝑃 · 𝑝𝑖;

}
if 𝑚 > 𝑛 {

𝜅1, . . . , 𝜅𝑖 , . . . 𝜅𝑚−𝑛 := promoted type(𝑒𝑛+1), . . . , promoted type(𝑒𝑚);
𝜂 := mk struct x86 cc(𝜅1, . . . , 𝜅𝑖 , . . . , 𝜅𝑚−𝑛); // x86 calling conventions compatible type
EMIT(𝑝𝑣𝑎𝑟 := alloc 1, ⟨|𝜂 ⟨| , ⟨|ALIGNOF(𝜂) ⟨|;)
𝑎𝑟𝑔𝑠𝑃 := 𝑎𝑟𝑔𝑠𝑃 · 𝑝𝑣𝑎𝑟;
EMIT(𝑝𝑣 := 𝑝𝑣𝑎𝑟;)
for 𝑖 in 1 . . . (𝑚 − 𝑛) {

EMIT(store ⟨|𝜅𝑖 ⟨| , ⟨|ALIGNOF(𝜅𝑖) ⟨| , ⟨|GEN𝜅𝑖 (𝑒𝑖) ⟨| , 𝑝𝑣;)
EMIT(𝑝𝑣 := 𝑝𝑣 + ⟨|OFFSETOF(𝜂, 𝑖) ⟨|;)

}
}
if 𝛾 = void {

EMIT(call void ⟨|𝜌 ⟨| (⟨|𝑎𝑟𝑔𝑠𝑃 ⟨|);)
} else if is aggregate type(𝛾) {

EMIT(call ⟨|𝛾 ⟨| ⟨|𝜌 ⟨| (⟨|𝑎𝑟𝑔𝑠𝑃 ⟨|);)
EMIT(# ‰

𝑟𝑒𝑠𝑢𝑙𝑡 := ⟨|AGG2REG(𝑝𝑟) ⟨|;) // distribute the populated aggregate into IR variables
} else {

EMIT(𝑟𝑒𝑠𝑢𝑙𝑡 := call ⟨|𝛾 ⟨| ⟨|𝜌 ⟨| (⟨|𝑎𝑟𝑔𝑠𝑃 ⟨|);)
}
// deallocate the allocated arguments
for 𝑎 in reverse(𝑎𝑟𝑔𝑠𝑃) {

EMIT(dealloc ⟨|𝑎 ⟨|;)
}

Figure 2.2: Pseudo-code for translation of a C procedure-call expression to LLVM𝑑
instructions. alloc, dealloc, call, va start ptr, etc. are LLVM𝑑 instructions.

returns a C ‘struct’ type whose member fields’ alignment matches the calling conven-

tions’ requirements of parameters for 32-bit x86; OFFSETOF(𝜂, 𝑖) returns the offset (in

bytes) of 𝑖𝑡ℎ member field in struct type 𝜂. AGG2REG(𝑝) returns the list of values in

aggregate pointed to by 𝑝.

24 Execution Semantics and Notion of Correct Translation

For a procedure-call expression 𝜌(𝑒1, 𝑒2, . . . , 𝑒𝑚) with parameter types 𝜏1, . . . , 𝜏𝑛, the

translation proceeds as follows. For an aggregate return type 𝜌, an allocation for the

return value is performed through alloc and the resulting pointer is saved as the first

argument to the callee. For each non-variadic argument 𝑒𝑖 (1 ≤ 𝑖 ≤ 𝑛), the algorithm

performs allocation according to type 𝜏𝑖 (of 𝑖
𝑡ℎ parameter) through alloc and store

𝑒𝑖 into the allocated region (through store). A single struct with layout respecting

the calling conventions requirement is allocated for the variable-argument list and each

variadic argument 𝑒 𝑗 (𝑛 + 1 ≤ 𝑗 ≤ 𝑚) is stored at appropriate offset inside the allocated

region. The call instruction is passed the pointers to allocated regions as arguments.

In the epilogue, each allocated region is deallocated through a dealloc instruction in

reverse order of allocation.

An example of this translation is shown in fig. 2.1, where the call to printf at C5 in

fig. 2.1a translates to instructions I9 to I15 in fig. 2.1b. The LLVM𝑑 program performs

two allocations in I9 and I10, one for the format string ("fib(%d) = %d") and another

for the variable argument list (m, v[m]); the latter is represented as a single object of

type “struct {int;int;}” containing two ints. The call instruction in I13 takes the

pointers returned by the two allocations as arguments and stores the (unused) return

value in pseudo-register t.

The memory allocation for procedure-call arguments follows the 32-bit x86 calling

conventions [32], where stack space is used for passing arguments, making it a suitable

semantic choice for this TV setting.

Translation of C’s variadic macros and va list type

va start(𝑎𝑝, 𝑙𝑎𝑠𝑡)
𝑎 := va start ptr

store void∗, 4, 𝑎, ⟨|𝑎𝑝 ⟨|

va end(𝑎𝑝)
store void∗, 4, 0, ⟨|𝑎𝑝 ⟨|

va arg(𝑎𝑝, 𝜏)
𝑎 := load void∗, 4, ⟨|𝑎𝑝 ⟨|
𝑟𝑒𝑠𝑢𝑙𝑡 := load ⟨|𝜏 ⟨| , ⟨|alignof(𝜏) ⟨| , 𝑎

𝑎′ := 𝑎 + ⟨|roundup4(sizeof(𝜏)) ⟨|
store void∗, 4, 𝑎′, ⟨|𝑎𝑝 ⟨|

va copy(𝑎𝑞, 𝑎𝑝)
𝑎 := load void∗, 4, ⟨|𝑎𝑝 ⟨|
store void∗, 4, 𝑎, ⟨|𝑎𝑞 ⟨|

Figure 2.3: Translation of C’s variadic macros to LLVM𝑑 instructions. roundup4(𝑎)
returns the closest multiple of 4 greater than or equal to 𝑎.

Execution Semantics and Notion of Correct Translation 25

C’s variadic macros va start, va arg, va end, and va copy are translated as shown in

fig. 2.3. The translation is presented in the form of translation rules where templatized

IR instructions (as used in fig. 2.2) are shown below C syntax. Like LLVM (in case of 32-

bit x86 cdecl calling conventions), we translate va list to a pointer type whose object

(denoted by 𝑎𝑝 in fig. 2.2) is initialized to the first address of the variable argument list,

obtained through LLVM𝑑’s va start ptr instruction, in va start. va arg increments

the address in passed va list 𝑎𝑝 according to the passed type 𝜏 and va end resets the

address in 𝑎𝑝 to NULL or 0 address. va copy simply copies the value in source 𝑎𝑝 into

destination 𝑎𝑞.

2.1.2 Assembly

Broadly, an assembly program A consists of a code section with a sequence of assembly

instructions, a data section with read-only and read-write global variables, and a symbol

table that maps string symbols to memory addresses in code and data sections. Our

translation validator checks that the address regions specified by the symbol table are

well-aligned and non-overlapping, and uses it to relate a global variable (or procedure)

in C to its address (or implementation) in A. For read-only symbols common in both C

and A, the validator verifies that the memory contents are identical.

We assume that the OS guarantees the caller-side contract of the ABI calling conventions

for the entry procedure, main(). For 32-bit x86, this means that at the start of program

execution, the stackpointer is available in register esp, and the return address and

input parameters (argc,argv) to main() are available in the stack region just above

the stackpointer. For other procedure calls, the validator verifies the adherence to

calling conventions at a callsite (in the caller) and assumes adherence at procedure

entry (in the callee). Heap (de)allocation procedures like malloc() and free() are

left uninterpreted, and so, the only compiler-visible way to allocate (and deallocate)

memory in A is through the decrement (and increment) of the stackpointer stored in

register esp.

2.1.3 Allocation and Deallocation

Allocation and deallocation instructions appear only in C and do not appear in A. Let

C represent a procedure in program C.

An LLVM𝑑 instruction “𝑝𝑎
C
: v := alloc n, 𝜏, align” at PC 𝑝𝑎

C
allocates a contigu-

26 Execution Semantics and Notion of Correct Translation

ous region of local memory with space for n elements of type 𝜏 aligned by align and

returns its start address in v. The PC 𝑝𝑎
C
of an alloc instruction is also called an

allocation site. We denote an allocation site by 𝑧 where 𝑧 = 𝑝𝑎
C
. Let the set of allocation

sites in C be 𝑍 such that 𝑧 ∈ 𝑍. During translation of the C program to LLVM𝑑, we

distinguish between allocation sites due to the declaration of a local variable (or a

procedure-call argument) and allocation sites due to alloca() — we use 𝑍𝑙 for the

former and 𝑍𝑎 for the latter, so that 𝑍 = 𝑍𝑙 ∪ 𝑍𝑎.

The address of an allocated region returned by alloc is non-deterministic, but is subject

to two Well-Formedness (WF) constraints :

1. The newly allocated memory region should be separate from all currently allocated

memory regions, i.e., there should be no overlap.

2. The address of the newly allocated memory region should be aligned by align.

An error-free execution of alloc will satisfy these two well-formedness constraints.

An LLVM𝑑 instruction “𝑝𝑑
C
: dealloc 𝑧” deallocates all local memory regions allocated

due to the execution of (alloc instruction at) allocation site 𝑧 ∈ 𝑍. It is valid (i.e.,

not UB) to execute “dealloc 𝑧” when the alloc instruction at 𝑧 was never executed —

this can happen for an allocation site 𝑧 = 𝑧𝑎 ∈ 𝑍𝑎 due to alloca(), where the alloc

instruction is (conditionally) not executed but the dealloc instruction, inserted at the

end of procedure C, is (unconditionally) executed.

In fig. 2.1b, the alloc instruction at I2, allocates space for ∗n + 2 integers (of type int)

with alignment 4 and stores the region’s start address in v. The allocated region is

identified by the allocation site I2 and deallocated at I17 using dealloc I2.

2.2 Transition Graph Representation

An LLVM𝑑 or assembly instruction may mutate the machine state, transfer control,

perform I/O, or terminate the execution. We represent a C procedure, C in C, as a

transition graph, C = (NC, EC), with a finite set of nodes NC = {𝑛𝑠 = 𝑛1, 𝑛2, . . . , 𝑛𝑚},
and a finite set of labeled directed edges EC. A unique node 𝑛𝑠 represents the start

node or entry point of C, and every other node 𝑛 𝑗 (2 ≤ 𝑗 ≤ 𝑚) must be reachable from

𝑛𝑠. A node with no outgoing edges is a terminating node. A variable in C is identified

by its scope-resolved unique name. The machine state 𝜎C of C consists of the set of

Execution Semantics and Notion of Correct Translation 27

input parameters #‰𝑦 2, set of temporary variables
#‰
𝑡 , and an explicit array variable 𝑀C

denoting the current state of memory. We use i𝑁 to denote a bitvector type of size

𝑁 > 0. The type T(𝑀C) of 𝑀C is i32 → i8.

An assembly implementation of the C procedure C, identified through the symbol table

in A, is the assembly procedure A. Similarly to C, A = (NA, EA) is also represented as a

transition graph. The machine state 𝜎A of A consists of its hardware registers # ‰𝑟𝑒𝑔𝑠 and

memory 𝑀A and is disjoint from the machine state 𝜎C of C.

Let 𝑃 ∈ {C,A}. In addition to the memory (data) state 𝑀𝑃, we also need to track the

allocation state, i.e., the set of intervals of addresses that have been allocated by the

procedure. We use 𝛼 (potentially with a subscript) to denote a memory address of

bitvector type i32. Let 𝑖 = [𝛼𝑏, 𝛼𝑒] represent an address interval starting at 𝛼𝑏 and

ending at 𝛼𝑒 (both inclusive), such that 𝛼𝑏 ≤𝑢 𝛼𝑒 (where ≤𝑢 is unsigned comparison

operator for bitvectors). Let [𝛼]𝑤 be a shorthand for the address interval [𝛼, 𝛼+𝑤−1i32],
where 1i32 (𝑛i32) is the two’s complement representation of integer 1 (𝑛) using 32 bits.

2.2.1 Address Set

Let Σ (potentially with a sub- or superscript) represent a set of addresses, or an address

set. An empty address set is represented by ∅, and an address set of contiguous addresses

is an address interval 𝑖. Two address sets overlap, written ov(Σ1, Σ2), iff Σ1 ∩ Σ2 ≠ ∅.
Extended to 𝑚 > 2 sets, ov(Σ1, Σ2, . . . , Σ𝑚) ⇔ ∃1≤ 𝑗1< 𝑗2≤𝑚ov(Σ 𝑗1 , Σ 𝑗2). |Σ | represents
the number of distinct addresses in Σ. For a non-empty address set, lb(Σ) and ub(Σ)
represent the smallest and largest address respectively in Σ such that Σ ⊆ [lb(Σ), ub(Σ)].
comp(Σ) represents the complement of Σ, so that: ∀𝛼 : (𝛼 ∈ Σ) ⇔ (𝛼 ∉ comp(Σ)).

2.2.2 Memory Regions

To support dynamic (de)allocation and memory related transformations (e.g., re-

ordering, elimination, etc.), an execution model in a validator needs to individually

track regions of memory belonging to each variable, heap, stack, etc. We next describe

the memory regions tracked by our model.

1. Let 𝐺 be the set of names of all global variables in C. For each global variable 𝑔 ∈ 𝐺,

we track the memory region belonging to that variable. We use the name of a global

2We use the notation #‰𝑥 for representing a set.

28 Execution Semantics and Notion of Correct Translation

variable 𝑔 ∈ 𝐺 as its region identifier to identify the region belonging to 𝑔 in both C

and A.

2. For a procedure C, let 𝑌 be the set of names of formal parameters, including the

variadic parameter, if present. We use the special name vrdc to identify the variadic

parameter. The memory region belonging to a parameter 𝑦 ∈ 𝑌 is identified by 𝑦 in

both C and A.

3. The memory region allocated by allocation site 𝑧 ∈ 𝑍 is identified by 𝑧 in C. In A, our

algorithm potentially annotates allocation instructions corresponding to an allocation

site 𝑧 in C. Thus, the memory region allocated by these annotated instructions is

also identified by 𝑧 in A.

4. ℎ𝑝 denotes the region belonging to the program heap (managed by the OS) in both

C and A. Recall that we leave malloc() and free() uninterpreted so that ℎ𝑝 does

not grow or shrink as C (A) executes. This effectively models ℎ𝑝 as a static region,

even when malloc() and free() may implement dynamic growth and shrinking of

its subregions that we do not track in our model.

5. Local variables and actual arguments may be allocated in the call chain of a procedure

(caller, caller’s caller, and so on). The accessible subset (accessible to procedure C3)

is coalesced into a single region denoted by 𝑐𝑙 or callers’ locals in both C and A.

6. In procedure A, stack memory can be allocated and deallocated through stackpointer

decrement and increment. The addresses belonging to the stack frame of A (but not

to a stack-allocated local variable 𝑧 ∈ 𝑍 or a parameter 𝑦 ∈ 𝑌) belong to the 𝑠𝑡𝑘

(stack) region in A. The 𝑠𝑡𝑘 region is absent in C.

7. Separate from 𝑠𝑡𝑘, we use 𝑐𝑠 (callers’ stack) to identify the region that belongs to

the stack space (but not to 𝑐𝑙) of the call chain of procedure A. 𝑐𝑠 is absent in C.

8. Program A may use more global memory than C, e.g., to store precomputed constants

to implement vectorizing transformations. Let 𝐹 be the set of names of all non-empty

assembly-only global variables in A. For each 𝑓 ∈ 𝐹, its memory region in A is

identified by 𝑓 .

3A local variable or actual argument 𝑣 of procedure C′ in the call chain of procedure C is accessible
in procedure C only if the address of 𝑣 is accessible in C, i.e., 𝑣 is address-taken in C′.

Execution Semantics and Notion of Correct Translation 29

9. The region 𝑐𝑣4 denotes the inaccessible subset of local variables and actual arguments

in the call chain of C. 𝑐𝑣 is present in both C and A, but inaccessible (i.e., cannot be

read from or written to) in C and potentially accessible in A — we will elaborate on

the accessibility aspect later when we discuss semantics of a memory access in A.

10. The region free denotes the free space, that does not belong to any of the aforemen-

tioned regions, in both C and A.

Let 𝑅 = 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍 ∪ {ℎ𝑝, 𝑐𝑙, 𝑐𝑣, 𝑠𝑡𝑘, 𝑐𝑠, free} represent all region identifiers;

let 𝑆 = {𝑠𝑡𝑘, 𝑐𝑠} denote the stack regions in A and 𝐵 = 𝐺 ∪ 𝑌 ∪ 𝑍 ∪ {ℎ𝑝, 𝑐𝑙} (𝐵 =

𝑅 \ (𝐹 ∪ 𝑆 ∪ {𝑐𝑣, free})) denote the accessible regions in both C and A.

Let 𝐺𝑟 ⊆ 𝐺 be the set of read-only global variables in C; and, let 𝐺𝑤 = 𝐺 \𝐺𝑟 denote the

set of read-write global variables. Let 𝐹𝑟 ⊆ 𝐹 and 𝐹𝑤 = 𝐹 \ 𝐹𝑟 be defined analogously.

For each non-free region 𝑟 ∈ 𝑅\{free}, the machine state 𝜎𝑃 of a procedure 𝑃 includes a

unique variable Σ𝑟
𝑃
that tracks region 𝑟’s address set as 𝑃 executes. If Σ𝑟

𝑃
is a contiguous

non-empty interval, we also refer to it as 𝑖𝑟
𝑃
. For 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ {ℎ𝑝, 𝑐𝑙, 𝑐𝑣, 𝑐𝑠}

(𝑟 ∈ 𝑅 \ (𝑍 ∪ {𝑠𝑡𝑘, free})), Σ𝑟
𝑃
remains constant throughout 𝑃’s execution. For #‰𝑟 ⊆ 𝑅,

we define an expression Σ
#‰𝑟
𝑃
=

⋃
𝑟∈ #‰𝑟 Σ𝑟

𝑃
. Because C does not have a stack or an assembly-

only global variable, Σ𝐹∪𝑆
C

= ∅ holds throughout C’s execution. At any point in 𝑃’s

execution, the free space can be computed as Σfree
𝑃

= comp(Σ𝐵∪𝐹∪𝑆∪{𝑐𝑣}
𝑃

). Notice that

we do not use an explicit variable to track Σfree
𝑃

.

For the IR and assembly procedures in fig. 2.1, 𝐺 = 𝐹 = ∅, 𝑌 = {n, m}, 𝑍 =

{I1, I2, I9, I10}, and, therefore, 𝑅 = {n, m, I1, I2, I9, I10, ℎ𝑝, 𝑐𝑙, 𝑐𝑣, 𝑠𝑡𝑘, 𝑐𝑠, free}.

2.2.3 Ghost Variables

Our validator introduces ghost variables in a procedure’s execution semantics, i.e.,

variables that were not originally present in 𝑃. We use 𝑥 to indicate that 𝑥 is a ghost

variable. For each region 𝑟 ∈ 𝐺 ∪ 𝑌 ∪ 𝑍 (resp. 𝑟 ∈ 𝐹), we introduce em.𝑟 , lb.𝑟 , and

ub.𝑟 in C (resp. A) to track the emptiness (whether the region is empty), lower bound

(smallest address), and upper bound (largest address) of Σ𝑟
C
(resp. Σ𝑟

A
) respectively; for

𝑟 ∈ 𝐺 ∪ 𝑌 (resp. 𝑟 ∈ 𝐹), sz.𝑟 tracks the size of Σ𝑟
C
(resp. Σ𝑟

A
), and for 𝑧 ∈ 𝑍 , lstSz.𝑧

tracks the size of last allocation due to execution of allocation site 𝑧. Two ghost variables

4𝑐𝑣 stands for callers’ virtual. The reason for tracking this region will become apparent when we
discuss virtual allocation in section 2.6.

30 Execution Semantics and Notion of Correct Translation

Σrd
𝑃

and Σwr
𝑃

track the set of addresses read and written by 𝑃 respectively. Let + be

the set of all ghost variables.

2.2.4 Error Codes

Execution of C or A may terminate successfully, may never terminate, or may terminate

with an error. We support two error codes to distinguish between two categories of

errors: 𝒰 and 𝒲.

• In C: 𝒰 represents an occurrence of UB, and 𝒲 represents a violation of a well-

formedness (WF) constraint that needs to be ensured either by the language or the

OS (both external to the program itself).

• In A: 𝒰 represents an occurrence of UB or a translation error, and 𝒲 represents

occurrence of a condition that can be assumed to never occur, e.g., if the OS ensures

that it never occurs.

In summary, for a procedure 𝑃, 𝒲 represents an error condition that 𝑃 can assume to

be absent (because the external environment ensures it), while 𝒰 represents an error

that 𝑃 must ensure to be absent. For C, the programmer must ensure absence of UB;

for A, the compiler must ensure absence of translation error.

2.2.5 Outside world and observable trace

Let Ω𝑃 be a state of the outside world (OS/hardware) for 𝑃 that supplies external

inputs whenever 𝑃 reads from it and consumes external outputs generated by 𝑃. Ω𝑃 is

assumed to mutate arbitrarily but deterministically based on the values consumed or

produced due to the I/O operations performed by 𝑃 during execution.

Let 𝑇𝑃 be a potentially infinite sequence of observable trace events generated by an

execution of 𝑃. A trace event 𝑡, produced during execution of 𝑃, is concatenated to

𝑇𝑃, written 𝑇𝑃 := 𝑇𝑃 · 𝑡. The trace events generated during an execution of 𝑃 are as

follows: (1) procedure-call invocation (fcall), (2) procedure return (ret), (3) procedure

termination or halt (exit), (4) local allocation (allocBegin and allocEnd), (5) local

deallocation (dealloc), and (6) a distinct silent trace event (⊥), indicating execution

of an instruction that does not otherwise produce an observable event. A trace event

may be associated with a set of values, e.g., a procedure-call invocation is associated

with callee-observable values and a procedure return is associated with caller-observable

Execution Semantics and Notion of Correct Translation 31

values — we will describe the exact values in each case later when we talk about graph

instructions that produce these events (section 2.2.7). Procedure termination includes

both error (indicated by an error code) and error-free termination (indicated by exit),

each of which is identified distinctly.

2.2.6 Expressions

Let variable 𝑣 and variables #‰𝑣 or #‰𝑥 be drawn from Vars =
#‰
𝑡 ∪ # ‰𝑟𝑒𝑔𝑠∪ + ∪ {𝑀𝑃, Σ

𝑟
𝑃
} for

all 𝑃 ∈ {C,A} and for all 𝑟 ∈ 𝑅 \ free. Let 𝑒(#‰𝑥) be an expression over #‰𝑥 , and 𝐸 (#‰𝑥)
be a list of expressions over #‰𝑥 . An expression 𝑒(#‰𝑥) is a well-formed combination of

constants, variables #‰𝑥 , and arithmetic, logical, relational, memory access (read and

write), and address set operators. For memory reads and writes, select (sel for short)

and store (st for short) operations are used to access and modify 𝑀𝑃 at a given

address 𝛼. Further, the sel and st operators are associated with a sz parameter:

selsz(arr, 𝛼) returns a little-endian concatenation of sz bytes starting at 𝛼 in the array

arr. Similarly, stsz(arr, 𝛼, data) returns a new array that has contents identical to arr

except for the sz bytes starting at 𝛼 that have been replaced by data in little-endian

format. To encode reads/writes to a region of memory, we define projection and update

operations.

Definition 2.2.1 (𝜋Σ (𝑀𝑃)). 𝜋Σ (𝑀𝑃) denotes the projection of 𝑀𝑃 on addresses in Σ,

i.e., if 𝑀′
𝑃
= 𝜋Σ (𝑀𝑃), then ∀𝛼∈Σ : sel1(𝑀′𝑃, 𝛼) = sel1(𝑀𝑃, 𝛼) and ∀𝛼∉Σ : sel1(𝑀′𝑃, 𝛼) = 0.

The sentinel value 0 is used for the addresses outside Σ.

We use 𝑀𝑃1 =Σ 𝑀𝑃2 as shorthand for (𝜋Σ (𝑀𝑃1) = 𝜋Σ (𝑀𝑃2)), for 𝑃1, 𝑃2 ∈ {C,A}.

Definition 2.2.2 (updΣ (𝑀𝑃, 𝑀)). updΣ (𝑀𝑃, 𝑀) denotes the update of 𝑀𝑃 on addresses

in Σ using the values in 𝑀. If 𝑀′
𝑃
= updΣ (𝑀𝑃, 𝑀), then 𝑀′

𝑃
=Σ 𝑀 and 𝑀′

𝑃
=comp(Σ) 𝑀𝑃

hold.

2.2.7 Graph Instructions

Each labeled directed edge 𝑒𝑃 ∈ E𝑃 is labeled with one of the following graph instruc-

tions :

1. A simultaneous assignment of the form #‰𝑣 := 𝐸 (#‰𝑥): Because variables #‰𝑣 and #‰𝑥 may

include 𝑀𝑃, an assignment suffices for encoding memory loads and stores. Similarly,

32 Execution Semantics and Notion of Correct Translation

because the variables may be drawn from Σ𝑧
𝑃
(for an allocation site 𝑧), an assignment

is also used to encode the allocation of an interval 𝑖new through Σ𝑧
𝑃
:= Σ𝑧

𝑃
∪ 𝑖new

and the deallocation of all addresses allocated due to 𝑧 through Σ𝑧
𝑃
:= ∅. Stack

allocation and deallocation in A can be similarly represented as Σ𝑠𝑡𝑘
A

:= Σ𝑠𝑡𝑘
A
∪ 𝑖new

and Σ𝑠𝑡𝑘
A

:= Σ𝑠𝑡𝑘
A
\ 𝑖new respectively.

2. A guard instruction of the form 𝑒(#‰𝑥)?: Instruction 𝑒(#‰𝑥)? indicates that when

execution reaches its head, the edge is taken iff its edge condition 𝑒(#‰𝑥) evaluates to
true. For every other instruction, the edge is always taken upon reaching its head,

i.e., its edge condition is true.

For a non-terminating node 𝑛𝑃 ∈ N𝑃 (i.e., 𝑛𝑃 has at least one outgoing edge 5),

the guards of all edges departing from 𝑛𝑃 must be mutually exclusive, and their

disjunction must evaluate to true.

3. A type-parametric choose instruction 𝜃 (#‰𝜏): Instruction #‰𝑣 := 𝜃 (#‰𝜏) non-deterministically

chooses values of types #‰𝜏 and assigns them to variables #‰𝑣 , e.g., a memory with

non-deterministic contents is obtained by using 𝜃 (i32 → i8) so that 𝑀𝑃 := updΣ (𝑀𝑃,

𝜃 (i32 → i8)) updates 𝑀𝑃 at addresses in Σ with non-deterministically chosen data

values.

4. A read (rd) or write (wr) I/O instruction: A read instruction #‰𝑣 := rd(#‰𝜏) reads
values of types #‰𝜏 from the outside world into variables #‰𝑣 , e.g., an address set is read

using Σ := rd(2i32) where 2i32 represents the type of address set Σ.

A write instruction wr(𝑉 (𝐸 (#‰𝑥))) writes the value constructed by value constructor

𝑉 using 𝐸 (#‰𝑥) to the outside world. A value constructor 𝑉 (. . .) is defined for each

type of observable trace event.

• For a procedure-call event, fcall(𝜌, #‰𝑣 , #‰𝑟 , 𝑀) represents a value constructed for

a procedure call to callee with name (or address) 𝜌, the actual arguments #‰𝑣 ,

callee-observable regions #‰𝑟 , and memory 𝑀.

• For a procedure-return event, ret(𝐸 (#‰𝑥)) represents a value constructed during

procedure return that captures observable values computed through 𝐸 (#‰𝑥).
• For local allocation and deallocation events, allocBegin(𝑧, 𝑤, 𝑎), allocEnd(𝑧, 𝑖, 𝑀),
and dealloc(𝑧) represent the values constructed for allocation (allocBegin and

allocEnd) and deallocation (dealloc) due to allocation site 𝑧 with the associated

observables, size of allocation 𝑤, alignment 𝑎, allocated interval 𝑖, and memory 𝑀.

5Recall that a terminating node has no outgoing edges.

Execution Semantics and Notion of Correct Translation 33

A read or write instruction mutates outside world Ω𝑃 arbitrarily based on the

read and written values. Further, the data items read or written are appended to

the observable trace 𝑇𝑃. Let read #‰𝜏 (Ω𝑃) be an uninterpreted function that reads

values of types #‰𝜏 from Ω𝑃; and io(Ω𝑃, rw, 𝐸 (#‰𝑥)) be an uninterpreted function that

returns an updated state of Ω𝑃 after an I/O operation of type rw ∈ {r, w} (read
or write) with values 𝐸 (#‰𝑥). Thus, in its explicit syntax, #‰𝑣 := rd(#‰𝜏) translates
to a sequence of instructions: #‰𝑣 := read #‰𝜏 (Ω𝑃); Ω𝑃 := io(Ω𝑃, r,

#‰𝑣); 𝑇𝑃 := 𝑇𝑃 · #‰𝑣 ,

where · is the trace concatenation operator. Similarly, wr(𝑉 (𝐸 (#‰𝑥))) translates to:
Ω𝑃 := io(Ω𝑃, w, 𝑉 (𝐸 (#‰𝑥))); 𝑇𝑃 := 𝑇𝑃 · 𝑉 (𝐸 (#‰𝑥)). Henceforth, we only use the implicit

syntax for brevity.

5. An error-free and error-indicating halt instruction that terminates execution. halt(∅)
indicates termination without error and halt(𝓇) indicates termination with error

code 𝓇 ∈ {𝒰,𝒲}. Upon termination without error, a special exit event is appended

to trace 𝑇𝑃; upon termination with error, the error code is appended to 𝑇𝑃.

The destination of an edge with a halt instruction is a terminating node. We create

a unique terminating node for an error-free exit. We also create a unique terminating

node for each error code, also called an error node. An edge terminating at an error

node is called an error edge. 𝒰𝑃 and 𝒲𝑃 represent error nodes in 𝑃 for errors 𝒰

and 𝒲 respectively. Execution transfers to an error node upon encountering the

corresponding error. Let NHH𝑈𝑊
𝑃

= N𝑃 \ {𝒰𝑃,𝒲𝑃} be the set of error-free nodes in 𝑃.

In addition to the observable trace events generated by rd, wr, and halt instructions,

the execution of every instruction in 𝑃 also appends an observable silent trace event,

denoted ⊥, to 𝑇𝑃. Silent trace events count the number of executed instructions as a

proxy for observing the passage of time.

2.3 Translations of C and A to their Graph Repre-

sentations

Figures 2.4 to 2.7 (and figs. 2.8, 2.10 and 2.11 later) present the key translation rules

from LLVM𝑑 and (abstracted) assembly instructions to graph instructions. Each rule

is composed of three parts separated by a horizontal line segment: on the left is the

name of the rule, above the line segment is the LLVM𝑑/assembly instruction, and below

the line segment is the graph instructions listing. For example, the top left corner of

fig. 2.4 shows the parametric (Op) rule which gives the translation of an operation using

34 Execution Semantics and Notion of Correct Translation

arithmetic/logical/relational operator op in LLVM𝑑 to corresponding graph instructions.

We describe the operators and predicates used in the rules in table 2.1. We use C-like

constructs in graph instructions as syntactic sugar for brevity, e.g. ‘;’ is used for

sequencing, ‘?:’ is used for conditional assignment, and if, else, and for are used for

control flow transfer. We highlight the read and write I/O instructions with a shaded

background and use bold, colored fonts for error-indicating halt instructions. We use

“macros” IF and ELSE to choose translations based on a boolean condition on the input

syntax.

2.3.1 Translation of C

Figures 2.4 and 2.5 shows the rules for translating LLVM𝑑 instructions to graph instruc-

tions. We discuss each in the following paragraphs.

The parametric rule (Op) gives the translation for application of an arithmetic/logi-

cal/relational operator op over arguments #‰𝑥 (fig. 2.4). An application of op may trigger

undefined behavior (UB) for certain inputs, as abstracted through the UBC(op, #‰𝑥)
operation. While there are many undefined behaviors in the C standard, we model only

the following that we have seen getting exploited for optimization by the compiler:

1. Logical or arithmetic shift operation: The second operand should be bounded by a

limit which is determined by the bit width of the first operand. This is required

when a shift operation in C is translated to an x86 shift opcode in A.

2. Address computation (getelementptr inbounds opcode in LLVM IR): No overflow

and underflow in the intermediate and final computations. An optimizing compiler

may assume this for conversion of inequality relations to disequality relations.

3. Division operation: The denominator operand should be non-zero. This is required

for showing an exception-free execution of the corresponding division operation in A.

We will describe the 𝛽(𝑣) := . . . part of the translation shortly.

The (LoadC) and (StoreC) rules (fig. 2.4) show the translations for load and store in-

structions respectively. A UB-free execution of load and store requires the dereferenced

pointer 𝑝 to satisfy memory access safety constraints specified through accessIsSafeC()

predicate (defined in table 2.1) — a safe memory access is recorded in ghost variable

Σrd
C

for load and Σwr
C

for store. An access through pointer 𝑝 is safe iff 𝑝 is non-NULL

Execution Semantics and Notion of Correct Translation 35

Table 2.1: Definitions of operators and predicates used in translations in figs. 2.4 to 2.8
and 2.10 to 2.12

Operator Definition

sz(𝜏) Returns the size (in bytes) of type 𝜏. For example, sz(i32) = 4 and sz(i8∗) = 4.
T(𝑎) Returns the type 𝜏 of 𝑎 where 𝑎 may be a global variable, a parameter, or a register.

For example, T(eax) = i32.
△𝜏 (eax, edx) A type-parametric operator which derives the return value of an assembly proce-

dure with return type 𝜏 from input registers eax and edx using the calling conven-
tions, e.g., △i8 (eax, edx) = extract7,0 (eax), △i32 (eax, edx) = eax, △i64 (eax, edx) =

concat(edx, eax), where extractℎ,𝑙 (𝑎) extracts bits ℎ down to 𝑙 from 𝑎 and concat(𝑎, 𝑏)
returns the bitvector concatenation of 𝑎 and 𝑏 where 𝑏 takes the less significant position.

▽𝜏 (𝑣) Inverse of △𝜏 (eax, edx). Distributes the packed bitvector 𝑣 of type 𝜏 into two bitvectors
of 32 bit-width each, setting the bits not covered by 𝑣 to some non-deterministic value.

ROM𝑟𝑃 (𝑖) Returns a memory array containing the contents of read-only global variable named 𝑟

in 𝑃. The contents are mapped at the addresses in the provided interval 𝑖.
addrSets𝐹 () Returns the address sets of the assembly-only global variables 𝐹 using the symbol table

in the executable A.

Predicate Definition

aligned𝑛 (𝑎) Bitvector 𝑎 is 𝑛 bytes aligned. Equivalent to: 𝑎%𝑛 = 0, where % is
remainder operator.

isAlignedIntrvl𝑎 (𝑝, 𝑤) A 𝑤-sized sequence of addresses starting at 𝑝 is aligned by 𝑎 and does not
wraparound. Equivalent to: aligned𝑎 (𝑝) ∧ (𝑝 ≤𝑢 𝑝 + 𝑤 − 1i32).

accessIsSafeC𝜏,𝑎 (𝑝, Σ) Equivalent to: isAlignedIntrvl𝑎 (𝑝, sz(𝜏)) ∧ ([𝑝]sz(𝜏) ⊆ Σ).

addrSetsAreWF(Σℎ𝑝
𝑃 , Σ𝑐𝑙

𝑃 ,

Σ𝑐𝑣
𝑃 , . . . , 𝑖

𝑔
𝑃 , . . . , Σ

𝑓
𝑃 , . . . ,

𝑖
𝑦
𝑃 , . . . , Σ

vrdc
𝑃)

The address sets passed as parameter are well-formed with re-

spect to C semantics. Equivalent to: (0i32 ∉ Σ
𝐺∪𝐹∪𝑌∪{ℎ𝑝,𝑐𝑙,𝑐𝑣}
𝑃) ∧

¬ov(Σℎ𝑝
𝑃 , Σ𝑐𝑙

𝑃 , . . . , 𝑖
𝑔
𝑃 , . . . , Σ

𝑓
𝑃 , . . . , 𝑖

𝑦
𝑃 , . . . , Σ

vrdc
𝑃) ∧ ¬ov(Σ𝐺∪𝑌∪{ℎ𝑝,𝑐𝑙}

𝑃 , Σ𝑐𝑣
𝑃) ∧

(Σvrdc
𝑃 ≠ ∅ ⇒ isInterval(Σvrdc

𝑃)) ∧ ∀𝑟∈𝐺∪(𝑌\{vrdc})∪𝐹 : (|𝑖𝑟𝑃 | = sz(T(𝑟)) ∧
alignedalgnmnt(𝑟) (lb(𝑖𝑟𝑃))), where isInterval(Σvrdc

𝑃) holds iff the address

set Σvrdc
𝑃 is an interval, algnmnt(𝑟) returns the alignment of variable 𝑟.

intrvlInSet(𝛼𝑏, 𝛼𝑒, Σ) The pair (𝛼𝑏, 𝛼𝑒) forms a valid interval inside the address set Σ. Equivalent
to: (𝛼𝑏 ≠ 0i32) ∧ (𝛼𝑏 ≤𝑢 𝛼𝑒) ∧ ([𝛼𝑏, 𝛼𝑒] ⊆ Σ)

intrvlInSet𝑎 (𝛼𝑏, 𝛼𝑒, Σ) Equivalent to: aligned𝑎 (𝛼𝑏) ∧ intrvlInSet(𝛼𝑏, 𝛼𝑒, Σ)
obeyCC(𝑒esp, #‰𝜏 , #‰𝑥) Pointers #‰𝑥 match the expected addresses of arguments for a procedure

call in assembly. Based on the calling conventions, obeyCC uses the value
of the current stackpointer (𝑒esp) and parameter types (#‰𝜏) to obtain the
expected addresses of the arguments. For example, obeyCC(esp, (i8, i32),
(esp, esp + 4i32)) holds.

overflow𝑚𝑢𝑙 (𝑎, 𝑏) Signed multiplication of bitvectors 𝑎, 𝑏 overflows. E.g.,
overflow𝑚𝑢𝑙 (2147483647i32 , 2i32) holds.

stkIsWF(esp, stk𝑒 , cs𝑒 ,
#‰𝜏 , Σ

ℎ𝑝
A

, Σ𝑐𝑙
A
, Σ𝐺∪𝐹

A
, . . . ,

𝑖
𝑦
A
, . . . , Σvrdc

A)

The pairs (esp, stk𝑒), (stk𝑒 , cs𝑒) represent well-formed intervals for
initial 𝑠𝑡𝑘 region and initial 𝑐𝑠 region with respect to parameter types #‰𝜏

and other (input) address sets in A. Equivalent to: aligned16 (esp +
4i32) ∧ (esp ≤𝑢 esp + 4i32) ∧ ¬ov([esp]4i32 , Σ

𝐺∪𝐹∪𝑌∪{ℎ𝑝,𝑐𝑙}
A

) ∧
obeyCC(esp + 4i32 , #‰𝜏 , . . . , lb(𝑖𝑦

A
), . . .) ∧ (stk𝑒 <𝑢 cs𝑒) ∧ ¬ov([stk𝑒 +

1i32 , cs𝑒], Σ𝐺∪𝐹∪{ℎ𝑝}
A

) ∧ Σ𝑐𝑙
A
⊆ [stk𝑒 + 1i32 , cs𝑒]

UB𝑃 (op, #‰𝑥) Application of operation op of procedure 𝑃 on arguments #‰𝑥 triggers UB.
E.g., UBC (udiv, (1i32 , 0i32)) holds.

36 Execution Semantics and Notion of Correct Translation

(Op)
𝑝
𝑗
C
: 𝑣 := op(#‰𝑥)

if (UBC (op, #‰𝑥)) halt(𝒰);
𝑣 := op(#‰𝑥);
. . . , 𝑥, . . . := #‰𝑥 ; 𝛽(𝑣) := 𝛽op (. . . , 𝛽(𝑥), . . .);

(AssignConst)
𝑝
𝑗
C
: 𝑣 := 𝑐

𝑣 := 𝑐;
𝛽(𝑣) := ∅;

(LoadC)
𝑝
𝑗
C
: 𝑣 := load 𝜏, 𝑎, 𝑝

if (¬accessIsSafeC𝜏,𝑎 (𝑝, Σ𝛽 (𝑝)
C
))

halt(𝒰);
𝑣 := selsz(𝜏) (𝑀C, 𝑝);
𝛽(𝑣) := 𝛽𝑀 (𝛽(𝑝));
Σrd
C := Σrd

C ∪ [𝑝]sz(𝜏) ;

(StoreC)
𝑝
𝑗
C
: store 𝜏, 𝑎, 𝑣, 𝑝

if (¬accessIsSafeC𝜏,𝑎 (𝑝, Σ𝛽 (𝑝)\𝐺𝑟

C
))

halt(𝒰);
𝑀C := stsz(𝜏) (𝑀C, 𝑝, 𝑣);
𝛽𝑀 (𝛽(𝑝)) := 𝛽𝑀 (𝛽(𝑝)) ∪ 𝛽(𝑣);
Σwr
C := Σwr

C ∪ [𝑝]sz(𝜏) ;

(VaStartPtr)
𝑝
𝑗
C
: 𝑝 := va start ptr

if (Σvrdc
C = ∅) {

𝑝 := 0i32 ; 𝛽(𝑝) := ∅;
} else {

𝑝 := lb.vrdc ; 𝛽(𝑝) := {vrdc};
}

Figure 2.4: Translation rules for converting LLVM𝑑 instructions to graph instructions.
op represents an arithmetic, logical, or relational operator. 𝑐 represents a constant.

(≠ 0i32 in our modeling6), aligned by the required alignment 𝑎, and have its access

interval belong to the regions which 𝑝 may point to or 𝑝 may be based on (§6.5.6𝑝8 of

the C11 standard [21]).

To identify the regions a pointer 𝑝 may be based on, we define two maps:

(1) 𝛽 : Vars→ 2𝑅 that tracks the set of regions a variable (e.g., a pointer) may be based

on, so that for a variable 𝑥 ∈ Vars, 𝛽(𝑥) returns the set of regions 𝑥 may point to.

(2) 𝛽𝑀 : 𝑅 → 2𝑅 that tracks the set of regions that pointers in a memory region may

be based on, so that for a region 𝑟 ∈ 𝑅, 𝛽𝑀 (𝑟) returns the set of regions that some

(pointer) value stored in 𝜋Σ𝑟
C
(𝑀C) may point to.

For convenience, we extend 𝛽 and 𝛽𝑀 to also take as input a set of variables and a set of

regions respectively so that 𝛽(#‰𝑥) is equivalent to ⋃
𝑥∈ #‰𝑥 𝛽(𝑥), and 𝛽𝑀 (#‰𝑟) is equivalent

to
⋃

𝑟∈ #‰𝑟 𝛽𝑀 (𝑟). Similar extension is used in assignment to 𝛽𝑀 so that 𝛽𝑀 (#‰𝑟1) := #‰𝑟2 is

equivalent to ‘for 𝑟1 in #‰𝑟1 { 𝛽𝑀 (𝑟1) := #‰𝑟2; }’.
6The accessIsSafeC𝜏,𝑎 (𝑝, Σ) definition in table 2.1 does not include the ≠ 0i32 clause because it

assumes that 0i32 ∉ Σ so that a [𝑝]sz(𝜏) ⊆ Σ check implies 𝑝 ≠ 0i32 . 0i32 ∉ Σ𝑟
C for an allocated region 𝑟

is an invariant in C.

Execution Semantics and Notion of Correct Translation 37

The initialization and update of 𝛽 and 𝛽𝑀 due to each LLVM𝑑 instruction can be seen in

figs. 2.4 and 2.5. In (Op), for an operation op, 𝛽op : (2𝑅 × 2𝑅 . . . × 2𝑅) → 2𝑅 represents

the over-approximate abstract transfer function for 𝑣 := op(#‰𝑥), that takes as input

𝛽(𝑥1), 𝛽(𝑥2), . . . , 𝛽(𝑥𝑚) for #‰𝑥 = 𝑥1, 𝑥2, . . . , 𝑥𝑚 and returns 𝛽(𝑣). We use:

• 𝛽op(#‰𝑟) = #‰𝑟 , if op is identity, bitwise complement and unary negation.

• 𝛽op(#‰𝑟1, . . . ,
‰𝑟𝑚) =

⋃
1≤ 𝑗≤𝑚 #‰𝑟 𝑗 , if op is bitvector addition, subtraction, shift, bitwise-

{and,or}, extraction, or concatenation.
• 𝛽op(#‰𝑟1, . . . ,

‰𝑟𝑚) = ∅, if op is bitvector multiplication, division, logical, relational, or

any other remaining operator.

The rule (AssignConst) for a constant assignment to variable 𝑣 sets 𝛽(𝑣) to empty

set making it impossible to fabricate pointers from integer literals.

(VaStartPtr) (fig. 2.4) gives the translation rule for the va start ptr instruction of

LLVM𝑑 — recall that the va start ptr instruction is used during translation of the C

variadic macro va start() to LLVM𝑑 (fig. 2.3). The rule sets the assigned variable 𝑝 to

the first address of the variadic parameter region (obtained through lb.vrdc) if the

address set Σvrdc
C

of the variadic parameter region is non-empty, otherwise 0i32 (NULL

in our representation) is used. Because lb.vrdc is a pointer inside vrdc region, 𝛽(𝑝)
is set to singleton {vrdc}.

The (EntryC) rule in fig. 2.5 presents the initialization performed at the entry of

procedure C. The allocation state, address set Σ𝑟
C
of each region 𝑟 ∈ 𝑅 \ {free}, and

memory state, 𝑀C, of C are initialized using reads from the outside world ΩC — the

contents of read-only global regions (𝐺𝑟) are initialized separately using their predefined

values (through ROM
𝑔

C
(𝑖𝑔
C
) defined in table 2.1). The read address sets are checked for

well-formedness with respect to C semantics through addrSetsAreWF() (defined in

table 2.1), or else error 𝒲 is triggered; well-formedness in this context requires that

the address sets do not contain the NULL pointer (0i32), a global variable/argument

address set is an interval, and the address sets do not overlap. The rule concludes with

initialization of the ghost variables associated with the regions and the 𝛽, 𝛽𝑀 maps

used for tracking may based on information. Notice that the region 𝑐𝑣 is not included

in the set of reachable regions through 𝛽 and 𝛽𝑀 making it unreachable throughout

C’s execution (this is ensured during a fresh allocation through an alloc instruction

(Alloc) as well).

(RetV) and (RetC) (fig. 2.5) present translations for procedure-return instructions

38 Execution Semantics and Notion of Correct Translation

(EntryC)
𝑝
𝑗
C
: def C(#‰𝜏)

Σ
ℎ𝑝
C

, Σ𝑐𝑙
C , Σ𝑐𝑣

C , . . . , 𝑖
𝑔
C
, . . . , 𝑖

𝑦
C
, . . . , Σvrdc

C := rd(2i32 , 2i32 , . . . , 2i32) ;
Σ𝑠𝑡𝑘
C , Σ𝑐𝑠

C , . . . , Σ
𝑓
C
, . . . , Σ𝑧

C
, . . . , Σrd

C , Σwr
C := ∅, ∅, . . . , ∅;

if (¬addrSetsAreWF(Σℎ𝑝
C

, Σ𝑐𝑙
C , Σ𝑐𝑣

C , . . . , 𝑖
𝑔
C
, . . . , Σ

𝑓
C
, . . . , 𝑖

𝑦
C
, . . . , Σvrdc

C))
halt(𝒲);

𝑀C := 𝜃 (i32 → i8); 𝑀C := upd
Σ
𝐵\𝐺𝑟
C

(𝑀C, rd(i32 → i8)) ;
for 𝑔 in 𝐺𝑟 { 𝑀C := upd𝑖𝑔

C
(𝑀C, ROM

𝑔
C
(𝑖𝑔
C
)); }

for 𝑟 in 𝐺 ∪ 𝑌 {
sz.𝑟 , em.𝑟 := |Σ𝑟

C |, (|Σ𝑟
C | = 0i32);

if(¬ em.𝑟) { lb.𝑟 , ub.𝑟 := lb(Σ𝑟
C), ub(Σ𝑟

C); }
𝛽(lb.𝑟) := {𝑟};

}
for 𝑟 in 𝐺 ∪ 𝑌 ∪ {ℎ𝑝, 𝑐𝑙} { 𝛽𝑀 (𝑟) := 𝐺 ∪ {ℎ𝑝, 𝑐𝑙}; }
for 𝑧 in 𝑍 { em.𝑧 := true; 𝛽𝑀 (𝑧) := ∅; }

(RetV)
𝑝
𝑗
C
: ret void

wr(ret(𝜋Σ𝐵
C
(𝑀C))) ;

halt(∅);

(RetC)
𝑝
𝑗
C
: ret 𝑣

wr(ret(𝑣, 𝜋Σ𝐵
C
(𝑀C))) ;

halt(∅);

(Alloc)
𝑧 : 𝑣 := alloc 𝑛, 𝜏, 𝑎

IF{𝑧 ∈ 𝑍𝑙}{
if (𝑛 ≤𝑠 0i32 ∨ overflow𝑚𝑢𝑙 (𝑛, sz(𝜏)))
halt(𝒰);

} ELSE {
if (𝑛 = 0i32) halt(𝒰);
}
wr(allocBegin(𝑧, 𝑛∗sz(𝜏), 𝑎)) ;
𝛼𝑏 := 𝜃 (i32); 𝛼𝑒 := 𝛼𝑏 + 𝑛∗sz(𝜏) − 1i32 ;
if (¬intrvlInSet𝑎 (𝛼𝑏, 𝛼𝑒, Σ

free
C))

halt(𝒲);
Σ𝑧
C
,

:=

Σ𝑧
C
∪ [𝛼𝑏, 𝛼𝑒],

𝑀C, upd[𝛼𝑏 ,𝛼𝑒] (𝑀C, 𝜃 (i32 → i8)),
lb.𝑧 , em.𝑧 ? 𝛼𝑏 : min(lb.𝑧 , 𝛼𝑏),
ub.𝑧 , em.𝑧 ? 𝛼𝑒 : max(ub.𝑧 , 𝛼𝑒),
em.𝑧 , false,

lstSz.𝑧 𝑛∗sz(𝜏);
𝑣 := 𝛼𝑏; 𝛽(𝑣) := {𝑧};
wr(allocEnd(𝑧, [𝛼𝑏, 𝛼𝑒], 𝜋[𝛼𝑏 ,𝛼𝑒] (𝑀C))) ;

(Dealloc)
𝑝
𝑗
C
: dealloc 𝑧

Σ𝑧
C
, := ∅,

em.𝑧 true;
wr(dealloc(𝑧)) ;

(CallV)
𝑝
𝑗
C
: call void 𝜌(#‰𝜏 #‰𝑥)

𝛽∗ := 𝛽∗𝑀 (
⋃
𝑥∈ #‰𝑥

𝛽(𝑥) ∪ 𝐺 ∪ {ℎ𝑝});

wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
C

(𝑀C))) ;
𝑀C := upd

Σ
𝛽∗\𝐺𝑟
C

(𝑀C, rd(i32 → i8)) ;
𝛽𝑀 (𝛽∗ \ 𝐺𝑟) := 𝛽∗;

(CallC)
𝑝
𝑗
C
: 𝑣 := call 𝛾 𝜌(#‰𝜏 #‰𝑥) 𝛾 ≠ void

𝛽∗ := 𝛽∗𝑀 (
⋃
𝑥∈ #‰𝑥

𝛽(𝑥) ∪ 𝐺 ∪ {ℎ𝑝});

wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
C

(𝑀C))) ;
𝑀C := upd

Σ
𝛽∗\𝐺𝑟
C

(𝑀C, rd(i32 → i8)) ;
𝑣 := rd(𝛾) ;
𝛽(𝑣), 𝛽𝑀 (𝛽∗ \ 𝐺𝑟) := 𝛽∗, 𝛽∗;

Figure 2.5: Translation rules for converting LLVM𝑑 instructions to graph instructions.

Execution Semantics and Notion of Correct Translation 39

‘ret void’ and ‘ret 𝑣’ respectively. Return from a procedure produces a non-silent

observable event with the return value (in case of ret 𝑣) and the memory state of

accessible regions in C written to outside world through wr(ret(. . .)).

The (Alloc) and (Dealloc) rules (fig. 2.5) give the semantics for the allocation

and deallocation of local memory, identified by an allocation site 𝑧, through alloc

and dealloc respectively. For an allocation, if 𝑧 ∈ 𝑍𝑙
7, the computation of allocation

size, obtained by multiplying the number of elements allocated (𝑛) with size of each

element (sz(𝜏)), has a no overflow constraint for a UB-free execution (shown through

translation-selecting IF{𝑧 ∈ 𝑍𝑙}). The translation uses the choose instruction (𝜃 (i32)) for
identifying the non-deterministic start address of the freshly allocated interval [𝛼𝑏, 𝛼𝑒].
A freshly allocated interval must satisfy the two well-formedness (WF) constraints

of no overlap with existing allocated regions and alignment of the start address,

implemented through ¬intrvlInSet𝑎 () check (defined in table 2.1), otherwise error 𝒲

is triggered8. An allocation adds the allocated interval [𝛼𝑏, 𝛼𝑒] to the address set Σ𝑧

C
of

the local; a deallocation empties it. Similar to the start address, the memory contents

of the allocated interval are non-deterministically initialized through upd[𝛼𝑏 ,𝛼𝑒] (𝑀C,

𝜃 (i32 → i8)). The various ghost variables associated with region 𝑧 are updated in

both cases: an allocation updates the lower bound lb.𝑧 , upper bound ub.𝑧 , and last

allocation size lstSz.𝑧 and resets the boolean ghost variable em.𝑧 that tracks the

emptiness of 𝑧; a deallocation simply sets em.𝑧 to true. We use the simultaneous

assignment instruction for updating Σ𝑧

C
, 𝑀C, and the ghost variables in a single step.

A (de)allocation instruction generates observable traces using the wr instruction at the

beginning and end of each execution of that instruction. We will later use these traces

to identify a lockstep correlation of (de)allocation events between C and A, towards

validating a translation.

Modeling procedure calls in C

The semantics of an LLVM𝑑 procedure-call instruction is given by the rules (CallV)
and (CallC) (fig. 2.5). For an LLVM𝑑 call instruction “call 𝛾 𝜌(#‰𝜏 #‰𝑥)”, we produce

a non-silent observable trace event using the wr instruction with observables callee

name/address 𝜌, arguments #‰𝑥 , and callee-accessible regions and memory state (𝛽∗

7Recall that 𝑍𝑙 denotes the allocation sites due to the declaration of a local variable or a procedure-
call argument

8Recall that 𝒲 represents an error condition that is external to the procedure and can be assumed
to never occur.

40 Execution Semantics and Notion of Correct Translation

and 𝜋
Σ
𝛽∗
C

(𝑀C) in fig. 2.5). A callee may access a memory region iff it is transitively

reachable from a global variable 𝑔 ∈ 𝐺, the heap ℎ𝑝, or one of the arguments 𝑥 ∈ #‰𝑥 .

The (transitively) reachable memory regions are over-approximately computed through

a reflexive-transitive closure of 𝛽𝑀 , denoted 𝛽∗
𝑀

in fig. 2.5.

To model return values and side-effects to the memory state due to a callee, rd

instructions are used. A rd instruction is used to arbitrarily clobber each the callee-

observable state element. Thus, if a callee procedure terminates normally (i.e., without

error), wr and rd instructions over-approximately model the execution of a procedure

call. Later, our definition of refinement (section 2.4) caters to the case when a callee

procedure may not terminate or terminates with error (i.e., a termination with error is

modeled identically to non-termination).

Lastly, a procedure call can potentially be recursive — our modeling does not differenti-

ate between a recursive and a non-recursive call. As we will see later in section 2.5.4,

a consequence of this over-approximate modeling is that the tail-call elimination opti-

mization, where a tail recursive call is replaced by a loop, cannot be covered by our

refinement definition (i.e., the transformed procedure will not be considered refinement

of the original procedure).

2.3.2 Translation of A

The rules for translating assembly instructions to graph instructions are shown in

figs. 2.6 and 2.7 (and later figs. 2.8, 2.10 and 2.11). We abstract the assembly opcodes

to an IR-like syntax for ease of exposition. For example, in (LoadA), a memory read

operation is represented by a load instruction which is annotated with address 𝑝,

access size 𝑤 (in bytes), and required alignment 𝑎9. Similarly, in (StoreA), a memory

write operation is represented by a store instruction with similar operands. Both

(LoadA) and (StoreA) translations update the ghost address sets Σrd
A

and Σwr
A

, in

the same manner as done in (LoadC) and (StoreC). A memory access error due to

NULL address dereference or an unaligned access or an out-of-bounds access triggers

a 𝒰 error (indicating a translation error). An access through address 𝑝 is deemed

out-of-bounds if 𝑝 lies in free region (𝑝 ∈ Σfree
A

) or 𝑝 lies in that part of 𝑐𝑣 region which

does not overlap with assembly-only regions 𝐹 ∪ 𝑆10. For a store, accessing read-only

regions (𝐺𝑟 ∪ 𝐹𝑟) is also considered as out-of-bounds. Other machine exceptions such

9In 32-bit x86 alignment is only mandatory for some instructions (e.g., vector instructions).
10Recall that the 𝑐𝑣 region represents the inaccessible subset of local memory in call chain of A.

Execution Semantics and Notion of Correct Translation 41

(Op-esp)
𝑝
𝑗
A
: esp := op(#‰𝑥)

if (UBA (op, #‰𝑥)) halt(𝒰);
𝑡 := op(#‰𝑥);
if (isPush(𝑝 𝑗

A
, esp, 𝑡)) {

if (¬intrvlInSet(𝑡, esp − 1i32 , Σfree
A ∪ (Σ𝑐𝑣

A \ Σ𝐹
A)))

halt(𝒲);

Σ𝑠𝑡𝑘
A := Σ𝑠𝑡𝑘

A ∪ [𝑡, esp − 1i32];
𝑀A := upd[𝑡 ,esp−1i32] (𝑀A, 𝜃 (i32 → i8));

} else if (𝑡 ≠ esp) {
if (¬intrvlInSet(esp, 𝑡 − 1i32 , Σ𝑠𝑡𝑘

A))
halt(𝒰);

Σ𝑠𝑡𝑘
A := Σ𝑠𝑡𝑘

A \ [esp, 𝑡 − 1i32];
}
esp := 𝑡; sp.𝑝

𝑗
A

:= 𝑡;

(LoadA)
𝑝
𝑗
A
: 𝑣 := load 𝑤, 𝑎, 𝑝

if (¬isAlignedIntrvl𝑎 (𝑝, 𝑤)
∨ ov([𝑝]𝑤 , Σfree

A ∪ (Σ𝑐𝑣
A \ Σ𝐹∪𝑆

A)))
halt(𝒰);

𝑣 := sel𝑤 (𝑀A, 𝑝);
Σrd
A := Σrd

A ∪ [𝑝]𝑤;

(StoreA)
𝑝
𝑗
A
: store 𝑤, 𝑎, 𝑣, 𝑝

if (¬isAlignedIntrvl𝑎 (𝑝, 𝑤)
∨ ov([𝑝]𝑤 , Σ{free}∪𝐺𝑟∪𝐹𝑟

A
∪ (Σ𝑐𝑣

A \ Σ𝐹∪𝑆
A)))

halt(𝒰);
𝑀A := st𝑤 (𝑀A, 𝑝, 𝑣);
Σwr
A := Σwr

A ∪ [𝑝]𝑤;

(Op-Nesp)
𝑝
𝑗
A
: 𝑟 := op(#‰𝑥) 𝑟 ≠ esp

if (UBA (op, #‰𝑥)) halt(𝒰);
𝑟 := op(#‰𝑥);

Figure 2.6: Translation rules for converting pseudo-assembly instructions to graph
instructions. op represents an arithmetic, logical, or relational operator.

as division-by-zero are also modeled as 𝒰 errors in A through the abstract UBA(. . .)
operation (used in rules (Op-esp) and (Op-Nesp)).

(Op-esp) (fig. 2.6) shows the translation of an instruction that updates the stackpointer

register esp. An assignment to stackpointer esp may indicate allocation (stack push)

or deallocation (stack pop) of stack space. An assignment that corresponds to a

stackpointer decrement (push) is identified through predicate isPush(𝑝 𝑗

A
, 𝜄𝑏, 𝜄𝑎) where

𝜄𝑏 and 𝜄𝑎 are the values of esp before and after the execution of the instruction. We

use thresholding on the update distance (𝜄𝑏 − 𝜄𝑎) in our definition of isPush:11

isPush(𝑝 𝑗

A
, 𝜄𝑏, 𝜄𝑎) ⇔ (𝜄𝑏 ≠ 𝜄𝑎) ∧ ((𝜄𝑏 − 𝜄𝑎) ≤𝑢 (231 − 1))

11231 − 1 = INT MAX in our 32-bit setting.

42 Execution Semantics and Notion of Correct Translation

While this choice of isPush suffices for most TV settings, we show in chapter A that if

the translation is performed by an adversarial compiler, discriminating a stack push

from a pop is trickier and may require external trusted guidance from the user.

For a stackpointer decrement (a push), a failure to allocate stack space, either due

to wraparound or overlap with other allocated space, triggers 𝒲, i.e., we expect the

environment (e.g., OS) to ensure that the required stack space is available to A to

prevent a wraparound or overlap; however, an overlap with region 𝑐𝑣 is permitted —

we defer a discussion on this exception to section 2.6. For a stackpointer increment

(a pop), it is a translation error if the stackpointer moves out of current stack frame

bounds (captured by error code 𝒰). The stackpointer value at the end of an assignment

instruction at PC 𝑝
𝑗

A
is saved in a ghost variable named sp.𝑝

𝑗

A
. These ghost variables

help with inference of invariants that relate a local variable’s bounds with stack addresses

(invariant inference in our algorithm is discussed in section 4.2). During push, the initial

contents of the newly allocated stack region are chosen non-deterministically using 𝜃 —

this admits the possibility of arbitrary clobbering of the unallocated stack region below

the stackpointer due to asynchronous external interrupts, before it is allocated again.

The (Op-Nesp) rule in fig. 2.6 gives translation for an instruction ‘𝑟 := op(#‰𝑥)’ that
does not update the esp register (𝑟 ≠ esp). The UBA(op, #‰𝑥) operation abstracts the

condition for a machine exception during execution of op (e.g., a zero second operand

for division).

(EntryA) (in fig. 2.7) shows the initialization of state elements of procedure A at

entry. For a region 𝑟 ∈ 𝐵12, the initialization of address set Σ𝑟
A
and memory region

𝜋Σ𝑟
A
(𝑀 ¥A) is same as (EntryC). For an assembly-only region 𝑓 ∈ 𝐹, the address set Σ

𝑓

A

is initialized using A’s symbol table (abstracted through addrSets𝐹 ()). The memory

contents of a read-only global variable 𝑟 ∈ 𝐺𝑟 ∪𝐹𝑟 are initialized using ROM𝑟
A
(𝑖𝑟
A
) (defined

in table 2.1) — recall that the validator verifies the equality of memory contents of a

common read-only global 𝑔 ∈ 𝐺 so that ROM
𝑔

A
(𝑖𝑔
A
) = ROM

𝑔

C
(𝑖𝑔
C
) for 𝑖𝑔

A
= 𝑖

𝑔

C
.

The machine registers are initialized with arbitrary contents using 𝜃. The x86 stack of an

assembly procedure includes the stack frame Σ𝑠𝑡𝑘
A

of the currently executing procedure

A, the parameters Σ𝑌
A
of A, and the remaining space which includes caller-stack Σ𝑐𝑠

A
and,

possibly, the locals Σ𝑐𝑙
A
defined in the call chain of A. Due to the calling conventions,

we assume (through stkIsWF()) that:

12Recall that 𝐵 is the set of regions common to both C and A.

Execution Semantics and Notion of Correct Translation 43

(EntryA)
𝑝
𝑗
A
: def A(#‰𝜏)

Σ
ℎ𝑝
A

, Σ𝑐𝑙
A , Σ𝑐𝑣

A , . . . , 𝑖
𝑔
A
, . . . , 𝑖

𝑦
A
, . . . , Σvrdc

A := rd(2i32 , 2i32 , . . . , 2i32) ;
. . . , Σ

𝑓
A
, . . . := addrSets𝐹 ();

Σrd
A , Σwr

A , . . . , Σ𝑧
A
, . . . := ∅, ∅, . . . , ∅, . . . ;

if (¬addrSetsAreWF(Σℎ𝑝
A

, Σ𝑐𝑙
A , Σ𝑐𝑣

A , . . . , 𝑖
𝑔
A
, . . . , Σ

𝑓
A
, . . . , 𝑖

𝑦
A
, . . . , Σvrdc

A))
halt(𝒲);

𝑀A := 𝜃 (i32 → i8); 𝑀A := upd
Σ
𝐵\𝐺𝑟
A

(𝑀A, rd(i32 → i8)) ;
for 𝑟 in 𝐺𝑟 ∪ 𝐹𝑟 { 𝑀A := upd𝑖𝑟

A
(𝑀A, ROM

𝑟
A (𝑖𝑟A)); }

for 𝑥 in # ‰𝑟𝑒𝑔𝑠 { 𝑥 := 𝜃 (T(𝑥)); }
stk𝑒 := Σ𝑌

A ≠ ∅ ? ub(Σ𝑌
A) : esp + 3i32 ;

cs𝑒 := 𝜃 (i32);
if (¬stkIsWF(esp, stk𝑒 , cs𝑒 , #‰𝜏 , Σ

ℎ𝑝
A

, Σ𝑐𝑙
A , Σ𝐺∪𝐹

A , . . . , 𝑖
𝑦
A
, . . . , Σvrdc

A))
halt(𝒲);

Σ𝑠𝑡𝑘
A := [esp, stk𝑒] \ Σ𝑌

A;

Σ𝑐𝑠
A := [stk𝑒 + 1i32 , cs𝑒] \ Σ𝑐𝑙

A ;

sp.𝑒𝑛𝑡𝑟𝑦 := esp; 𝑀𝑐𝑠 := 𝜋Σ𝑐𝑠
A
(𝑀A);

𝑒𝑏𝑝 , 𝑒𝑠𝑖 , 𝑒𝑑𝑖 , 𝑒𝑏𝑥 , 𝑒𝑖𝑝 := ebp, esi, edi, ebx, sel4 (𝑀A, esp);
for 𝑓 in 𝐹 {

sz. 𝑓 , em. 𝑓 , lb. 𝑓 , ub. 𝑓 := |Σ 𝑓
A
|, |Σ 𝑓

A
| = 0i32 , lb(Σ 𝑓

A
), ub(Σ 𝑓

A
);

}

(RetA)
𝑝
𝑗
A
: ret 𝜏

if (sp.𝑒𝑛𝑡𝑟𝑦 ≠ esp ∨ 𝑒𝑏𝑝 ≠ ebp

∨ 𝑒𝑠𝑖 ≠ esi ∨ 𝑒𝑑𝑖 ≠ edi ∨ 𝑒𝑏𝑥 ≠ ebx

∨ 𝑒𝑖𝑝 ≠ sel4 (𝑀A, esp)
∨ ¬(𝑀𝑐𝑠 =Σ𝑐𝑠

A
𝑀A))

halt(𝒰);
IF{𝜏 = void}{

wr(𝜋Σ𝐵
A
(𝑀A)) ;

} ELSE {
wr(ret(△𝜏 (eax, edx), 𝜋Σ𝐵

A
(𝑀A))) ;

}
halt(∅);

Figure 2.7: Translation rules for converting pseudo-assembly instructions to graph
instructions.

1. The parameters are laid out at addresses above the stackpointer (esp) as per calling

conventions (abstracted through obeyCC() in stkIsWF()).

2. The value esp + 4i32 (stackpointer value at the callsite in caller) is 16-byte aligned.

3. The callers’ stack (region 𝑐𝑠) is above A’s stack frame and laid out parameters (if

any).

4. Stack 𝑠𝑡𝑘 and callers’ stack 𝑐𝑠 do not overlap with other allocated space.

44 Execution Semantics and Notion of Correct Translation

A violation of these conditions trigger 𝒲, i.e., we expect the environment to ensure

that these conditions are satisfied. The ghost variables stk𝑒 and cs𝑒 represent the

largest addresses in Σ
𝑌∪{𝑠𝑡𝑘}
A

and Σ
𝑌∪{𝑠𝑡𝑘,𝑐𝑠,𝑐𝑙}
A

respectively, so that at entry, Σ𝑠𝑡𝑘
A

=

[esp, stk𝑒] \ Σ𝑌
A
and Σ𝑐𝑠

A
= [stke + 1i32 , cs𝑒] \ Σ𝑐𝑙

A
. If there are no parameters,

stk𝑒 = esp + 3i32 represents the end of the region that holds the return address of

procedure A. The rule concludes with initialization of ghost variables for: stack pointer

at entry (sp.𝑒𝑛𝑡𝑟𝑦); memory contents of the caller’s stack (𝑀𝑐𝑠); return address

of A (𝑒𝑖𝑝); callee-saved registers (𝑒𝑏𝑝 , 𝑒𝑠𝑖 , 𝑒𝑑𝑖 , 𝑒𝑏𝑥); and the address set of an

assembly-only global variable 𝑓 ∈ 𝐹 (sz. 𝑓 , em. 𝑓 , lb. 𝑓 , ub. 𝑓).

Upon procedure-return (rule (RetA) in fig. 2.7), we require, as per the calling con-

ventions, that the return address, callers’ stack and the callee-save registers remain

preserved — a violation of these conditions trigger 𝒰. We use the ghost variables,

sp.𝑒𝑛𝑡𝑟𝑦 , 𝑒𝑏𝑝 , 𝑒𝑠𝑖 , 𝑒𝑑𝑖 , 𝑒𝑖𝑝 , and 𝑀𝑐𝑠 , set at procedure entry for this check. Val-

idating the calling conventions at procedure return enable us to assume them at a

procedure call. For simplicity, we only tackle scalar return values, and ignore aggregate

return values that need to be passed in memory.

Notice that unlike region 𝑟 ∈ 𝐵, region 𝑐𝑣 may potentially overlap with assembly-only

regions 𝐹 ∪ 𝑆. Thus, while an address 𝛼 ∈ Σ𝑐𝑣
C

is inaccessible in C, it is potentially

accessible in A if 𝛼 ∈ 𝐹 ∪ 𝑆. We explain the rationale for this in section 2.6.1 when we

discuss virtual allocation.

2.4 Observable traces and Refinement Definition

Recall that a procedure 𝑃 ∈ {C,A} execution yields an observable trace 𝑇𝑃 containing

silent and non-silent events.

Definition 2.4.1 (𝑒(𝑇)). The error code of a trace 𝑇 , written 𝑒(𝑇), is either ∅ (indicat-
ing either non-termination or error-free termination), or one of 𝓇 ∈ {𝒰,𝒲} (indicating
termination with error code 𝓇).

For 𝓇 ∈ {𝒰,𝒲}, we call a trace 𝑇 𝓇-terminating iff 𝑒(𝑇) = 𝓇.

Definition 2.4.2 (𝑒(𝑇)). The non-error part of a trace 𝑇 , written 𝑒(𝑇), is 𝑇 when

𝑒(𝑇) = ∅ and 𝑇 ′ such that 𝑇 = 𝑇 ′ · 𝑒(𝑇) otherwise.

Definition 2.4.3 ((𝑃 ↓Ω 𝑇)). (𝑃 ↓Ω 𝑇) denotes the condition that for an initial outside

Execution Semantics and Notion of Correct Translation 45

world Ω, the execution of a procedure 𝑃 may produce an observable trace 𝑇 for some

sequence of non-deterministic choices.

A compiler must ensure that if A exhibits UB (Undefined Behavior) then there must exist

a sequence of non-deterministic choices such that C also exhibits UB, i.e., (A ↓Ω 𝑇 ·𝒰)
implies (C ↓Ω 𝑇 ′ ·𝒰). Further, for an error-free execution of A, C should either be able

to produce a trace containing identical sequence of non-silent events or trigger 𝒰 —

the latter case admitting the anything is permissible clause of UB in C. We define a

refinement relation between C and A that ensures these properties.

Definition 2.4.4 (𝑇 =𝑠𝑡 𝑇
′). Traces 𝑇 and 𝑇 ′ are stuttering equivalent, written

𝑇 =𝑠𝑡 𝑇
′, iff they differ only by finite sequences of silent events ⊥.

For example, 𝑇 =𝑠𝑡 𝑇
′ holds for 𝑇 = (rd(. . .),⊥,⊥, rd(. . .),⊥,⊥,⊥, wr(. . .), exit) and

𝑇 ′ = (rd(. . .),⊥, rd(. . .),⊥, wr(. . .), exit).
Definition 2.4.5 (𝑇 ≤𝑠𝑡 𝑇 ′). A trace 𝑇 is a stuttering prefix of trace 𝑇 ′, written
𝑇 ≤𝑠𝑡 𝑇 ′, iff (𝑇 =𝑠𝑡 𝑇

′) ∨ (∃𝑇𝑟 : (𝑇 · 𝑇𝑟) =𝑠𝑡 𝑇
′).

For example, 𝑇 ≤𝑠𝑡 𝑇 ′ holds for 𝑇 = (rd(. . .),⊥,⊥, rd(. . .),⊥,⊥,⊥) and 𝑇 ′ = (rd(. . .),⊥,
rd(. . .),⊥, wr(. . .), exit).
Definition 2.4.6 (𝑊Ω,𝑇A

pre (C)). 𝑊Ω,𝑇A
pre (C) denotes the condition:

(𝑒(𝑇A) = 𝒲) ∧ (∃𝑇C : (C ↓Ω 𝑇C) ∧ (𝑒(𝑇A) ≤𝑠𝑡 𝑇C))

Definition 2.4.7 (𝑈Ω,𝑇A
pre (C)). 𝑈Ω,𝑇A

pre (C) denotes the condition:

∃𝑇C : (C ↓Ω 𝑇C ·𝒰) ∧ (𝑇C ≤𝑠𝑡 𝑇A)

Definition 2.4.8 (C ⊒ A). C ⊒ A, read A refines C (or C is refined by A), iff:

∀Ω : (A ↓Ω 𝑇A) ⇒ 𝑊
Ω,𝑇A
pre (C)

∨ 𝑈
Ω,𝑇A
pre (C)

∨ ∃𝑇C : (C ↓Ω 𝑇C) ∧ (𝑇A =𝑠𝑡 𝑇C)

The definition of C ⊒ A admits three possibilities for an execution of A: either (1) A

triggers 𝒲 (𝑊Ω,𝑇A
pre (C)), or (2) C triggers 𝒰 (𝑈Ω,𝑇A

pre (C)), or (3) C may produce a trace

with identical sequence of non-silent events to the one produced by A (𝑇A =𝑠𝑡 𝑇C).

46 Execution Semantics and Notion of Correct Translation

In the first case, 𝑊Ω,𝑇A
pre (C) encodes the condition that A terminates with error 𝒲

(𝑒(𝑇A) = 𝒲) and the sequence of non-silent events in the trace 𝑇A produced by A (before

terminating) is equivalent to trace 𝑇C produced by C up till that point (𝑒(𝑇A) ≤𝑠𝑡 𝑇C)
— we call the latter a trace prefix requirement. Recall that we do not care about the

case where A terminates with 𝒲 because we assume that the external environment

(e.g., OS) will ensure that this event never occurs. For example, we do not care for

the case where a stack space allocation may fail in A (Op-esp). Thus, in the example

in fig. 2.1c, we assume that the stackpointer decrement instruction at A5 successfully

allocates stack space. The trace prefix requirement 𝑒(𝑇A) ≤𝑠𝑡 𝑇C caters to the situation

where a callee procedure may not terminate: if a callee in A13 does not terminate (before

A could halt with 𝒲), then the trace prefix requirement ensures that the corresponding

callee in C will also not terminate (because identical trace events have been recorded

for each procedure call till that point). For example, in fig. 2.1c, consider the case

when the stackpointer manipulation instructions at A20 in the assembly procedure Afib

trigger 𝒲14: it is possible that before 𝒲 may be triggered at A20, the preceding call

to printf never terminates (or encounters error resulting in termination of program

execution). In this situation, Afib would not actually trigger 𝒲 at runtime (because

A20 will never execute). Our execution semantics do not explicitly model the possibility

of non-termination (or termination with error) of printf and so they make it appear

that A20 will be executed and so 𝒲 will be triggered. Thus, it is not enough to simply

ignore the case where 𝒲 is triggered; we also need to ensure that all prior procedure

calls have identical (potentially non-terminating or termination with error) behavior.

The trace prefix requirement, 𝑒(𝑇A) ≤𝑠𝑡 𝑇C, ensures this as it requires the traces due

to a procedure call to be identical up till the point of error in A. If the trace prefix

requirement was absent, we may unsoundly admit a translation that passes differing

arguments to a procedure call (printf in fig. 2.1) in C and A but triggers 𝒲 in A

thereafter.

In the second case, 𝑈Ω,𝑇A
pre (C) encodes the condition that C may terminate with error

𝒰 (i.e., it may exhibit UB). Due to UB semantics, we therefore do not care about A’s

behavior in this situation. For example, in fig. 2.1b, for v[*i] at I6, we do not care for

the out-of-bounds case when ∗i > (∗n + 2). The stuttering prefix condition, 𝑇C ≤𝑠𝑡 𝑇A,
13We discuss the exact execution semantics of a procedure call in A in next section. For now, let’s

assume that the semantics are similar to C with wr instruction for over-approximately observing and
rd for arbitrarily but deterministically mutating the callee-observable state.

14Strictly speaking, 𝒲 will not be triggered in fig. 2.1c at A20, because the execution would have
halted earlier in this situation (for this example). However, for argument’s sake, assume the error may
get triggered at the mentioned PC.

Execution Semantics and Notion of Correct Translation 47

ensures that all procedure calls (before C exhibits UB) produce identical traces in both

C and A, thus ensuring identical termination behavior of prior procedure calls (similar

to the first case).

In the third case, C may produce a stuttering equivalent trace as A, and all non-silent

events (including non-termination) will be identical.

In each of the cases, a stuttering requirement, stuttering prefix in the first two cases and

stuttering equivalent in the third case, ensures that both procedures execute at similar

speeds up till the termination of either. It is to be noted that stuttering requirement is

not related to preservation of termination behavior — the latter is due to observation

of termination through the trace-producing halt instruction. A terminating execution

has a finite trace ending with an error code (for erroneous termination) or the special

exit event (for error-free termination). Due to the silent trace event ⊥ generated by

execution of every instruction, a non-terminating execution has an infinite trace.

In the absence of local variables and procedure calls in C, C ⊒ A implies a correct

translation from C to A.

In our work, C ⊒ A is our definition of a correct translation. In subsequent sections,

this formal definition will become more sophisticated, as it will involve annotating the

assembly program with custom instructions introduced by us. These formal definintions,

which include the custom instructions introduced by us, have been carefully constructed

so that they capture the notion of observable equivalence as people usually understand

it. We expect that these definitions are succinct and simple enough so that the reader

can convince herself of their validity. We help the reader by introducing these formal

definitions incrementally, with supporting explanations.

2.5 Refinement Definition in the presence of local

variables and procedure calls when all local vari-

ables are allocated on the stack in A

For each local variable (de)allocation and for each procedure call, our execution semantics

generate a wr trace event in C (fig. 2.5). Thus, to reason about refinement, we require

correlated and equivalent trace events to be generated in A. For this, we annotate A

with two types of annotations to obtain ¤A:

48 Execution Semantics and Notion of Correct Translation

1. Special alloc𝑠 and dealloc𝑠 instructions: alloc𝑠 and dealloc𝑠 instructions are

added to explicitly indicate the (de)allocation of a local variable 𝑧 ∈ 𝑍 from stack.

An address interval in the stack region may be marked as belonging to 𝑧 through the

alloc𝑠 instruction and subsequently marked as belonging to stack again through the

dealloc𝑠 instruction.

2. Annotations to assembly procedure-call instruction: A procedure call is annotated

with the types and addresses of the arguments and the set of memory regions

observable by the callee. These annotations augment the assembly call instruction

such that its semantics can be defined in a manner similar to the call instruction in

C (section 2.3.1).

These annotations are intended to encode the correlations with the corresponding

allocation, deallocation, and procedure-call events in the source procedure C. For now,

we assume that the locations and values of these annotations in ¤A are coming from

an oracle — later in chapter 4, we present an algorithm to identify these annotations

automatically in a best-effort manner.

Figure 2.8 presents the translations of the three new assembly instructions — alloc𝑠,

dealloc𝑠, and call — to graph instructions.

2.5.1 (De)Allocation indicating alloc𝑠 and dealloc𝑠 instruc-

tions

An instruction ‘𝑝
𝑗

¤A : alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ represents the stack allocation of a local

variable identified by allocation site 𝑧 (fourth argument) at PC 𝑝
𝑗

¤A. 𝑒𝑣 is the expression

for the start address, 𝑒𝑤 is the expression for the allocation size, and 𝑎 is the required

alignment of the start address. (AllocS) in fig. 2.8 presents the translation of alloc𝑠

to graph instructions. During the stack allocation of 𝑧, the allocated interval 𝑖 =

[𝑣, 𝑣 + 𝑤 − 1i32], identified by start address 𝑣 = 𝑒𝑣 and allocation size 𝑤 = 𝑒𝑤, must

satisfy the required well-formedness (WF) constraints for separation and alignment,

or else 𝒰 is triggered. Recall that 𝒰 is used for signaling translation errors in A, so a

correctly translated assembly procedure must never falsify the separation and alignment

constraints for 𝑖. A stack allocation removes 𝑖 from the stack address set Σ𝑠𝑡𝑘
¤A and

adds it to the address set Σ𝑧
¤A of 𝑧. Thus, the separation WF constraint requires 𝑖 to

lie entirely within Σ𝑠𝑡𝑘
¤A (encoded through intrvlInSet𝑎 (. . . , Σ𝑠𝑡𝑘

¤A) in fig. 2.8). Further,

Execution Semantics and Notion of Correct Translation 49

(AllocS)
𝑝
𝑗
¤A : alloc𝑠 𝑒𝑣 , 𝑒𝑤 , 𝑎, 𝑧

wr(allocBegin(𝑧, 𝑒𝑤 , 𝑎)) ;
𝑣, 𝑤 := 𝑒𝑣 , 𝑒𝑤;

if (¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i32 , Σ𝑠𝑡𝑘
¤A))

halt(𝒰);
if (ov([𝑣]𝑤 , Σ𝑐𝑣

¤A))
halt(𝒲);

Σ𝑧
¤A, := Σ𝑧

¤A ∪ [𝑣]𝑤 ,
Σ𝑠𝑡𝑘
¤A Σ𝑠𝑡𝑘

¤A \ [𝑣]𝑤;
wr(allocEnd(𝑧, [𝑣]𝑤 , 𝜋[𝑣]𝑤 (𝑀 ¤A))) ;

(DeallocS)
𝑝
𝑗
¤A : dealloc𝑠 𝑧

Σ𝑧
¤A, := ∅,

Σ𝑠𝑡𝑘
¤A Σ𝑠𝑡𝑘

¤A ∪ Σ𝑧
¤A;

wr(dealloc(𝑧)) ;

(Call ¤A)
𝑝
𝑗
¤A : call 𝛾 𝜌(#‰𝜏 #‰𝑥) 𝛽∗

if (¬aligned16 (esp) ∨ ¬obeyCC(esp, #‰𝜏 , #‰𝑥))
halt(𝒰);

wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
¤A
(𝑀 ¤A))) ;

𝑀 ¤A := upd
Σ
𝛽∗\𝐺𝑟
¤A
(𝑀 ¤A, rd(i32 → i8)) ;

ecx := 𝜃 (i32);
IF{𝛾 = void}{
eax, edx := 𝜃 (i32, i32);
} ELSE {

eax, edx := ▽𝛾 (rd(𝛾)) ;
}

Figure 2.8: Additional translation rules for converting pseudo-assembly instructions to
graph instructions for procedures with only stack-allocated locals.

the allocated interval must be separate from region 𝑐𝑣15, otherwise 𝒲 is triggered; we

explain the rationale for triggering 𝒲 in this case in the next section when we discuss

virtual allocation.

An instruction ‘𝑝
𝑗

¤A : dealloc𝑠 𝑧’ represents the deallocation of 𝑧 and empties the

address set Σ𝑧
¤A, adding the removed addresses to Σ𝑠𝑡𝑘

¤A . This action reverses the transfer

from the stack to 𝑧 performed by execution of an alloc𝑠 instruction. (DeallocS) in
fig. 2.8 shows the translation of dealloc𝑠 to graph instructions.

The alloc𝑠 and dealloc𝑠 instructions do not change the accessible address set Σ𝐵∪𝐹∪𝑆
A

of ¤A: alloc𝑠 transfers addresses from 𝑠𝑡𝑘 to 𝑧 and dealloc𝑠 transfers them back to

𝑠𝑡𝑘. Thus, no “real allocation”16 is performed, instead a subset of the stack frame of ¤A
is identified distinctly for the purpose of validation.

15Recall that 𝑐𝑣 may potentially overlap with 𝑠𝑡𝑘 unlike a region 𝑟 ∈ 𝐵.
16In the sense of stack allocation through stackpointer decrement in A or local allocation through

alloc in C.

50 Execution Semantics and Notion of Correct Translation

Similar to alloc and dealloc in C, alloc𝑠 and dealloc𝑠 in ¤A produce non-silent trace

events via wr instructions. Both use the same value constructors, so that identical

observables (passed as arguments) produce identical trace events.

Figure 2.1c shows an assembly procedure annotated with alloc𝑠 instruction at line

A51 and dealloc𝑠 instruction at line A191. The start address of allocation is esp, the

allocated size is 4*(eax+2), and the required alignment on start address is 4. It can be

observed that the stack allocated interval meets the WF constraints in this case: the

preceding instruction A5 allocates at least 4*(eax+2) bytes on stack and aligns esp

by 16. The alloc𝑠 instruction uses the allocation site I2 from the IR procedure in

fig. 2.1b for identifying the allocated interval. The dealloc𝑠 instruction at A191 refers

to the same allocation site I2 for transferring the allocated addresses due to execution

of alloc𝑠 back to stack.

2.5.2 Annotated procedure-call instruction

We annotate an assembly procedure-call instruction ‘𝑝
𝑗

¤A : call 𝜌’ for a call to callee 𝜌

as ‘𝑝
𝑗

¤A : call 𝛾 𝜌(#‰𝜏 #‰𝑥) 𝛽∗’ to explicitly specify:

• The start addresses #‰𝑥 of the address regions belonging to the arguments.

• The types #‰𝜏 of the arguments and the return type 𝛾.

• The callee-observable regions 𝛽∗.

The address region of an argument should have previously been demarcated using

an alloc𝑠 instruction to match the alloc instructions for allocating arguments to a

procedure call in C. Additionally, these address regions should satisfy the constraints

imposed by the calling conventions — represented through obeyCC() in rule (Call ¤A)
of fig. 2.8. The calling conventions also require the stackpointer esp to be 16-byte

aligned. A failure to meet the calling conventions requirements trigger 𝒰 to indicate

a translation error. A procedure call is recorded as an observable event, along with

the observation of the callee name (or address) 𝜌, the addresses of the arguments #‰𝑥 ,

the callee-observable regions and their memory contents (𝛽∗ and 𝜋
Σ
𝛽∗
¤A
(𝑀 ¤A)), same as

(CallC). The returned values, modeled through rd(i32 → i8) and rd(𝛾), include the

contents of the callee-observable memory regions and the scalar values returned by the

callee (in registers eax, edx). The callee additionally clobbers the caller-save registers

(eax, ecx, edx) using 𝜃. We use the translation-selecting IF{𝛾 = void}{. . .}ELSE{. . .}
construct in (Call ¤A) for selecting translation, whether to clobber or read, based on

Execution Semantics and Notion of Correct Translation 51

return type 𝛾.

Notice that for an annotated call instruction in ¤A to produce identical observables as

a call instruction in C, it must not only have identical callee but identical argument

addresses, callee-observable regions, and memory contents of callee-observable regions

— the latter three being determined by the annotations. While the address regions,

identified from #‰𝜏 #‰𝑥 , are validated against the calling conventions (through obeyCC()),

we do not “validate” the callee-observable regions 𝛽∗ and the return type 𝛾, both

of which are consequential for defining the semantics of call. Instead, we rely on

correlation with corresponding call instruction in C: an instruction call 𝜌 in ¤A, say
call ¤A, with stack-allocated arguments that match in address and memory contents

with instruction call 𝜌 . . . in C, say callC, is assumed to have identical mutation

behavior, i.e., call ¤A mutates ¤A’s state identically as callC mutates C’s state. In other

words, the callee-observable regions (and return value) of callA in A are determined

based on the behavior of a correlated callC in C (with identical arguments).

Figure 2.1c shows an annotated call instruction at line A18; the annotated callee-

observable regions {ℎ𝑝, 𝑐𝑙, I9, I10} indicate that printf may potentially access and

mutate the heap (ℎ𝑝), accessible callers’ locals (𝑐𝑙), and the stack subregion correspond-

ing to the two arguments (I9 and I10) but not the rest of the stack.

2.5.3 Refinement Definition with only stack-allocated locals

and procedure calls

With the new instructions and annotations enabling presence of stack-allocated locals

and procedure calls in A, we define refinement between C and A in terms of existence of

an annotated ¤A such that ¤A refines C:

Definition 2.5.1 (Refinement with only stack-allocated locals and procedure calls).

C ¤⊒ A iff: ∃ ¤A : C ⊒ ¤A

C ¤⊒ A encodes the property that it is possible to annotate A to obtain ¤A so that the

local variable (de)allocation and procedure-call events of C and the annotated ¤A can be

correlated in lockstep.

52 Execution Semantics and Notion of Correct Translation

Soundness of an annotation

It must not be possible to annotate A to produce ¤A such that C ⊒ ¤A holds but the two

procedures (C and ¤A) have different observable behavior. Our annotated instructions are

carefully constructed and generate observable events such that the refinement definition

will never admit an incorrect translation. An informal argument in favor of soundness

of ¤A is as follows. An assembly procedure ¤A, produced by annotating A with alloc𝑠,

dealloc𝑠, and call instructions, may have executions that are not present in the

unannotated procedure A such that these additional executions either terminate with

error 𝒰 (due to alloc𝑠 and call) or terminate with error 𝒲 (due to alloc𝑠). We

consider each case of error separately below.

• If ¤A terminates with error 𝒰, due to either alloc𝑠 or call instruction, producing

a trace 𝑇 ¤A, then C ⊒ ¤A requires C to have an execution with trace 𝑇C such that

either 𝑇C and 𝑇 ¤A are stuttering equivalent (𝑇C =𝑠𝑡 𝑇 ¤A holds), i.e., C also terminates

with 𝒰, or 𝑇C ends with 𝒰 and the non-error part of 𝑇C is stuttering prefix of 𝑇 ¤A
(𝑒(𝑇C) ≤𝑠𝑡 𝑇 ¤A holds). In both cases, C must exhibit UB before ¤A does.

• If ¤A terminates with error 𝒲, producing a trace 𝑇 ¤A, then C ⊒ ¤A holds if there

exists an execution of C with trace 𝑇C such that C produces identical sequence of

observables as ¤A before the latter’s termination (𝑒(𝑇 ¤A) ≤𝑠𝑡 𝑇C).
Recall that ¤A’s execution terminates with error 𝒲 due to ov([𝑣]𝑤, Σ𝑐𝑣

¤A) condition in

(AllocS) (fig. 2.8). Before this, the execution must have produced an observable

event through wr(allocBegin(. . .)) that must be present in 𝑇C as well. This indicates

that C also executed an alloc instruction ((Alloc) in fig. 2.5) with identical

allocation size, alignment, and region identifier (all part of observables produced

through allocBegin). Further, because the execution of ¤A did not trigger 𝒰, the

region to be allocated, [𝑣]𝑤, belonged to stack Σ𝑠𝑡𝑘
¤A (intrvlInSet() check). The

execution semantics of ¤A prohibit overlap of region 𝑠𝑡𝑘 with 𝐵 and because observable

events in 𝑇C and 𝑇 ¤A match till occurrence of error, [𝑣]𝑤 must belong to comp(Σ𝐵
C
)∪Σ𝑐𝑣

C
.

Consequently, there exists a choice of interval [𝛼𝑏, 𝛼𝑒] such that the execution of C

also triggers 𝒲 and terminates. Thus, it is possible for C and ¤A to produce identical

observables.

Notice that the exchange of addresses between Σ𝑠𝑡𝑘
¤A and Σ𝑧

¤A (for 𝑧 ∈ 𝑍) in alloc𝑠 and

dealloc𝑠 instructions does not affect the “out-of-bounds” access checks in (LoadA)
and (StoreA). For an error-free execution of alloc𝑠, dealloc𝑠, and call in ¤A, C ⊒ ¤A
will require identical observable events, allocBegin and allocEnd for alloc𝑠, dealloc

Execution Semantics and Notion of Correct Translation 53

for dealloc𝑠, and fcall for call to be produced in C as well. This concludes our

soundness argument.

In the presence of stack-allocated local variables and procedure calls, C ¤⊒ A implies a

correct translation from C to A. In the absence of local variables and procedure calls,

C ¤⊒ A reduces to C ⊒ A with ¤A = A.

2.5.4 Capabilities and Limitations of C ¤⊒ A

Limitation on relative order of (de)allocation and procedure calls

Because our logical encoding observes each (de)allocation event (due to the wr instruc-

tion), a fundamental limitation of C ¤⊒ A is that for allocations and procedure calls that

reuse the same stack space, their relative order remains preserved. This requirement is

sound but may be too strict for certain (arguably rare) compiler transformations that

may reorder the (de)allocation instructions that reuse the same stack space.

Figure 2.9 shows an example of such a transformation where stack stack is reused

between allocations and procedure calls. The hypothetical assembly procedure Abaz

(shown in fig. 2.9b) is a correct translation17 of the C procedure Cbaz (in fig. 2.9a) but

will not be admitted under C ¤⊒ A. This is because the relative order of allocation of

the variable x and the procedure call foo is not preserved in the transformation from

Cbaz to Abaz. In the latter, the stack allocation of the local x is performed after the

procedure call to foo. The stack deallocation at A3 prohibits an earlier placement of

alloc𝑠, making an annotation ¤Abaz that meets Cbaz ⊒ ¤Abaz impossible. Notice that the

stack subregion used for allocating x was previously potentially used by foo. Figure 2.9c

shows another possible compilation (generated by an optimizing compiler) of Cbaz in

which case an annotation is possible and refinement can be established.

Limited handling of interprocedural transformations

Recall that our translation rules for C and A associate production of a non-silent

observable trace event with a procedure-call instruction (figs. 2.5 and 2.8). The name

(or address) of the callee is also observed. Thus, an interprocedural transformation which

eliminates a procedure call, inlines it (including partial inlining), specializes it (through

procedure cloning), transforms the control-flow (e.g., tail-recursion elimination), uses

17As per the C standard and calling conventions for 32-bit

54 Execution Semantics and Notion of Correct Translation

int baz()

{

int x; // alloc

foo();

return bar(&x);

}

(a) C program with
address-taken local

A0: baz:

A1: esp -= 12 ; for alignment

A2: call foo

A3: esp += 12 ; undo -12 above

A4: esp -= 8 ; alloc ‘x’

A5: push (esp+4) ; setup &x

A6: call bar

A7: esp += 12

A8: ret

(b) Hypothetical (abstracted) 32-bit
x86 assembly

baz:

esp -= 12 ; alloc ‘x’

call foo

mem4[esp] = esp+8

call bar

esp += 12

ret

(c) Compiler generated (ab-
stracted) 32-bit assembly

Figure 2.9: Example of transformation where relative order of (de)allocations and pro-
cedure calls is not preserved. The refinement definition will not admit the hypothetical
assembly but will admit the compiler generated one.

a different calling convention (e.g., if the called procedure is not externally visible

then compiler may pass some arguments through registers instead of stack), reuses the

arguments of the caller procedure (so that alloc𝑠 annotation is not possible for the

callee arguments), or performs some other transformation that makes use of information

not encoded in the semantics of C and A will not be admitted.

Key transformations admitted under C ¤⊒ A:

Merging of multiple allocations: C ¤⊒ A supports merging of multiple allocations into

a single stackpointer decrement instruction. Let 𝑝𝑠
A
be the PC of a single stackpointer

decrement instruction that implements multiple allocations. Merging can be encoded

by adding multiple alloc𝑠 instructions to A, in the same order as they appear in C, to

obtain ¤A, so that these alloc𝑠 instructions execute only after 𝑝𝑠
A
executes. The C and

assembly code fragments below illustrate the construction (C on the left and abstracted

assembly on the right):

int x, y, z

// alloc ‘x’

// alloc ‘y’

// alloc ‘z’

esp -= 20

alloc𝑠 ‘x’

alloc𝑠 ‘y’

alloc𝑠 ‘z’

Similarly, the corresponding dealloc𝑠 instructions must execute before a stackpointer

Execution Semantics and Notion of Correct Translation 55

increment instruction deallocates this stack space.

CompCert[29]’s preallocation is a special case of merging where stack space for all

local variables and procedure call arguments is allocated in the assembly procedure’s

prologue and deallocated in the epilogue with no reuse of stack space. In this case,

our approach annotates A with alloc𝑠 and dealloc𝑠 instructions, potentially in the

middle of the procedure body, such that they execute in lockstep with the allocations

and deallocations in C.

Reallocation of stack space: A compiler may reallocate stack space by reusing the

same space for two or more local variables with non-overlapping lifetimes (potentially

without an intervening stackpointer increment instruction). If the relative order of

(de)allocations is preserved, reallocation can be encoded by annotating A with a

dealloc𝑠 instruction (for deallocating the first variable) immediately followed by an

alloc𝑠 instruction, such that the allocated region potentially overlaps with the previously

deallocated region. The C fragment (on the left) and corresponding assembly code

fragment (on the right) below illustrate the construction:

{

int x; // alloc

...

// dealloc

}

{

int y; // alloc

...

// dealloc

}

L0: esp -= 4

alloc𝑠 ‘x’

L1: edi = esp

... ; esp preserved

dealloc𝑠 ‘x’

alloc𝑠 ‘y’

L2: edi = esp ; same value as L1 above

...

L3: dealloc𝑠

The variables x and y have non-overlapping lifetimes. Common stack space for both x

and y is allocated at location L0 and then later used by x between locations L1 and L2

and used by y between locations L2 and L3.

Our refinement definition may not be able to cater to a translation that changes the

relative order of (de)allocation instructions during reallocation. The following C source

and assembly pair demonstrate an incompleteness example18:

18See https://godbolt.org/z/6rMT7z5re for a GCC compilation.

https://godbolt.org/z/6rMT7z5re

56 Execution Semantics and Notion of Correct Translation

int x, y; // alloc ‘x’; alloc ‘y’

if (...) {

/* use only ‘x’ */

} else {

/* use only ‘y’ */

}

// dealloc ’y’; dealloc ’x’

L0: esp -= 4 ; alloc stack space

...

if (...) jmp L2

L1: edi = esp ; use as ‘x’

...

L2: edi = esp ; use as ‘y’

...

Evidently, the variables x and y do not have non-overlapping lifetimes. However, their

uses are limited to disjoint scopes. In the generated assembly, both share the same

stack space allocated at L0. In contrast to the previous example, a valid annotation

is impossible in this scenario because the same stack space cannot be allocated twice

(separation WF constraint).

Dynamic allocations: C ¤⊒ A notably supports dynamic allocations, a capability

missing in CompCert[29] due to its preallocation strategy, which performs all allocation

in the assembly procedure’s prologue. Dynamic allocations, necessary for enabling

variable-length arrays (VLA) and alloca(), and used for allocating procedure-call

arguments by most production compilers, allow variable-sized local allocations (similar

to malloc()) that are automatically deallocated at the end of scope (for variable

declarations) or at the end of containing procedure (for alloca() allocations). Our

modeling does not require any special handling of dynamic allocations. The C source

and assembly pair below present an example of dynamic (de)allocation using VLA in a

loop:

for (i = 1; i < n; ++i)

{

int v[i];

// alloc (4*i), int, ...

...

// dealloc ‘v’

}

eax = 4 ; = 4*i (i = 1)

L0: edi = esp ; save ‘esp’

esp = esp - eax ; variable decrement

alloc𝑠 esp, (4 ∗ eax), . . .
...

dealloc𝑠

esp = edi ; restore ‘esp’

eax = eax+4 ; corresponds to i++

In the C source, VLA v is declared to have i elements, where i is the for-loop index.

Thus, v is allocated at the start of every loop body execution and deallocated at the

end. In the assembly, the register eax holds value corresponding to 4*i. At the start of

Execution Semantics and Notion of Correct Translation 57

loop body (location L0), current stackpointer esp is saved in edi and stack allocation

of size eax is performed. At the end of loop body, esp is restored using edi and

eax is incremented by 4. The annotations are made just before (after) the allocation

(deallocation).

Lastly, C ¤⊒ A admits intermittent register-allocation of (parts of) a local variable, but

not complete register-allocation or elimination. We address this limitation in the next

section.

2.6 Refinement in the presence of potentially register-

allocated or eliminated local variables in A

If a local variable 𝑧 ∈ 𝑍 is either register-allocated or eliminated in A, there may not

exist a region in stack of A that can be associated with 𝑧. However, recall that our

execution model observes each allocation event in C through the wr instruction. Thus,

for a successful refinement check, a correlated allocation event still needs to be annotated

in A. It may not be possible to use an alloc𝑠 instruction for this annotation, as alloc𝑠

requires us to specify a region in stack and such a region may not be available19. To

tackle this, we pretend that a correlated allocation occurs in A by introducing the

notion of a virtual allocation instruction, called alloc𝑣, in A. An alloc𝑣 instruction

allocates a virtual region in A and a dealloc𝑣 instruction deallocates it.

Figure 2.10 shows the graph translations of the virtual (de)allocation instructions

alloc𝑣 and dealloc𝑣 and fig. 2.11 shows the revised translations of other assembly

instructions to incorporate the notion of virtual allocations. We update and annotate A

with the translations and instructions in figs. 2.8, 2.10 and 2.11 to obtain ¥A.

2.6.1 Virtual (de)allocations through alloc𝑣 and dealloc𝑣 in-

structions

An instruction ‘𝑝
𝑗

¥A : 𝑣 := alloc𝑣 𝑒𝑤, 𝑎, 𝑧𝑙’ non-deterministically chooses the start

address (using choose instruction 𝜃 (i32)) of a local variable 𝑧𝑙 of size 𝑒𝑤 and required

alignment 𝑎, performs a virtual allocation, and returns the start address in 𝑣. (AllocV)
19We use may not here instead of is not because in some situations, due to alignment requirements,

it may be possible to find a large enough region in stack that is separate from other allocations but is
not used for storing the local. We present an example of this later.

58 Execution Semantics and Notion of Correct Translation

(AllocV)
𝑝
𝑗
¥A : 𝑣 := alloc𝑣 𝑒𝑤 , 𝑎, 𝑧𝑙

wr(allocBegin(𝑧𝑙, 𝑒𝑤 , 𝑎)) ;
𝑣, 𝑤 := 𝜃 (i32), 𝑒𝑤;
if (¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i32 , comp(Σ𝐵∪{𝑐𝑣}

¥A)))
halt(𝒲);

Σ𝑧𝑙
¥A |

𝑣 := Σ𝑧𝑙
¥A |

𝑣 ∪ [𝑣]𝑤;
wr(allocEnd(𝑧𝑙, [𝑣]𝑤 , 𝜋[𝑣]𝑤 (𝑀 ¥A))) ;

(DeallocV)
𝑝
𝑗
¥A : dealloc𝑣 𝑧𝑙

if (Σ𝑧𝑙
¥A |

𝑠 ≠ ∅)
halt(𝒰);

Σ𝑧𝑙
¥A |

𝑣 := ∅;
wr(dealloc(𝑧𝑙)) ;

Figure 2.10: Translation rules for converting the alloc𝑣 and dealloc𝑣 instructions
instructions to graph instructions.

in fig. 2.10 shows the graph translation of alloc𝑣. The chosen start address 𝑣, together

with interval 𝑒𝑤, is assumed to satisfy the desired WF constraints of separation (no

overlap) and alignment (through intrvlInSet𝑎 (. . .)); error 𝒲 is triggered otherwise.

Notice that this is in contrast to alloc𝑠 where error 𝒰 is triggered on WF violation

to indicate that it is the compiler’s responsibility to ensure the satisfaction of WF

constraints. Unlike a stack allocation where the compiler chooses the allocated region

(and the validator identifies it through an alloc𝑠 annotation), a virtual allocation is

only a validation construct (the compiler is not involved) that is used only to enforce a

lockstep correlation of allocation events. By triggering 𝒲 on a failure during a virtual

allocation, we effectively assume that allocation through alloc𝑣 satisfies the required

WF conditions.

We put two restrictions on an alloc𝑣 annotation to keep our automatic algorithm (for

construction of a witness of refinement) simple and tractable.

1. alloc𝑣 restricted to local variable declarations

We support virtual allocations only for a variable declaration 𝑧𝑙 ∈ 𝑍𝑙 . Thus, we

expect a call to alloca() at allocation site 𝑧𝑎 ∈ 𝑍𝑎 to always be stack-allocated in
¥A.

In our modeling of ¥A, we replace the single variable Σ𝑧𝑙
¥A for address set of 𝑧𝑙 with two

variables Σ𝑧𝑙
¥A |

𝑠 and Σ𝑧𝑙
¥A |

𝑣 that represent the address sets corresponding to the stack-

allocations and virtual-allocations due to allocation site 𝑧𝑙 respectively. We compute

Σ𝑧𝑙
¥A = Σ𝑧𝑙

¥A |
𝑠 ∪ Σ𝑧𝑙

¥A |
𝑣 but do not maintain a separate variable Σ𝑧𝑙

¥A . For convenience, we
define Σ

𝑍𝑙
¥A |

𝑣 =
⋃

𝑧𝑙∈𝑍𝑙 (Σ𝑧𝑙
¥A |

𝑣). In (AllocV) and (DeallocV), we use 𝑧𝑙 (instead of

𝑧) and a virtual (de)allocation updates the address set Σ𝑧𝑙
¥A |

𝑣 (instead of Σ𝑧𝑙
¥A).

Execution Semantics and Notion of Correct Translation 59

2. A local variable may either be stack-allocated or virtual-allocated, not

both

We do not tackle path-specializing transformations that may require, for a single

variable declaration 𝑧𝑙, a stack-allocation on one assembly path and a virtual-

allocation on another. Thus, we assume that a variable declaration 𝑧𝑙 in C may either

correlate with only stack-allocations (through alloc𝑠) or only virtual-allocations

(through alloc𝑣) in ¥A, i.e., Σ𝑧𝑙
¥A |

𝑠 ∩ Σ𝑧𝑙
¥A |

𝑣 = ∅ holds at all times and if Σ𝑧𝑙
¥A |

𝑠 ≠ ∅
(resp. Σ𝑧𝑙

¥A |
𝑣) at any point, then Σ𝑧𝑙

¥A |
𝑣 = ∅ (resp. Σ𝑧𝑙

¥A |
𝑠) holds throughout ¥A’s execution.

This assumption simplifies the SMT encoding of proof obligations generated by our

algorithm.

Note that while this restriction may appear quite constraining at first glance, it does

not impose substantial practical limitations. This is because if a variable 𝑧𝑙 is not

address-taken, then it can be virtually-allocated, as its address is never observed

(this is possible even if 𝑧𝑙 is allocated on stack by the compiler, i.e., there exists a

region in stack of A that can be associated with 𝑧𝑙).

We discuss the limitations arising from these restrictions in detail in section 2.6.3.

An instruction ‘𝑝
𝑗

¥A : dealloc𝑣 𝑧𝑙’ in ¥A empties the address set Σ𝑧𝑙
¥A |

𝑣 and produces an

observable event through wr instruction. (DeallocV) in fig. 2.10 shows the graph

translation of dealloc𝑣. An execution of dealloc𝑣 where Σ𝑧𝑙
¥A |

𝑠 is non-empty triggers

error 𝒰, i.e., we require an error-free execution of dealloc𝑣 to “empty” the address

set Σ𝑧𝑙
¥A (defined as Σ𝑧𝑙

¥A = Σ𝑧𝑙
¥A |

𝑠 ∪ Σ𝑧𝑙
¥A |

𝑣). Thus, we ensure the emptiness of Σ𝑧𝑙
¥A before

producing the observable trace for deallocation of 𝑧𝑙 (similar to dealloc in C). Unlike

dealloc𝑠, the deallocation of a virtually-allocated memory region, does not return the

freed memory to stack 𝑠𝑡𝑘 (it instead goes back to the implicitly-defined region free).

Effectively, a lockstep correlation of virtual allocations in ¥A with allocations in C ensures

that the allocation states of both procedures always agree for regions 𝐵 ∪ {𝑐𝑣}.

Figure 2.1c shows an assembly procedure with annotated alloc𝑣 and dealloc𝑣 in-

structions. Instruction A31 : vI1 := alloc𝑣 4, 4, I1 performs virtual-allocation of a

region of size 4 identified by I1 and returns the start address in vI1. Because alloc𝑣

is a validator-only construct, the return address is not used anywhere in rest of the

procedure. The allocated region is deallocated by instruction A192 : dealloc𝑣 I1.

60 Execution Semantics and Notion of Correct Translation

2.6.2 Revised semantics for assembly procedure instructions

(AllocS’)
𝑝
𝑗
¥A : alloc𝑠 𝑒𝑣 , 𝑒𝑤 , 𝑎, 𝑧

. . .

if (ov([𝑣]𝑤 , Σ𝑐𝑣
¥A ∪Σ

𝑍𝑙

¥A |
𝑣)) halt(𝒲);

Σ𝑠𝑡𝑘
¤A , Σ𝑧

¤A := Σ𝑠𝑡𝑘
¤A \ [𝑣]𝑤 , Σ𝑧

¤A ∪ [𝑣]𝑤;
IF{𝑧 ∈ 𝑍𝑙}{

Σ𝑠𝑡𝑘
¥A , Σ𝑧

¥A |
𝑠 := Σ𝑠𝑡𝑘

¥A \ [𝑣]𝑤 , Σ𝑧
¥A |
𝑠 ∪ [𝑣]𝑤;

} ELSE {
Σ𝑠𝑡𝑘
¥A , Σ𝑧

¥A := Σ𝑠𝑡𝑘
¥A \ [𝑣]𝑤 , Σ𝑧

¥A ∪ [𝑣]𝑤;
}
. . .

(DeallocS’)
𝑝
𝑗
¥A : dealloc𝑠 𝑧

Σ𝑧
¤A, Σ

𝑠𝑡𝑘
¤A := ∅, Σ𝑠𝑡𝑘

¤A ∪ Σ𝑧
¤A;

IF{𝑧 ∈ 𝑍𝑙}{
if (Σ𝑧

¥A |
𝑣 ≠ ∅)

halt(𝒰);

Σ𝑧
¥A |
𝑠 , Σ𝑠𝑡𝑘

¥A := ∅, Σ𝑠𝑡𝑘
¥A ∪ Σ𝑧

¥A |
𝑠;

} ELSE {
Σ𝑧
¥A, Σ𝑠𝑡𝑘

¥A := ∅, Σ𝑠𝑡𝑘
¥A ∪ Σ𝑧

¥A;
}
wr(dealloc(𝑧)) ;

(Op-esp’)
𝑝
𝑗
¥A : esp := op(#‰𝑥)

. . .

intrvlInSet(𝑡, esp − 1i32 , Σfree
¥A ∪ ((Σ𝑐𝑣

¥A ∪(Σ
𝑍𝑙

¥A |
𝑣)) \ Σ𝐹

¥A))
. . .

(Entry ¥A)
𝑝
𝑗
¥A : def ¥A(#‰𝜏)

. . .
(same as fig. 2.7)
. . .
. . . , Σ𝑧

¥A, . . . := . . . , ∅, . . . ;
. . . , Σ𝑧𝑎

¥A , . . . := . . . , ∅, . . . ;
for 𝑧𝑙 in 𝑍𝑙 { Σ𝑧𝑙

¥A |
𝑠 , Σ𝑧𝑙

¥A |
𝑣 := ∅, ∅; }

(Load ¥A)
𝑝
𝑗
¥A : 𝑣 := load 𝑤 𝑎 𝑝

. . .

ov([𝑝]𝑤 , Σfree
¥A ∪ ((Σ𝑐𝑣

¥A ∪(Σ
𝑍𝑙

¥A |
𝑣)) \ Σ𝐹∪𝑆

¥A)
. . .

(Store ¥A)
𝑝
𝑗
¥A : store 𝑤 𝑎 𝑝 𝑣

. . .

ov([𝑝]𝑤 , Σ{free}∪𝐺𝑟∪𝐹𝑟

¥A ∪ ((Σ𝑐𝑣
¥A ∪(Σ

𝑍𝑙

¥A |
𝑣)) \ Σ𝐹𝑤∪𝑆

¥A))
. . .

Figure 2.11: Revised translation rules for converting pseudo-assembly instructions
to graph instructions. The IF{𝑧 ∈ 𝑍𝑙}{. . .}ELSE{. . .} construct selects one of the
translation depending on the result of syntactic predicate 𝑧 ∈ 𝑍𝑙 .

Figure 2.11 shows the revised semantics for the procedure entry ((Entry ¥A)), alloc𝑠 and
dealloc𝑠 instructions ((AllocS’) and (DeallocS’)), load and store instructions

((Load ¥A) and (Store ¥A)), and esp-modifying instruction ((Op-Esp’)) of the assembly

Execution Semantics and Notion of Correct Translation 61

procedure. Instead of reproducing the full translations, we only show the changes with

appropriate context: the additions have a highlighted background and deletions are

striked out.

The execution semantics of ¥A maintain the important invariant of separation of a virtual

region from other common (with C) regions 𝐵 ∪ {𝑐𝑣}, thereby mirroring the execution

semantics of C. However, a virtual region may potentially overlap with assembly-only

regions 𝐹 ∪ 𝑆. This is because virtual-allocation is a validator-only construct, used

by the validator solely for identifying a lockstep correlation of allocation states; a

virtual-allocated region is never accessed otherwise in ¥A. Thus, in the revised semantics

of a stackpointer updating instruction, shown in (Op-esp’) of fig. 2.11, a stack push is

allowed to overstep a virtually-allocated region (represented through Σ
𝑍𝑙
¥A |

𝑣20). Notice

the similarity in treatment of Σ𝑐𝑣
¥A and Σ

𝑍𝑙
¥A |

𝑣, we will expound on this in a bit.

The revised semantics of the alloc𝑠 instruction in (AllocS’) assume that the stack-

allocated local memory is separate from virtually-allocated regions (and region Σ𝑐𝑣
¥A),

similar to separation assumption in alloc𝑣, error 𝒲 is triggered otherwise. Further,

both revised rules (AllocS’) and (DeallocS’) now use variable Σ𝑧𝑙
¥A |

𝑠 (instead of Σ𝑧𝑙
¥A)

for an address set of region 𝑧𝑙 ∈ 𝑍𝑙 , reflecting the separate tracking of stack-allocated

and virtual-allocated address sets of region 𝑧𝑙. Similarly to dealloc𝑣, dealloc𝑠 triggers

𝒰 if Σ𝑧𝑙
¥A |

𝑣 (𝑧𝑙 ∈ 𝑍𝑙) is non-empty, ensuring the execution of dealloc𝑠 empties Σ𝑧𝑙
¥A

(= Σ𝑧𝑙
¥A |

𝑠 ∪ Σ𝑧𝑙
¥A |

𝑣).

The revised (Entry ¥A) rule initializes both address sets Σ𝑧𝑙
¥A |

𝑠 and Σ𝑧𝑙
¥A |

𝑣 for each 𝑧𝑙 ∈ 𝑍𝑙

to empty.

The revised semantics of memory access instructions (Load ¥A) and (Store ¥A) enforce
that a virtually-allocated region must never be accessed in ¥A, unless it also happens to

belong to the assembly-only regions 𝐹 ∪ 𝑆. Notice that this is similar to treatment of

region 𝑐𝑣 which is similarly inaccessible in ¥A.

The purpose of the 𝑐𝑣 or callers’ virtual region should be clear now: 𝑐𝑣 or callers’s virtual

region of an assembly procedure ¥A is the set of virtually-allocated addresses in ¥A’s call
chain. At a procedure-call, the address set Σ𝑐𝑣

¥A for a callee is computed as Σ𝑐𝑣
¥A ∪ Σ

𝑍𝑙
¥A |

𝑣.

The lockstep correlation of allocation states (due to observation of (de)allocation)

enables us to define Σ𝑐𝑣
C

for a callee in C using Σ𝑐𝑣
¥A . As a virtual allocation is supposed

to correspond to a register-allocated or an eliminated local, region 𝑐𝑣 is assumed to be

20Recall that Σ𝑍𝑙

¥A |
𝑣 =

⋃
𝑧𝑙∈𝑍𝑙
(Σ𝑧𝑙
¥A |

𝑣).

62 Execution Semantics and Notion of Correct Translation

inaccessible in the callee21. This is sound because the set of observable regions for a

callee constitute an observable in the caller and the equality of observables is required

for establishing refinement.

2.6.3 Refinement Definition with both stack-allocated and

register-allocated or eliminated locals

We define refinement in the presence of both stack-allocated and register-allocated or

eliminated locals through the existence of an annotation ¥A of A such that ¥A refines

C. ¥A is obtained through addition of (de)alloc𝑣 and (de)alloc𝑠 instructions (with
semantics as described in sections 2.5.1 and 2.6.1) and annotation of a procedure-call

instruction (with semantics as described in section 2.5.2) and use of revised semantics

for other assembly instructions in A (as described in section 2.6.2).

Definition 2.6.1 (Refinement with stack and virtually-allocated locals). C ¥⊒ A iff:

∃ ¥A : C ⊒ ¥A

Recall that C ⊒ ¥A requires that for all non-deterministic choices of a virtually allocated

local variable address in ¥A (𝑣 in (AllocV)), there exists a non-deterministic choice for

the correlated local variable address in C (𝑣 in (Alloc)) such that: if ¥A’s execution is

well-formed (does not trigger 𝒲), and C’s execution is UB-free (does not trigger 𝒰),

then the two allocated intervals are identical (the observable values created through

allocBegin and allocEnd value constructors must be equal).

In the presence of potentially register-allocated and eliminated local variables, C ¥⊒ A

implies a correct translation from C to A. If all local variables are allocated in stack,

C ¥⊒ A reduces to C ¤⊒ A with ¥A = ¤A. Figure 2.1c is an example of an annotated ¥A.

Because our execution model observes each (de)allocation event (due to the wr instruc-

tion), a successful refinement check ensures that the allocation states of ¥A and C are

identical at every correlated callsite for each procedure C ∈ C. A coinductive argument

over C and A is thus used to show that the address sets for the callers’ locals — identified

by 𝑐𝑙 and 𝑐𝑣 — are identical at the beginning of each correlated pair of procedures

C and A, as modeled through identical reads from the outside world in (Entry𝑃)
(𝑃 ∈ {C,A}) of figs. 2.5 and 2.7. A successful refinement check for each procedure-pair

21For a caller local to be accessible in a callee, it should have its address taken. An address-taken
local cannot be register-allocated or eliminated.

Execution Semantics and Notion of Correct Translation 63

C,A including the main procedure enables a coinductive proof of refinement from C to

A.

Capabilities and Limitations of C ¥⊒ A

C ¥⊒ A inherits the limitation of requirement of preservation of the relative order of

allocations and procedure calls that reuse stack space and the inability to handle

interprocedural transformations from C ¤⊒ A. Notably, the example presented in fig. 2.9

is still not admitted under the new definition. However, virtual allocations enable

admitting transformations involving register-allocation or elimination of a local —

transformations that an optimizing compiler may and, in most cases, does perform.

In Figure 2.1, the assembly procedure ¥Afib has register-allocated the local i. The

(de)alloc𝑣 annotations enable the annotated ¥Afib to produce identical observable

events as Cfib and establish Cfib ¥⊒ Afib
22.

Recall that we imposed two restrictions on annotations for virtual allocations (sec-

tion 2.6.1): (1) alloc𝑣 annotation may only be added for local variable declarations,

(2) a local variable may exclusively be either stack-allocated or virtual-allocated. While

these restrictions make the execution semantics and our automatic algorithm simpler,

they preclude supporting certain transformations. In particular, (2) appears to be quite

limiting. We argue below that this is not the case and that the scope of transformations

prohibited by (2) is relatively limited.

Recall that we need to add alloc𝑠 only in cases where a variable 𝑧𝑙 is address-taken

(alloc𝑣 can be added in rest of the cases). So, unless variable 𝑧𝑙 is address-taken,

we can always “virtual-allocate” it. For the case where stack-allocation of 𝑧𝑙 through

alloc𝑠 is required (the case of an address-taken 𝑧𝑙), C ¥⊒ A prohibits stack space reuse

transformations where the stack space reserved for 𝑧𝑙 is reallocated during its lifetime.

Such kind of transformations may be introduced due to live-range splitting [11] which

is utilized by optimizing compilers for improving register allocation. Thus, if a local

variable is address-taken, and yet the compiler has performed live-range splitting on it,

then this definition does not support it. Fortunately, such transformations on address-

22Curiously, in this particular example, it is possible to establish Cfib ⊒ ¥Afib with (de)alloc𝑠
annotations for i. Line A3 allocates 12 bytes on stack (presumably for aligning esp by 16) which are
not used in any manner later. The 4 bytes required for i can be “allocated” out of these 16 bytes, i.e.,
the annotation at A31 can be alloc𝑠 esp, 4, 4, I1. Similarly, the annotation at A192 can be replaced
with dealloc𝑠 I1. The resulting annotated ¤Afib will satisfy Cfib ⊒ ¤Afib, and consequently establish
Cfib ¤⊒ Afib.

64 Execution Semantics and Notion of Correct Translation

taken variables are rare. It is also worth pointing out that Static Single Assignment

(SSA) [12] is a form of live-range splitting but almost all compilers implement SSA

only for pseudo-registers, which are not address-taken, and our definition supports such

transformations.

We give examples of unsupported transformations below.

Refinement failure due to elimination of alloca(): Recall that we restrict alloc𝑣

annotation to allocations due to a local variable declaration. If an alloca() in C is

eliminated in A, then it may not be possible to annotate A with alloc𝑠 to produce ¥A
such that C ⊒ ¥A holds. The following example demonstrates such C and A where the

observable behaviors of both procedures are identical but C ¥⊒ A does not hold.

int foo()

{

int *p = alloca(sizeof(int)*10);

return 0;

}

foo:

eax = 0

ret

The pointer p returned by alloca() is not used in the C procedure (shown on the left)

and hence eliminated by the compiler in the generated assembly (shown on the right).

Our execution semantics forbid use of alloc𝑣 for this eliminated local allocation and,

because the assembly procedure does not allocate any stack space, an alloc𝑠 annotation

such that Cfoo ⊒ ¥Afoo holds cannot be made either. Thus, Cfoo ¥⊒ Afoo cannot hold in

this case.

Because the alloca() operator is not a part of the C standard, its use is, arguably, rare;

also compilers are usually not aggressive about register-allocating the memory allocated

by alloca(); and so, this limitation is not practically significant.

Refinement failure due to live-range splitting of an address-taken variable:

Consider the C source and assembly code shown below.

Execution Semantics and Notion of Correct Translation 65

void bar()

{

int x; // alloc

scanf(/*...*/, &x);

for (...) {

// ‘x’ used

}

printf(/*...*/, x);

} // dealloc

bar:

...

esp -= 4 ; ‘x’ stack-allocated

... call scanf ...

eax = mem4[esp]; ; ‘x’ register-allocated

esp += 4 ; ‘x’ stack-deallocated

... ; for loop

push eax ; value of ‘x’ as argument to printf

... call printf ...

...

In the C source, the variable x is address-taken in the call to scanf, then used in a loop,

and, at the end, in the call to printf. In the assembly code, x is first stack-allocated

so that the stack address can be passed to scanf. Then, before the loop, x is register-

allocated to register eax and the allocated stack space is reclaimed. Lastly, x, present in

register eax, is passed as argument to printf. Such an assembly code may be generated

by a live-range splitting transformation where the live range of variable x is split into

two variables x1 and x2 and x1 is stack-allocated while x2 is register-allocated with an

assignment eax = mem4[esp] used to connect the two at the splitting point.

This procedure-pair cannot be admitted by our refinement definition because x requires

an alloc𝑠 annotation (by virtue of being address-taken) but no (de)alloc𝑠 annotation
can be made to produce Äbar such that Cbar ⊒ ¥Abar holds — the stack space for x is

deallocated before the call to printf so a dealloc𝑠 must be inserted before the call

but this would break the trace requirement because dealloc happens after the call to

printf in Cbar.

It is worth pointing out production compilers (Clang/LLVM, GCC) usually do not

reclaim the stack space as eagerly as shown in the assembly above. Instead, the stack

space for locals is reserved once in the prologue of the assembly procedure and reclaimed

in the epilogue; in which case, our refinement definition will admit the transformation.

Refinement failure due to path specialization involving register-allocation

on one path and stack-allocation on another for a local: Consider the C source

and assembly code fragments shown below:

66 Execution Semantics and Notion of Correct Translation

void baz()

{

int x; // alloc

if (...) {

// used as ‘&x’

} else {

// used as ‘x’

}

} // dealloc

baz:

...

if (...) jmp L1

L0: esp -= 4 ; allocation of ‘x’

...

esp += 4 ; deallocation of ‘x’

jmp L2

L1: ... ; no stack allocation

... ; on this branch

L2: ...

On the if branch, the address of the local x is taken such that a stack allocation would

be required for it. But, on the else branch, the address of x is not taken so that a

register allocation may suffice. The assembly on the right implements this strategy.

Because our execution semantics disallow using both alloc𝑠 and alloc𝑣 annotations

for x, it is impossible to annotate the assembly procedure such that refinement holds.

2.7 Towards A More General Refinement Definition

and Execution Semantics

In this section, we explore execution semantics and a corresponding refinement definition

to remove the limitations described in previous section. In these new semantics we

retain the observation of (de)allocation in C and A, but define revised semantics for

alloc𝑣 and replace (de)alloc𝑠 with new instructions.

We eliminate alloc𝑠 and dealloc𝑠, and instead introduce instructions v2s and s2v

that do not produce non-silent trace events. We make minor changes to the semantics of

alloc𝑣 and no longer restrict alloc𝑣 to an allocation due to local variable declaration.

Figure 2.12 shows graph translations for these new instructions ((V2S) and (S2V))
and revised semantics of alloc𝑣 ((AllocV’)) and procedure entry ((EntryÄ)). Let
Ä be obtained by annotating A using v2s, s2v, and (de)alloc𝑣 instructions, using

revised semantics for procedure entry, and annotating a procedure-call with semantics

as described in section 2.5.2.

(AllocV’) shows the revised semantics for alloc𝑣 instruction. An instruction ‘𝑣 :=

alloc𝑣 𝑒𝑤, 𝑎, 𝑧’ now additionally sets three new ghost variables: lstVSz.𝑧 , align.𝑧 ,

Execution Semantics and Notion of Correct Translation 67

(AllocV’)
𝑝
𝑗

Ä
: 𝑣 := alloc𝑣 𝑒𝑤 , 𝑎, 𝑧

. . .
Σ𝑧
Ä
|𝑣 := Σ𝑧

Ä
|𝑣 ∪ [𝑣]𝑤;

lstVSz.𝑧 , align.𝑧 , avail.𝑧 := 𝑤, 𝑎, true;

wr(allocEnd(𝑧, [𝑣]𝑤 , 𝜋[𝑣]𝑤 (𝑀Ä))) ;

(V2S)
𝑝
𝑗

Ä
: v2s 𝑒𝑣 , 𝑒𝑤 , 𝑎, 𝑧

𝑣, 𝑤 := 𝑒𝑣 , 𝑒𝑤;

if (¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i32 , Σ𝑠𝑡𝑘
Ä
))

halt(𝒰);
if (¬ avail.𝑧 ∨ (𝑤 > lstVSz.𝑧) ∨ (𝑎 ≠ align.𝑧))
halt(𝒰);

if ([𝑣]𝑤 ⊈ Σ𝑧
Ä
|𝑣) halt(𝒲);

Σ𝑧
Ä
|𝑠 ,
:=

Σ𝑧
Ä
|𝑠 ∪ [𝑣]𝑤 ,

Σ𝑧
Ä
|𝑣 , Σ𝑧

Ä
|𝑣 \ [𝑣]𝑤 ,

Σ𝑠𝑡𝑘
Ä

Σ𝑠𝑡𝑘
Ä
\ [𝑣]𝑤;

;

avail.𝑧 := false;

(S2V)
𝑝
𝑗

Ä
: s2v 𝑧

Σ𝑧
Ä
|𝑠 ,
:=

∅,
Σ𝑧
Ä
|𝑣 , Σ𝑧

Ä
|𝑣 ∪ Σ𝑧

Ä
|𝑠 ,

Σ𝑠𝑡𝑘
Ä

Σ𝑠𝑡𝑘
Ä
∪ Σ𝑧

Ä
|𝑠;

(EntryÄ)
𝑝
𝑗

Ä
: def Ä(#‰𝜏)

. . .

(same as fig. 2.7)
. . .

. . . , Σ𝑧
¥A, . . . := . . . , ∅, . . . ;

for 𝑧 in 𝑍 {
Σ𝑧
Ä
|𝑠 , Σ𝑧

Ä
|𝑣 := ∅, ∅;

avail.𝑧 , lstVSz.𝑧 , align.𝑧 := false, 𝜃 (i32), 𝜃 (i32);
}

Figure 2.12: Translation rules for the converting pseudo-assembly instructions to graph
instructions for Ä. (AllocV’) is derived from (AllocV) in fig. 2.10.

and avail.𝑧 . These ghost variables keep track of the parameters of the last virtual

allocation.

• lstVSz.𝑧 tracks the size of last virtual allocation due to 𝑧. In (AllocV’), lstVSz.𝑧
is assigned the size 𝑤 (= 𝑒𝑤) of allocation. Each execution of alloc𝑣 thus updates

lstVSz.𝑧 to the new value of allocation size.

• align.𝑧 tracks the required alignment of an allocation due to 𝑧 — unlike lstVSz.𝑧 ,

the required alignment does not change across multiple executions of same alloc𝑣

instruction. Thus, the value of align.𝑧 , once assigned, does not change as Ä

executes.

• avail.𝑧 tracks the availability of virtual region for materialization into a stack region.

An execution of an alloc𝑣 instruction sets avail.𝑧 to true and an execution of an

68 Execution Semantics and Notion of Correct Translation

v2s instruction resets it (shown in (V2S)).

Similar to the semantics defined in (AllocV), an error-free execution of alloc𝑣 requires

the allocated interval to be separate from common regions 𝐵 ∪ {𝑐𝑣} (but overlap with

assembly-only regions 𝐹 ∪ 𝑆 is permitted).

An instruction ‘v2s 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ converts (part of) virtual allocation region due to 𝑧

to a (partial) stack-allocation of 𝑧. The parameters 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧 of v2s have identical

semantics as alloc𝑠. The interval of size 𝑒𝑤, starting at address 𝑒𝑣, must be aligned by 𝑎

and belong to stack Σ𝑠𝑡𝑘

Ä
. Additionally, the execution of v2s must be sequenced after an

alloc𝑣 instruction without any intervening v2s instruction for the same 𝑧 (¬ avail.𝑧)
such that the interval size is no greater than last virtual allocation size (𝑤 > lstVSz.𝑧)

and alignment is exactly same as last virtual allocation (𝑎 ≠ align.𝑧). A failure in

meeting any of the above requirements triggers 𝒰 indicating a translation error in this

stack materialization of 𝑧, i.e., the compiler failed to meet the WF constraints for this

stack allocation of 𝑧.

A valid execution of v2s requires the allocated interval to belong to both Σ𝑠𝑡𝑘

Ä
and Σ𝑧

Ä
|𝑣

so that the address set of stack allocations due to 𝑧, Σ𝑧

Ä
|𝑠, is populated by transferring

addresses from Σ𝑠𝑡𝑘

Ä
and Σ𝑧

Ä
|𝑣 to Σ𝑧

Ä
|𝑠 (recall that Σ𝑠𝑡𝑘

Ä
and Σ𝑧

Ä
|𝑣 are allowed to overlap).

We trigger 𝒲 if the allocated interval does not belong Σ𝑧

Ä
|𝑣, i.e, we assume that the

non-deterministic choice made in alloc𝑣 is always such that a valid stack materialization

is contained inside it. We define Σ𝑍

Ä
|𝑣 = ⋃

𝑧∈𝑍 Σ
𝑧

Ä
|𝑣 and Σ𝑧

Ä
= Σ𝑧

Ä
|𝑠 ∪ Σ𝑧

Ä
|𝑣 for a 𝑧 ∈ 𝑍 (as

done in section 2.6.1 for 𝑧𝑙 ∈ 𝑍𝑙). An execution of v2s does not change Σ𝑧

Ä
.

An instruction ‘s2v 𝑧’ transfers all the stack allocations for a local 𝑧 back to the virtual

region and returns the corresponding addresses to stack. Unlike dealloc𝑠, the address

set Σ𝑧

Ä
is not emptied due to execution of s2v; on the contrary, as with v2s, the

execution of s2v does not affect Σ𝑧

Ä
— instead, it transfers the addresses in Σ𝑧

Ä
|𝑠 back

to Σ𝑧

Ä
|𝑣 and Σ𝑠𝑡𝑘

Ä
. Similar to v2s, an execution of s2v does not change Σ𝑧

Ä
. Neither v2s

nor s2v produces any (non-silent) observable trace event.

(EntryÄ) shows the revised semantics for procedure entry: the revision is limited

to initializing address sets Σ𝑧
¥A |

𝑠 and Σ𝑧
¥A |
𝑣 to empty, setting ghost variable avail.𝑧

to false, and assigning non-deterministic values to ghost variables lstVSz.𝑧 and

align.𝑧 , for each 𝑧 ∈ 𝑍 .

As with previous definitions, refinement in this case is also defined through the existence

Execution Semantics and Notion of Correct Translation 69

of an annotated Ä, annotated with (de)alloc𝑣, s2v and v2s instructions with semantics

as described above and procedure-call with annotations as described in section 2.5.2,

such that C ⊒ Ä holds.

Definition 2.7.1 (Refinement with stack and virtually-allocated locals). C ⊒̈ A iff:

∃Ä : C ⊒ Ä

2.7.1 Comparison with C ¥⊒ A

C ⊒̈ A admits strictly more procedure-pairs than C ¥⊒ A

We claim that C ⊒̈ A admits at least as many procedure-pairs as C ¥⊒ A.

Let ¥A be obtained by annotating A as described in section 2.6. Let Ä be obtained from
¥A by the following substitution:

• Substitute an ‘alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ instruction with instruction sequence ‘alloc𝑣 𝑒𝑤, 𝑎, 𝑧;

v2s 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’.

• Substitute a ‘dealloc𝑠 𝑧’ instruction with instruction sequence ‘s2v 𝑧; dealloc𝑣 𝑧’.

Let the semantics defined in fig. 2.12 be used for the instructions in Ä.

Assume machine states 𝜎 and ¤𝜎 for ¥A and Ä at nodes 𝑛 ¥A ∈ NHH𝑈𝑊
¥A and 𝑛Ä ∈ NHH𝑈𝑊

Ä

respectively such that 𝑛 ¥A and 𝑛Ä are not error nodes. Let =𝛿 𝑏e a relation between 𝜎

and ¤𝜎 such that 𝜎 =𝛿 ¤𝜎 holds iff:

• The state elements present in both 𝜎 and ¤𝜎 have identical values.

• Σ𝑧
¥A = Σ𝑧

Ä
, Σ𝑧
¥A |

𝑠 = Σ𝑧

Ä
|𝑠, and Σ𝑧

¥A |
𝑣 = Σ𝑧

Ä
|𝑣 hold where:

– Σ𝑧𝑙
¥A = Σ𝑧𝑙

¥A |
𝑠 ∪ Σ𝑧𝑙

¥A |
𝑣 for 𝑧𝑙 ∈ 𝑍𝑙 .

– Σ𝑧𝑎
¥A |

𝑠 = Σ𝑧𝑎
¥A and Σ𝑧𝑎

¥A |
𝑣 = ∅ for 𝑧𝑎 ∈ 𝑍𝑎.

– Σ𝑧

Ä
= Σ𝑧

Ä
|𝑠 ∪ Σ𝑧

Ä
|𝑣 for 𝑧 ∈ 𝑍 .

Lemma 2.7.2. If 𝜎 =𝛿 ¤𝜎 holds, and an execution of ‘alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ on 𝜎 triggers

error, then an execution of instructions (in sequence) ‘alloc𝑣 𝑒𝑤, 𝑎, 𝑧; v2s 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’

on ¤𝜎 will also trigger an error (for some sequence of non-deterministic choices).

Further, if the erroneous execution on 𝜎 does not trigger error 𝒰, then the erroneous

execution on ¤𝜎 also does not trigger error 𝒰.

Proof. An execution of alloc𝑠 on 𝜎 may trigger either error 𝒰 due to evaluation of

70 Execution Semantics and Notion of Correct Translation

¬intrvlInSet(. . .) check ((AllocS)) to true, call it case 1. Or, it may terminate

with error 𝒲 due to evaluation of ov(. . .) check ((AllocS’)) to true, call it case 2.

1. When error 𝒰 is triggered: The ¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i32 , Σ𝑠𝑡𝑘
¥A) check due to

alloc𝑠 ((AllocS)) is structurally identical to the 𝒰-triggering check due to v2s

((V2S)). Further, the arguments to both instructions alloc𝑠 and v2s above are

identical and due to 𝜎 =𝛿 ¤𝜎, Σ𝑠𝑡𝑘
¥A = Σ𝑠𝑡𝑘

Ä
holds. Also, the execution of alloc𝑣

does not affect Σ𝑠𝑡𝑘

Ä
. Therefore, if execution of alloc𝑣 completes without triggering

error 𝒲, then execution of v2s will terminate with error 𝒰 due to evaluation of

¬intrvlInSet𝑎 (. . .) check to false.

2. When error 𝒲 is triggered: An execution of instruction alloc𝑣 on ¤𝜎 may trigger 𝒲

due to the non-deterministic choice for 𝑣 in (AllocV’) — to distinguish the 𝑣 in

(AllocV’) from the 𝑣 in (V2S), we will refer to the former as 𝑣𝑣 and the latter as

simply 𝑣 23.

If the execution of alloc𝑠 on 𝜎 triggers 𝒲 due to evaluation of ov([𝑣]𝑤, Σ𝑐𝑣
¥A ∪Σ

𝑍𝑙
¥A |

𝑣)
check to false, then, for some sequence of non-deterministic choices, execution of

alloc𝑣; v2s on ¤𝜎 may also trigger 𝒲. We prove this by contradiction. Assume

that the execution of alloc𝑣 on ¤𝜎 does not trigger 𝒲, then consider the subsequent

execution of v2s on resulting ¤𝜎. The evaluation of ¬intrvlInSet(. . .) on ¤𝜎 will not

result in triggering 𝒰 as it did not trigger 𝒰 in execution of 𝜎 (same reasoning as

case 1 above). If the execution of v2s on ¤𝜎 does not trigger 𝒲 due to evaluation of

([𝑣]𝑤 ⊈ Σ𝑧

Ä
) to false, then we have [𝑣]𝑤 ⊆ Σ𝑧

Ä
or [𝑣]𝑤 ⊆ Σ𝑧

Ä
|𝑠 ∪ Σ𝑧

Ä
|𝑣 at the end of

alloc𝑣’s execution (recall that 𝑣 refers to the 𝑣 in (V2S) here which holds identical

value as 𝑣 at the end of alloc𝑠’s execution). Due to 𝜎 =𝛿 ¤𝜎 and the fact that

execution of alloc𝑠 did not change Σ𝑧
¥A |

𝑠 (due to early termination), we can conclude

[𝑣]𝑤 ⊆ (Σ𝑧
¥A |
𝑣 ∪ [𝑣𝑣]𝑤) ∪ Σ𝑧

¥A |
𝑠 (notice the change from Σ𝑧

Ä
|𝑣 to Σ𝑧

¥A |
𝑣). As execution

of v2s did not terminate with error 𝒰, [𝑣]𝑤 ⊆ Σ𝑠𝑡𝑘

Ä
must hold prior to execution

of v2s and, therefore, [𝑣]𝑤 ⊈ Σ𝑧

Ä
|𝑠 must hold at the same point 24. Consequently,

[𝑣]𝑤 ⊆ Σ𝑧
¥A |
𝑣 ∪ [𝑣𝑣]𝑤. If execution on 𝜎 triggered 𝒲, then ov([𝑣]𝑤, Σ𝑐𝑣

¥A ∪ Σ
𝑍
¥A |
𝑣) must

hold. As 𝑣 in v2s has identical value as 𝑣 in alloc𝑠, ov(Σ𝑧
¥A |
𝑣 ∪ [𝑣𝑣]𝑤, Σ𝑐𝑣

¥A ∪ Σ𝑍
¥A |
𝑣)

must hold. ¬ov([𝑣𝑣]𝑤, Σ𝑐𝑣
¥A ∪ Σ𝑍

¥A |
𝑣) holds for error-free execution of alloc𝑣 and

¬ov(Σ𝑧
¥A |
𝑣, Σ𝑐𝑣

¥A) holds for 𝜎 at error-free node, yielding ov(Σ𝑧
¥A |
𝑣, Σ𝑍

¥A |
𝑣). Recall that ¥A

restricts alloc𝑣 to local variable declaration 𝑧 and for a local 𝑧, ¥A may either have

23We do not similarly distinguish between 𝑤 because, unlike 𝑣, any execution over ¤𝜎 will have
identical values for both 𝑤.

24This is due to the semantics of v2s and s2v, which prohibit an address 𝛼 from simultaneously
satisfying 𝛼 ∈ Σ𝑧

Ä
|𝑠 and 𝛼 ∈ Σ𝑠𝑡𝑘

Ä
.

Execution Semantics and Notion of Correct Translation 71

alloc𝑠 or alloc𝑣 annotation but not both. This gives us Σ𝑧
¥A |
𝑣 = ∅, resulting in the

contradiction ov(∅, Σ𝑍
¥A |
𝑣). Thus, either of our assumption of error-free execution of

alloc𝑣 or v2s was incorrect and execution of ¤𝜎 must also terminate with error 𝒲.

Due to case 2, it follows that the erroneous execution on ¤𝜎 will trigger 𝒲 (and not 𝒰)

if the erroneous execution on 𝜎 triggers 𝒲. □

Lemma 2.7.3. If 𝜎 =𝛿 ¤𝜎 holds, and an execution of ‘alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ on 𝜎 com-

pletes without triggering error, then there exists a sequence of non-deterministic choices

such that an execution of instructions (in sequence) ‘alloc𝑣 𝑒𝑤, 𝑎, 𝑧; v2s 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’

on ¤𝜎 also completes without triggering error.

Proof. If the execution on 𝜎 completed without triggering error, then neither of the

conditions ¬intrvlInSet(. . .) and ov(. . .) in (AllocS’) evaluated to true during

𝜎’s execution. Thus, both ¬ov([𝑣]𝑤, Σ𝑐𝑣
¥A ∪ Σ𝑍

¥A |
𝑣) and ¬ov([𝑣]𝑤, Σ𝐵

¥A \ (Σ
𝑐𝑣
¥A ∪ Σ𝑍

¥A |
𝑣)) 25

should hold on 𝜎 for 𝑣 = 𝑒𝑣 and 𝑤 = 𝑒𝑤 before execution of alloc𝑠 begins, yielding

¬ov([𝑣]𝑤, Σ𝐵∪{𝑐𝑣}
¥A) or ¬ov([𝑣]𝑤, Σ𝐵∪{𝑐𝑣}

Ä
) (due to 𝜎 =𝛿 ¤𝜎). During the execution on

¤𝜎, choose 𝑣 in (AllocV’) to be identical to 𝑣 above. It can be observed that the

execution on ¤𝜎 will complete without triggering error. □

Lemma 2.7.4. If 𝜎 =𝛿 ¤𝜎 holds, then after an error-free execution of instruction

‘alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ on 𝜎 to obtain 𝜎′ and an error-free execution of instructions (in

sequence) ‘alloc𝑣 𝑒𝑤, 𝑎, 𝑧; v2s 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’ on ¤𝜎 to obtain ¤𝜎′, 𝜎′ =𝛿 ¤𝜎′ holds.

As Ω ¥A ∈ 𝜎′ and ΩÄ ∈ ¤𝜎′, the executions must produce identical traces as well.

Proof. An error-free execution of alloc𝑠 on 𝜎 will mutate the address sets: Σ𝑠𝑡𝑘
¥A to

Σ𝑠𝑡𝑘
¥A \ [𝑣]𝑤 and either of Σ𝑧

¥A to Σ𝑧
¥A ∪ [𝑣]𝑤 (if 𝑧 ∈ 𝑍𝑎) or Σ

𝑧
¥A |

𝑠 to Σ𝑧
¥A |

𝑠 ∪ [𝑣]𝑤 (if 𝑧 ∈ 𝑍𝑙).

Similarly, an error-free execution of alloc𝑣; v2s in sequence will mutate the address

sets: Σ𝑠𝑡𝑘

Ä
to Σ𝑠𝑡𝑘

Ä
\ [𝑣𝑠]𝑤, Σ𝑧

Ä
|𝑠 to Σ𝑧

Ä
|𝑠 ∪ [𝑣𝑠]𝑤, and Σ𝑧

Ä
|𝑣 to (Σ𝑧

Ä
|𝑣 ∪ [𝑣𝑣]𝑤) \ [𝑣𝑠]𝑤, where

𝑣𝑠 refers to the 𝑣 in (V2S) (which is identical to the 𝑣 in alloc𝑠 above) and 𝑣𝑣 refers

to the 𝑣 in (AllocV’). Choosing 𝑣𝑣 (of (AllocV’)) to be identical to 𝑣𝑠, it can be

observed that 𝜎′ =𝛿 ¤𝜎′ will hold. Proof of lemma 2.7.3 shows that this choice is always

feasible for an error-free execution. □

25Due to semantics of (Op-esp’), (AllocS’) and (DeallocS’), and (AllocV) and (DeallocV),
because of which ¬ov(Σ𝑠𝑡𝑘

¥A , Σ𝐵
¥A \ (Σ

𝑐𝑣
¥A ∪ Σ𝑍

¥A |
𝑣)) holds.

72 Execution Semantics and Notion of Correct Translation

It is easy to state and prove similar claims as lemmas 2.7.2 to 2.7.4 for ‘dealloc𝑠 𝑧’

in ¥A and instruction sequence ‘s2v 𝑧; dealloc𝑣 𝑧’ in Ä. Similarly, for instruction

‘alloc𝑣’ (resp. dealloc𝑣) in ¥A and instruction ‘alloc𝑣’ (resp. dealloc𝑣) in Ä, where the

semantics are identical (barring the ghost variables lstVSz.𝑧 , align.𝑧 , and avail.𝑧).

Theorem 2.7.5. If there exists an annotation ¥A such that C ⊒ ¥A holds, then it is

possible to construct an annotation Ä such that C ⊒ Ä holds.

Proof. Construct Ä as described above by replacing the alloc𝑠 and dealloc𝑠, instruc-

tions in ¥A with instruction sequences ‘alloc𝑣; v2s’ and ‘s2v; dealloc𝑣’ respectively.

The proof follows from induction on lockstep execution of ¥A and Ä and lemmas 2.7.2

to 2.7.4. □

Recall that C ¥⊒ A does not admit certain procedure-pairs that have identical observable

behavior according to the C standard (section 2.6.3). We demonstrate below that those

procedure-pairs will be admitted under C ⊒̈ A.

• Elimination of alloca():

int foo()

{

int *p = alloca(sizeof(int)*10);

return 0;

}

foo:

alloc𝑣 40, . . .

eax = 0

dealloc𝑣

ret

Without the restriction on placement of alloc𝑣, it is easy to add the required

(de)alloc𝑣 annotations (shown in red) such that Cfoo ⊒ Äfoo holds.

• Live-range splitting of variable so that it is both stack-allocated and register-allocated

in same path:

Execution Semantics and Notion of Correct Translation 73

void bar()

{

int x; // alloc

scanf(/*...*/, &x);

for (...) {

// ‘x’ used

}

printf(/*...*/, x);

} // dealloc

bar:

alloc𝑣 4, . . .

esp -= 4 ; ‘x’ stack-allocated

v2s esp, 4, . . .

... call scanf ...

eax = mem4[esp]; ; ‘x’ register-allocated

s2v . . .

esp += 4 ; ‘x’ stack-deallocated

... ; for loop

push eax ; value of ‘x’ as argument to printf

... call printf ...

...

dealloc𝑣

The v2s and s2v annotations in Äbar trace the stack-allocation and register-allocation

performed by the compiler. As neither v2s nor s2v produce any observable trace event

thats needs to be correlated with Cbar, an identical behavior in the ... fragments

in both Cbar and Abar with annotations as shown in red, Cbar ⊒ Äbar will hold.

• Path specialization involving register-allocation on one path and stack-allocation on

another:

void baz()

{

int x; // alloc

if (...) {

// used as ‘&x’

} else {

// used as ‘x’

}

} // dealloc

baz:

...

alloc𝑣 4, . . .

if (...) jmp L1

L0: esp -= 4 ; true branch

v2s esp, 4, . . .

...

s2v . . .

esp += 4

jmp L2

L1: ... ; false branch: no stack

... ; allocation

L2: ... ; meet point

dealloc𝑣

The use of v2s and s2v annotations in Äbaz enable treatment of a stack region as

74 Execution Semantics and Notion of Correct Translation

belonging to a previously “allocated” (using alloc𝑣) local without producing any

observable trace event that needs to be correlated with Cbaz. Assuming identical

behaviors in the ... fragments in both Cbaz and Abaz and annotations as shown in

red, Cbaz ⊒ Äbaz will hold.

Thus, C ⊒̈ A admits strictly more procedure-pairs than C ¥⊒ A.

Practicality of C ⊒̈ A

While C ⊒̈ A is strictly more powerful than C ¥⊒ A, the restrictions on C ¥⊒ A make it

more amenable to a simpler algorithmic construction such that C ¥⊒ A can be witnessed

(our construction is detailed in chapters 3 and 4). The two restrictions defined over

annotation of alloc𝑣 (section 2.6.1) are consequential in realizing an efficient SMT

encoding of verification conditions over C and ¥A. In particular, the restrictions on

limiting annotation of alloc𝑣 to a variable declaration enable use of an address interval

(defined by ghost variables lb.𝑧 and ub.𝑧 in C) for tracking Σ𝑧𝑙
¥A |

𝑣. Use of such interval

encoding results in measurable performance improvements in runtime of our algorithm

(section 6.2). The restriction on exclusivity (using exclusively either an annotation of

alloc𝑠 or an annotation alloc𝑣) enables a rewrite of the predicate (𝛼 ∈ Σ𝑧𝑙
¥A) to either

(𝛼 ∈ Σ𝑧𝑙
¥A |

𝑠) or (𝛼 ∈ Σ𝑧𝑙
¥A |

𝑣), depending on whether an alloc𝑠 or an alloc𝑣 annotation

is used respectively. (𝛼 ∈ Σ𝑧
¥A |
𝑣) can be encoded (in SMT) using simple (bitvector)

comparisons by taking advantage of the first restriction. We leave the exploration of

similar construction for C ⊒̈ A for future work.

Chapter 3

Witnessing Refinement through a

Determinized Cross-Product

In the previous chapter, we defined refinement between a source procedure C and

an annotated assembly procedure ¥A as a relation over their traces. In this chapter,

we present our proof method for witnessing refinement. Our proof method involves

constructing a cross-product or product program that puts C and ¥A in lockstep. While

product program construction is a well-known technique for establishing bisimulation,

we propose a determinized product program, an extension that accommodates non-

determinism and thus can be used for witnessing refinement. We describe a set of

requirements over a determinized product program between C and ¥A such that the

existence of a program meeting these requirements implies the refinement relation

C ⊒ ¥A.

The chapter is organized as follows: we start by defining program paths in section 3.1;

in section 3.2, we define the product program as a determinized product graph and

in section 3.3, we state the requirements over the determinized product graph that

enable it to witness refinement. In sections 3.4 and 3.5, we describe new callers’ virtual

smallest and safety-relaxed semantics for C and A that enable a more efficient SMT

encoding of verification conditions.

75

76 Witnessing Refinement through a Determinized Cross-Product

3.1 Program Paths

Let 𝑃 ∈ {C, ¥A}. Let 𝑒𝑃 = (𝑛𝑃 → 𝑛𝑡
𝑃
) ∈ E𝑃 represent an edge from node 𝑛𝑃 to node 𝑛𝑡

𝑃
,

both drawn from nodes N𝑃 of 𝑃. A path 𝜉𝑃 from 𝑛𝑃 to 𝑛𝑡
𝑃
, written 𝜉𝑃 = (𝑛𝑃 ↠ 𝑛𝑡

𝑃
), is

a finite sequence of 𝑚 ≥ 0 edges (𝑒1
𝑃
, 𝑒2

𝑃
, . . . , 𝑒𝑚

𝑃
) with ∀1≤ 𝑗≤𝑚 : 𝑒

𝑗

𝑃
= (𝑛 𝑓 , 𝑗

𝑃
→ 𝑛

𝑡, 𝑗

𝑃
) ∈ E𝑃,

such that 𝑛
𝑓 ,1
𝑃

= 𝑛𝑃, 𝑛
𝑡,𝑚

𝑃
= 𝑛𝑡

𝑃
, and

𝑚−1∧
𝑗=1
(𝑛𝑡, 𝑗

𝑃
= 𝑛

𝑓 , 𝑗+1
𝑃
). An empty sequence (𝑚 = 0),

written 𝜖 , represents the empty path. Nodes 𝑛𝑃 and 𝑛𝑡
𝑃
are called the source and sink

nodes of 𝜉𝑃 respectively. 𝜉𝑃 is said to originate at 𝑛𝑃 and end at 𝑛𝑡
𝑃
. Edge 𝑒

𝑗

𝑃
(for some

1 ≤ 𝑗 ≤ 𝑚) is said to be present in 𝜉𝑃, written 𝑒
𝑗

𝑃
∈ 𝜉𝑃.

A path 𝜉𝑥
𝑃
= (𝑒𝑥1

𝑃
, 𝑒

𝑥2
𝑃
, . . . , 𝑒

𝑥𝑚
𝑃
) (𝑚 ≥ 0) is a prefix of path 𝜉

𝑦

𝑃
= (𝑒𝑦1

𝑃
, 𝑒

𝑦2
𝑃
, . . . , 𝑒

𝑦𝑛
𝑃
) (𝑛 ≥ 0),

written 𝜉𝑥
𝑃
⪯ 𝜉

𝑦

𝑃
, iff 𝑚 ≤ 𝑛 and

𝑚∧
𝑖=1
(𝑒𝑥𝑖

𝑃
= 𝑒

𝑦𝑖
𝑃
).

Definition 3.1.1 (Mutually exclusive paths). Two paths, 𝜉1
𝑃
= (𝑛𝑃 ↠ 𝑛𝑡1) and 𝜉2

𝑃
=

(𝑛𝑃 ↠ 𝑛
𝑡2
𝑃
), both originating at node 𝑛𝑃 are mutually-exclusive, written 𝜉1

𝑃
≎ 𝜉2

𝑃
, iff

neither is a prefix of the other, i.e., both ¬(𝜉1
𝑃
⪯ 𝜉2

𝑃
) and ¬(𝜉2

𝑃
⪯ 𝜉1

𝑃
) hold.

Definition 3.1.2 (Pathset). A pathset ⟨𝜉⟩𝑃 is a set of pairwise mutually-exclusive paths

⟨𝜉⟩𝑃 = {𝜉1
𝑃
, 𝜉2

𝑃
, . . . , 𝜉𝑚

𝑃
} originating at the same node 𝑛𝑃, i.e., ∀1≤ 𝑗≤𝑚 : 𝜉

𝑗

𝑃
= (𝑛𝑃 ↠ 𝑛

𝑗

𝑃
)

and ∀1≤ 𝑗1< 𝑗2≤𝑚 : (𝜉 𝑗1
𝑃

≎ 𝜉
𝑗2
𝑃
).

The execution of a path 𝜉𝑃 = (𝑛𝑃 ↠ 𝑛𝑡
𝑃
) = (𝑒1

𝑃
, 𝑒2

𝑃
, . . . , 𝑒𝑚

𝑃
) (𝑚 ≥ 0) is the sequential

execution of edges 𝑒1
𝑃
,𝑒2

𝑃
,. . . ,𝑒𝑚

𝑃
starting at node 𝑛𝑃. The path condition of a path 𝜉𝑃,

written 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 (𝜉𝑃), is a conjunction of the edge conditions of the constituent edges.

Starting at 𝑛𝑃, 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 (𝜉𝑃) represents the condition that 𝜉𝑃 executes to completion.

Definition 3.1.3 (I/O path). A sequence of edges corresponding to a shaded statement

in the translations (figs. 2.4 to 2.8 and 2.11) is distinguished and identified as an I/O

path. An I/O path must contain either a single rd or a single wr instruction.

A rd/wr instruction is always part of an I/O path. The sequence of edges correspond-

ing to “wr(fcall(𝜌, #‰𝑥 , 𝛽∗, 𝜋
Σ
𝛽∗
C

(𝑀C)))” and “𝑀C := upd
Σ
𝛽∗\𝐺𝑟
C

(𝑀C, rd(i32 → i8))” in

(CallC) of fig. 2.5 refer to two separate I/O paths. A path without any rd or wr

instructions is called an I/O-free path.

Witnessing Refinement through a Determinized Cross-Product 77

3.2 Determinized Product Graph as a Transition

Graph

A product program, represented as a determinized product graph, also called a comparison

graph or a cross-product, X = ¥A ⊠ C = (NX, EX,DX), is a directed multigraph with

finite sets of nodes NX and edges EX and a deterministic choice map DX. X is used to

encode a lockstep execution of ¥A and C, such that NX ⊆ N¥A × NC. The start node of X

is 𝑛𝑠
X
= (𝑛𝑠¥A, 𝑛

𝑠
C
) and all nodes in NX must be reachable from 𝑛𝑠

X
. A node 𝑛X = (𝑛 ¥A, 𝑛C)

is an error node iff either 𝑛 ¥A or 𝑛C is an error node1. NHH𝑈𝑊
X

denotes the set of error-free

nodes in X, such that 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X
⇔ (𝑛 ¥A ∈ NHH𝑈𝑊

¥A ∧ 𝑛C ∈ NHH𝑈𝑊
C
). A node

𝑛X = (𝑛 ¥A, 𝑛C) is a terminating node iff either of 𝑛 ¥A or 𝑛C is a terminating node. An

error node is always a terminating node.

Let 𝑛X = (𝑛 ¥A, 𝑛C) and 𝑛𝑡
X
= (𝑛𝑡¥A, 𝑛

𝑡
C
) be nodes in NX. Let 𝜉 ¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A) be a path

in ¥A and let 𝜉C = (𝑛C ↠ 𝑛𝑡
C
) be a path in C. Each edge, 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡

X
) ∈ EX, is

defined as a sequential execution of 𝜉 ¥A followed by 𝜉C. The execution of 𝑒X transfers

control of X from 𝑛X to 𝑛𝑡
X
.

The machine state 𝜎X of X is the concatenation of the machine states of ¥A and C.

The outside world of X, written ΩX, is a pair of the outside worlds of ¥A and C, i.e.,

ΩX = (Ω ¥A,ΩC). Similarly, the trace generated by X, written 𝑇X, is a pair of the traces

generated by ¥A and C, i.e., 𝑇X = (𝑇¥A, 𝑇C).

Let 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NX and 𝑛𝑡
X

= (𝑛𝑡¥A, 𝑛
𝑡
C
) ∈ NX. During an execution of 𝑒X =

(𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX, let #‰𝑥 ¥A be variables in ¥A just at the end of the execution of

path 𝜉 ¥A (at 𝑛𝑡¥A) but before the execution of path 𝜉C (recall, 𝜉 ¥A executes before 𝜉C).

DX : (EX×EC×N) → ExprList, called a deterministic choice map, is a partial function

that maps edge 𝑒X ∈ EX, and the 𝑛𝑡ℎ (for 𝑛 ∈ N) occurrence of an edge 𝑒𝜃
C
∈ 𝜉C labeled

with instruction ‘ #‰𝑣 := 𝜃 (#‰𝜏)’ to a list of expressions 𝐸 (#‰𝑥 ¥A). The semantics of DX are

such that, if DX(𝑒X, 𝑒𝜃C, 𝑛) is defined, then during an execution of 𝑒X, an execution of

the 𝑛𝑡ℎ occurrence of edge 𝑒𝜃
C
∈ 𝜉C labeled with ‘ #‰𝑣 := 𝜃 (#‰𝜏)’ is semantically equivalent

to an execution of ‘ #‰𝑣 := DX(𝑒X, 𝑒𝑛C, 𝑛)’; otherwise, the original semantics of 𝜃 are used.

DX determinizes (or refines) the non-deterministic choices in C. For example, in a prod-

uct graph X that correlates the programs in fig. 2.1b and fig. 2.1c, let 𝑒2
X
∈ EX correlate

1Recall that there are two error nodes in 𝑃 ∈ {C, ¥A}: 𝒰𝑃 and 𝒲𝑃 (section 2.2.7).

78 Witnessing Refinement through a Determinized Cross-Product

single instructions I2 and A51 (corresponding to alloc and alloc𝑠 respectively). Let

𝑒
I2,𝜃𝑎
C

represent the edge labeled with ‘𝛼𝑏 := 𝜃 (i32)’ as a part of the translation of the

alloc instruction at I2, as seen in (Alloc) (fig. 2.5). Then, DX(𝑒2X, 𝑒
I2,𝜃𝑎
C

, 1) = (esp)
is identified by the first operand of the annotated alloc𝑠 instruction at A51. Similarly, if

another edge 𝑒I2,𝜃𝑚
C

(in the translation of alloc at I2) is labeled with 𝜃 (i32 → i8) (due
to ‘𝑀C := upd[𝛼𝑏 ,𝛼𝑒] (𝑀C, 𝜃 (i32 → i8))’), then DX(𝑒2X, 𝑒

I2,𝜃𝑚
C

, 1) = (𝑀 ¥A), i.e., the initial

contents of the newly-allocated region in C are based on the contents of the correlated

uninitialized stack region in ¥A. Similarly, let 𝑒1
X
∈ EX correlate single instructions I1

and A31 so that DX(𝑒1X, 𝑒
I1,𝜃𝑎
C

, 1) = (vI1) and DX(𝑒1X, 𝑒
I1,𝜃𝑚
C

, 1) = (𝑀 ¥A).

Definition 3.2.1 (Determinized Path). For a path 𝜉C in C, edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX

and deterministic choice map DX, [𝜉C]𝑒XDX
denotes a determinized path that is identical

to 𝜉C except that: if DX(𝑒X, 𝑒𝜃C, 𝑛) is defined, then the 𝑛𝑡ℎ occurrence of edge 𝑒𝜃
C
∈ 𝜉C,

labeled with ‘ #‰𝑣 := 𝜃 (#‰𝜏)’, is replaced with a new edge 𝑒
𝜃′𝑛
C

labeled with ‘ #‰𝑣 := DX(𝑒X, 𝑒𝜃C, 𝑛)’.

Execution of a product graph X must begin at node 𝑛𝑠
X
in an initial machine state where

Ω ¥A = ΩC and 𝑇¥A =𝑠𝑡 𝑇C hold. Execution of an edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX is execution

of 𝜉 ¥A followed by execution of potentially determinized (using DX) 𝜉C. Thus, X is a

transition graph with its execution semantics derived from the semantics of ¥A and C,

and the map DX.

3.3 Analysis of the determinized product graph

Let X = ¥A⊠C = (NX, EX,DX) be a determinized product graph. At each error-free node

𝑛X ∈ NHH𝑈𝑊
X

, we infer an inductively-provable node invariant 𝜙𝑛X which is a first-order

logic predicate over state elements of X at node 𝑛X that holds for all possible executions

of X. A node invariant 𝜙𝑛X relates the values of state elements of C and ¥A that can be

observed at 𝑛X. Let ΦX be an invariant network that maps 𝑛X to its node invariant

𝜙𝑛X so that ΦX(𝑛X) = 𝜙𝑛X .

A path 𝜉 ¥A (similarly, 𝜉C) is said to originate at node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NX iff 𝜉 ¥A (𝜉C)

originates at 𝑛 ¥A (𝑛C).

Definition 3.3.1 (Hoare triple). Let 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

. Let 𝜉 ¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A) and
𝜉C = (𝑛C ↠ 𝑛𝑡

C
) be paths in ¥A and C. A Hoare triple, written {𝑝𝑟𝑒}(𝜉 ¥A; 𝜉C){𝑝𝑜𝑠𝑡},

denotes the statement: if execution starts at node 𝑛X in state 𝜎 such that predicate

𝑝𝑟𝑒(𝜎) holds, and if paths 𝜉 ¥A; 𝜉C are executed in sequence to completion finishing in

Witnessing Refinement through a Determinized Cross-Product 79

state 𝜎′, then predicate 𝑝𝑜𝑠𝑡 (𝜎′) holds.

We define path infeasibility and path cover in terms of Hoare triple(s).

Definition 3.3.2 (Path infeasibility). At a node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

, a path 𝜉 ¥A =

(𝑛 ¥A ↠ 𝑛𝑡¥A) is infeasible at 𝑛X iff the Hoare triple {𝜙𝑛X}(𝜉 ¥A; 𝜖){false} holds.

Definition 3.3.3 (Path cover). At a node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

, for a path 𝜉 ¥A = (𝑛 ¥A ↠

𝑛𝑡¥A), let ∀1≤ 𝑗≤𝑚 : 𝑒
𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→𝑛

𝑡 𝑗

X
) be all edges in EX, such that 𝑛

𝑡 𝑗

X
= (𝑛𝑡¥A, 𝑛

𝑡 𝑗

C
). The

set of edges {𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
} covers path 𝜉 ¥A, written {𝑒1X, 𝑒2X, . . . , 𝑒𝑚X}⟨DX, 𝜉 ¥A⟩, iff the

Hoare triple {𝜙𝑛X}(𝜉 ¥A; 𝜖){
𝑚∨
𝑗=1

𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗

C
]𝑒

𝑗
X
DX
)} holds.

In other words, the set of edges {𝑒1
X
, . . . , 𝑒

𝑗

X
, . . . , 𝑒𝑚

X
} covers the path 𝜉 ¥A iff: whenever an

execution starting at 𝑛X in state 𝜎 such that 𝜙𝑛X (𝜎) holds completes the execution of

𝜉 ¥A, a subsequent execution starting at 𝑛C must execute at least one of the determinized

path [𝜉 𝑗

C
]𝑒

𝑗
X
DX

(1 ≤ 𝑗 ≤ 𝑚) to completion. Thus, if path cover at 𝑛X for path 𝜉 ¥A holds,

then at least one of the outgoing edges at 𝑛X will execute to completion.

3.3.1 X requirements

Let be a wildcard character for a node. We define the following requirements on X so

it may witness C ⊒ ¥A:

1. (Mutex ¥A): For each node 𝑛X ∈ NX, with all outgoing edges {𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
} such

that 𝑒
𝑗

X
= (𝑛X

𝜉
𝑗
¥A; 𝜉

𝑗
C−−−−→𝑛

𝑡 𝑗

X
) ∈ EX and 𝑛

𝑡 𝑗

X
∈ NX (for 1 ≤ 𝑗 ≤ 𝑚), the following holds:

∀1≤ 𝑗1, 𝑗2≤𝑚 : (𝜉 𝑗1
¥A = 𝜉

𝑗2
¥A) ∨ (𝜉

𝑗1
¥A ≎ 𝜉

𝑗2
¥A)

In other words, two ¥A paths 𝜉
𝑗1
¥A , 𝜉

𝑗2
¥A (1 ≤ 𝑗1, 𝑗2 ≤ 𝑚) originating at node 𝑛X are

either identical or mutually exclusive.

2. (MutexC): At each node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NX, for some path 𝜉 ¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A), let
{𝑒1

X
, 𝑒2

X
, . . . , 𝑒𝑚

X
} be a set of all outgoing edges such that 𝑒

𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→𝑛

𝑡 𝑗

X
) ∈ EX

(for 1 ≤ 𝑗 ≤ 𝑚) and 𝑛
𝑡 𝑗

X
= (𝑛𝑡¥A, 𝑛

𝑡 𝑗

C
) ∈ NX. Then, the set {𝜉1

C
, 𝜉2

C
, . . . , 𝜉𝑚

C
} must be a

pathset, i.e., the paths are pairwise mutually-exclusive.

In other words, the set of paths correlated with a path 𝜉 ¥A originating at 𝑛X are

pairwise mutually exclusive. Because mutually-exclusive paths cannot be executed

simultaneously (by virtue of their pairwise complementary path conditions), together

80 Witnessing Refinement through a Determinized Cross-Product

(Mutex ¥A) and (MutexC) make execution of X deterministic such that at a node 𝑛X,

at most one outgoing edge 𝑒
𝑗

X
may be executed to completion2.

3. (Termination) For each error-free node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

, 𝑛 ¥A is a terminating

node iff 𝑛C is a terminating node.

(Termination) ensures error-free termination of both executions (C and ¥A) happens
simultaneously.

4. (SingleIO): For each edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX, either both 𝜉 ¥A and 𝜉C are I/O

paths or both 𝜉 ¥A and 𝜉C are I/O-free.

(SingleIO) enforces lockstep execution of non-silent trace-producing instructions in

𝜉 ¥A and 𝜉C.

5. (Similar-speed): Let (𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
) be a cyclic path, so that ∀1≤ 𝑗≤𝑚 : 𝑒

𝑗

X
=

(𝑛 𝑓 , 𝑗

X

𝜉
𝑗
¥A; 𝜉

𝑗
C−−−−→𝑛

𝑡, 𝑗

X
) ∈ EX; 𝑛

𝑓 ,1
X

= 𝑛
𝑡,𝑚

X
; and

𝑚−1∧
𝑗=1
(𝑛𝑡, 𝑗

X
= 𝑛

𝑓 , 𝑗+1
X
). For each cyclic path,

¬
𝑚∧
𝑗=1
(𝜉 𝑗

¥A = 𝜖) and ¬
𝑚∧
𝑗=1
(𝜉 𝑗

C
= 𝜖) holds.

(SimilarSpeed) enforces divergence preservation: ¥A diverges (i.e., does not terminate)

iff C diverges.

6. (Well-formedness): If a node of the form 𝑛X = (,𝒲C) exists in NX, then 𝑛X must be

(𝒲 ¥A,𝒲C).

(Well-formedness) ensures that if a well-formedness (WF) constraint is violated in C

(indicated by transition to 𝒲C), then ¥A must transition to 𝒲 ¥A — recall that 𝒲 is

used to signal violation of a WF constraint in C, and violation of a condition that

can be assumed to never happen, e.g. stack overflow, in ¥A (section 2.2.4). In other

words, an error-free execution in ¥A must never falsify the WF constraints.

7. (Safety): If a node of the form 𝑛X = (𝒰 ¥A,) exists in NX, then 𝑛X must be (𝒰 ¥A,𝒰C).

(Safety) ensures that ¥A triggers 𝒰 only if C triggers 𝒰 — recall that 𝒰 is used to

signal occurrence of an undefined behavior (UB) in C, and occurrence of UB or

translation error in ¥A (section 2.2.4). With (Safety), we ensure that ¥A may have

translation errors (or may trigger UB) only if a lockstep execution of C triggers UB.

2Recall that execution of X edge 𝑒
𝑗
X
is defined as execution of 𝜉 ¥A followed by execution of 𝜉

𝑗
C
.

Witnessing Refinement through a Determinized Cross-Product 81

8. (Coverage ¥A): For each error-free node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

and for each possible

outgoing path 𝜉𝑜¥A = (𝑛 ¥A ↠ 𝑛𝑜¥A), either 𝜉𝑜¥A is infeasible at 𝑛X or there exists 𝑒X =

(𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX such that either 𝜉 ¥A is a prefix of 𝜉𝑜¥A or 𝜉𝑜¥A is a prefix of 𝜉 ¥A.

(Coverage ¥A) ensures all executable paths of ¥A are present or covered in X.

9. (CoverageC): At each node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NX, for some 𝜉 ¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A), let
{𝑒1

X
, 𝑒2

X
, . . . , 𝑒𝑚

X
} be the set of all outgoing edges such that 𝑒

𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→𝑛

𝑡 𝑗

X
) ∈ EX

(for 1 ≤ 𝑗 ≤ 𝑚) and 𝑛
𝑡 𝑗

X
= (𝑛𝑡¥A, 𝑛

𝑡 𝑗

C
) ∈ NX. Then, {𝑒1X, 𝑒2X, . . . , 𝑒𝑚X}⟨DX, 𝜉 ¥A⟩ holds.

(CoverageC) requires that at least one of the outgoing edge 𝑒
𝑗

X
must execute to

completion. (Mutex ¥A), (MutexC), and (CoverageC) together ensure that at a node

𝑛X exactly one outgoing edge (if any) may be executed to completion.

10. (Inductive): For each error-free edge (an edge with error-free destination node) 𝑒X =

(𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX such that 𝑛X, 𝑛

𝑡
X
∈ NHH𝑈𝑊

X
, the Hoare triple {𝜙𝑛X}(𝜉 ¥A; [𝜉C]𝑒XDX

){𝜙𝑛𝑡
X
}

holds.

(Inductive) ensures that the invariant network ΦX is inductively provable starting at

start node 𝑛𝑠
X
∈ NX

11. (Equivalence): For each error-free node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

, Ω ¥A = ΩC must belong

to 𝜙𝑛X .

(Equivalence) ensures that ¥A and C produce identical non-silent traces in an error-

free execution. Because our execution semantics observe (de)allocation in C and A

(figs. 2.5, 2.8 and 2.10), (Equivalence) ensures that the allocation state (address sets)

of common regions 𝐵 in C and ¥A is identical.

12. (Memory Access Correspondence) or (MAC): For each edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX,

such that 𝑛𝑡
X
≠ (,𝒰C) ∈ NX, the following Hoare triples hold:

(a) {𝜙𝑛X ∧ (Σrd
¥A = Σrd

C
= ∅)}(𝜉 ¥A; [𝜉C]𝑒XDX

){(Σrd
¥A \ Σ

rd
C
) ⊆ Σ𝐺∪𝐹

¥A ∪ [esp, stk𝑒]}

(b) {𝜙𝑛X ∧ (Σwr
¥A = Σwr

C
= ∅)}(𝜉 ¥A; [𝜉C]𝑒XDX

){(Σwr
¥A \ Σ

wr
C
) ⊆ Σ

𝐺𝑤∪𝐹𝑤
¥A ∪ [esp, stk𝑒]}

Recall that the ghost address sets Σrd
¥A (Σrd

C
) and Σwr

¥A (Σwr
C

) accumulate the memory

accesses performed by ¥A(C) during its execution. (MAC) effectively requires that for

every (unique) memory access made to address 𝛼 belonging to region 𝑟 ∈ {ℎ𝑝, 𝑐𝑙, 𝑐𝑠}
during execution of path 𝜉 ¥A, there exists an access to 𝛼 of the same read/write type

on determinized path [𝜉C]𝑒XDX
that also executes to completion.

82 Witnessing Refinement through a Determinized Cross-Product

This requirement enables a sound over-approximation of the set of addresses belonging

to ℎ𝑝, 𝑐𝑙, and 𝑐𝑠 for a faster SMT encoding (described later in theorem 3.5.3

and section 5.3.2). For (MAC) to be meaningful, Σrd
¥A,C and Σwr

¥A,C must not be

included in X’s state elements over which a node invariant 𝜙𝑛X is inferred.

13. (MemEq): For each error-free node 𝑛X ∈ NHH𝑈𝑊
X

, 𝑀 ¥A =
Σ𝐵
¥A\(Σ

𝑍𝑙
¥A |

𝑣) 𝑀C must belong to

𝜙𝑛X .

(MemEq) requires the memory state of common regions modulo virtually-allocated

locals (Σ𝐵
¥A \ Σ

𝑍𝑙
¥A |

𝑣)3 of C and A to be identical at a node 𝑛X so that these regions are

mutated identically in a lockstep fashion in both C and ¥A.
This requirement enables an efficient search algorithm which trades some completeness

(by rejecting sound product graphs which do not respect this requirement) for a

more efficient incremental exploration for the required product graph.

The first seven requirements are constraints on the graph structure of X and are referred

to as structural requirements. The remaining six require discharge of proof obligations

(in the form of Hoare triples) and are referred to as semantic requirements.

The first eleven requirements are soundness requirements that are required for witnessing

refinement through X (section 3.3.2). The first twelve requirements are fast-encoding

requirements that enable a faster SMT encoding (chapter 5). All thirteen are search-

algorithm requirements that enable product graph search optimizations. Excluding

(Coverage ¥A) and (CoverageC), the remaining eleven are called non-coverage require-

ments.

3.3.2 Soundness of X requirements

Let X = ¥A ⊠ C = (NX, EX,DX) be a determinized product graph that satisfies the

soundness requirements (first eleven requirements in section 3.3.1).

Lemma 3.3.4 (X’s execution). The following holds for an execution of X: 4

∀Ω, 𝑇 ′¥A, 𝑇
′
C : (X ↓Ω (𝑇 ′¥A, 𝑇

′
C)) ⇒ 𝑇 ′¥A =𝑠𝑡 𝑇

′
C

∨ ((𝑒(𝑇 ′¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇
′
C))

∨ ((𝑒(𝑇 ′C) = 𝒰) ∧ (𝑒(𝑇 ′C) ≤𝑠𝑡 𝑇 ′¥A))
(3.1)

3Recall that Σ
𝑍𝑙

¥A |
𝑣 is defined as the union of address sets of virtually-allocated locals in ¥A (sec-

tion 2.6.1)
4The relations (↓), =𝑠𝑡 , and ≤𝑠𝑡 are defined in section 2.4.

Witnessing Refinement through a Determinized Cross-Product 83

Proof. The proof proceeds through a coinduction on the number of edges executed

by X. We prove that the execution of a single edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX, starting

at an error-free node 𝑛X ∈ NHH𝑈𝑊
X

in a state that satisfies 𝑇 ′¥A =𝑠𝑡 𝑇
′
C
, either reaches a

terminating node 𝑛𝑡
X
, such that final state satisfies the RHS of the ⇒ in eq. (3.1), or

reaches a non-terminating node 𝑛𝑡
X
, such that 𝑇 ′¥A =𝑠𝑡 𝑇

′
C
holds at the end of execution of

𝑒X.

Let {𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
} be the set of all outgoing edges at error-free node 𝑛X ∈ NHH𝑈𝑊

X
such

that ∀1≤ 𝑗≤𝑚 : 𝑒
𝑗

X
= (𝑛X

𝜉
𝑗
¥A; 𝜉

𝑗
C−−−−→𝑛

𝑗

X
) ∈ EX. Due to (SingleIO) there can be two cases:

1. 𝜉
𝑗

¥A and 𝜉
𝑗

C
are I/O paths. Because I/O paths are straight-line sequences of

instructions (with no branching), it must be true that 𝑗 = 𝑚 = 1. Further, an

I/O path can only end at an error-free node 𝑛
𝑗

X
that must satisfy (Equivalence)

requirement. (Equivalence) (through Ω ¥A = ΩC) implies production of identical

non-silent trace events. Therefore, the claim holds.

2. 𝜉
𝑗

¥A and 𝜉
𝑗

C
are I/O-free. Due to (Mutex ¥A) and (Coverage ¥A), it must be possible to

execute a path 𝜉
𝑗

¥A to completion. Due to (CoverageC), there exists some outgoing edge

𝑒
𝑗

X
= (𝑛X

𝜉
𝑗
¥A; 𝜉

𝑗
C−−−−→𝑛

𝑗

X
) ∈ EX that is executed to completion. Further, due to (MutexC),

such an edge 𝑒
𝑗

X
must be unique. The execution of 𝜉

𝑗

¥A followed by execution of 𝜉
𝑗

C

effectively causes X to execute 𝑒
𝑗

X
and reach node 𝑛

𝑗

X
= (𝑛 𝑗

¥A, 𝑛
𝑗

C
).

The execution of 𝜉
𝑗

¥A may end at either: (1) the error node 𝒲 ¥A, (2) the error node

𝒰 ¥A, (3) an error-free node 𝑛
𝑗

¥A.

• In case (1), the execution ends at the error node 𝒲 ¥A. Because the traces were

stuttering equivalent before the execution of 𝑒
𝑗

X
(coinduction hypothesis), and

the execution of 𝜉
𝑗

¥A must only produce the 𝒲 trace event (as 𝜉
𝑗

¥A is I/O-free and

cannot contain rd/wr instructions), (𝑒(𝑇 ′¥A) = 𝒲 ∧ 𝑒(𝑇¥A) ≤𝑠𝑡 𝑇 ′C) will hold.
• In case (2), due to the (Safety) requirement, execution of 𝑒

𝑗

X
must reach node

𝑛
𝑡 𝑗

X
= (𝒰 ¥A,𝒰C). Moreover, the execution 𝜉

𝑗

¥A and 𝜉
𝑗

C
must only generate the error

code 𝒰 as a trace event (as both 𝜉
𝑗

¥A and 𝜉
𝑗

C
are I/O-free). Because the traces

were stuttering equivalent before the execution of 𝑒
𝑗

X
(coinduction hypothesis),

(𝑒(𝑇 ′
C
) = 𝒰 ∧ 𝑒(𝑇 ′

C
) ≤𝑠𝑡 𝑇 ′¥A) will hold.

• In case (3), we analyze each possibility of 𝑛
𝑗

X
separately. 𝑛

𝑗

X
must be of one of the

following forms: (a) (𝑛 𝑗

¥A,𝒲C), (b) (𝑛 𝑗

¥A,𝒰C), or (c) an error-free node (𝑛 𝑗

¥A, 𝑛
𝑗

C
),

where 𝑛
𝑗

C
is an error-free node (recall that 𝑛

𝑗

¥A is also an error-free node in this case).

84 Witnessing Refinement through a Determinized Cross-Product

Case (a) cannot occur due to the (Well-formedness) requirement. In case (b),

(𝑒(𝑇 ′
C
) = 𝒰∧ 𝑒(𝑇 ′

C
) ≤𝑠𝑡 𝑇 ′¥A) holds due to 𝜉

𝑗

¥A and 𝜉
𝑗

C
being I/O-free and coinduction

hypothesis (similar reasoning as case (2) above). In case (c), due to 𝜉
𝑗

¥A and 𝜉
𝑗

C

being I/O-free, their execution cannot produce any non-silent trace event. Thus,

due to coinduction hypothesis, 𝑇 ′¥A =𝑠𝑡 𝑇
′
C
must hold at 𝑛

𝑗

X
.

Finally, consider the case when 𝜉
𝑗

C
is 𝜖 and 𝜉

𝑗

¥A is not. Due to (Similar-speed), there exists

a finite sequence of edges (𝑒𝑥1
X
, 𝑒

𝑥2
X
, . . . , 𝑒

𝑥𝑛
X
) such that ∀1≤𝑖≤𝑛 : 𝑒𝑥𝑖X = (𝑛 𝑓 ,𝑖

X

𝜉
𝑥𝑖
¥A ; 𝜉𝑥𝑖

C−−−−−→𝑛
𝑡,𝑖

X
) ∈ EX,

𝑒
𝑗

X
= 𝑒

𝑥1
X
, ∀1≤𝑖<𝑛 : 𝜉𝑥𝑖C = 𝜖 , and 𝜉

𝑥𝑛
C

≠ 𝜖 . Similar argument can be used when 𝜉
𝑗

¥A is 𝜖 and

𝜉
𝑗

C
is not. (Similar-speed) thus ensures that the silent events in both traces differ only

by a finite amount, thereby upholding 𝑇 ′¥A =𝑠𝑡 𝑇
′
C
. □

Lemma 3.3.5 (X’s trace is derived from C’s trace). The following holds for an execution

of X:

∀Ω, 𝑇 ′¥A, 𝑇
′
C : (X ↓Ω (𝑇 ′¥A, 𝑇

′
C)) ⇒ ∃𝑇C : (C ↓Ω 𝑇C)

∧ (𝑇 ′C =𝑠𝑡 𝑇C

∨ ((𝑒(𝑇 ′¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇C)))

Proof. The proof proceeds through a coinduction on the number of edges executed by

X. Suppose X and C start execution with states 𝜎X = (𝜎¥A, 𝜎C) and 𝜎C at error-free

nodes 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

and 𝑛C ∈ NHH𝑈𝑊
C

respectively, such that 𝑇C =𝑠𝑡 𝑇
′
C
, where

𝑇C ∈ 𝜎C and (𝑇 ′¥A, 𝑇
′
C
) ∈ 𝜎X, holds.

Consider the execution of edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX, starting at 𝑛X on state 𝜎X. If

𝜉C is executed, as part of 𝑒X’s execution, using some sequence of non-deterministic

choices determined by DX, the same path 𝜉C can be executed in C for the same sequence

of non-deterministic choices. As both executions start in identical states, they will

produce identical sequence of trace events till execution reaches the sink node 𝑛𝑡
C
where

𝑇C =𝑠𝑡 𝑇
′
C
will hold (note that execution of 𝜉 ¥A may not modify the state elements of C

in 𝜎X as both have disjoint state space).

If 𝜉C is 𝜖 , then, due to (Similar-speed), there exists a finite sequence of edges (𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
)

such that 𝑒X = 𝑒1
X
, ∀1≤ 𝑗≤𝑚 : 𝑒

𝑗

X
= (𝑛 𝑓 , 𝑗

X

𝜉
𝑗
¥A; 𝜉

𝑗
C−−−−→𝑛

𝑡, 𝑗

X
) ∈ EX, ∀1≤ 𝑗<𝑚 : 𝜉

𝑗

C
= 𝜖 and 𝜉𝑚

C
≠ 𝜖 . Let

𝑛𝑡
X
be 𝑛

𝑡,𝑚

X
in this case.

If 𝑛𝑡
X
= (𝑛𝑡¥A, 𝑛

𝑡
C
) is a non-terminating node, then the claim holds due to the coinduction

Witnessing Refinement through a Determinized Cross-Product 85

hypothesis. Similarly, if both 𝑛𝑡
X
and 𝑛𝑡

C
are terminating nodes, then the claim holds by

definition.

Consider the case when 𝑛𝑡
X

= (𝑛𝑡¥A, 𝑛
𝑡
C
) is a terminating node (due to 𝑛𝑡¥A being a

terminating node) but 𝑛𝑡
C
is not a terminating node. There are three possibilities for

𝑛𝑡¥A in this case:

• 𝑛𝑡¥A = 𝒲 ¥A: Due to (Equivalence), 𝑇 ′¥A =𝑠𝑡 𝑇
′
C
holds at 𝑛X. Further, due to (SingleIO),

𝜉 ¥A cannot produce any non-silent trace event other than 𝒲. Hence, 𝑇 ′¥A ≤𝑠𝑡 𝑇C holds

due to coinduction hypothesis.

• 𝑛𝑡¥A = 𝒰 ¥A: Due to (Safety), 𝑛𝑡
X
= (𝑛𝑡¥A, 𝑛

𝑡
C
) must be of the form (𝒰 ¥A,𝒰C). However,

this violates the assumption that 𝑛𝑡
C
is a non-terminating node. Therefore, this case

is not possible.

• 𝑛𝑡¥A is an error-free terminating node: This case is not possible due to (Termination)

requiring 𝑛𝑡
C
to be error-free terminating node whenever 𝑛𝑡¥A is an error-free terminating

node.

□

Lemma 3.3.6 (¥A’s traces are in X). The following holds for an execution of ¥A:

∀Ω, 𝑇¥A : (¥A ↓Ω 𝑇¥A) ⇒ ∃𝑇 ′¥A, 𝑇
′
C : (X ↓Ω (𝑇 ′¥A, 𝑇

′
C))

∧ (𝑇¥A =𝑠𝑡 𝑇
′
¥A

∨ ((𝑒(𝑇 ′C) = 𝒰) ∧ (𝑒(𝑇 ′¥A) ≠ 𝒲) ∧ (𝑒(𝑇 ′C) ≤𝑠𝑡 𝑇¥A)))
(3.2)

Proof. Consider an execution of X that is currently at an error-free node 𝑛X = (𝑛 ¥A, 𝑛C) ∈
NHH𝑈𝑊

X
. We show by coinduction on the number of edges executed in ¥A, starting at 𝑛 ¥A,

that eq. (3.2) holds. The proof of the lemma follows by using 𝑛X = 𝑛𝑠
X
= (𝑛𝑠¥A, 𝑛

𝑠
C
) ∈ NX.

Due to (Mutex ¥A), (MutexC), (Coverage ¥A), and (CoverageC), there exists exactly

one 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX such that 𝜉 ¥A and 𝜉C execute to completion to reach

𝑛𝑡
X
= (𝑛𝑡¥A, 𝑛

𝑡
C
) ∈ NX. Consider the following two cases for 𝜉 ¥A:

• 𝜉 ¥A ≠ 𝜖 : If 𝑛𝑡
X
is an error-free node, then for each non-deterministic choice that an

execution of ¥A can make to execute to completion, an execution of ¥A as part of X

can make as well. Thus, due to coinduction hypothesis, both executions can produce

86 Witnessing Refinement through a Determinized Cross-Product

identical observables events such that 𝑇¥A =𝑠𝑡 𝑇
′
¥A holds. If 𝑛𝑡

C
= 𝒲C, then 𝑛𝑡¥A must

also be 𝒲 ¥A due to (Well-formedness), and 𝑇¥A =𝑠𝑡 𝑇
′
¥A holds due to (SingleIO) and

coinduction hypothesis. If 𝑛𝑡
C
= 𝒰C and 𝑛𝑡¥A = 𝒲 ¥A, 𝑇¥A =𝑠𝑡 𝑇

′
¥A holds due to (SingleIO)

and coinduction hypothesis. If 𝑛𝑡
C
= 𝒰C and 𝑛𝑡¥A ≠ 𝒲 ¥A, then 𝑒(𝑇 ′

C
) ≤𝑠𝑡 𝑇¥A holds due

to (SingleIO) and coinduction hypothesis. 𝑛𝑡
C
≠ 𝒰C and 𝑛𝑡¥A = 𝒰 ¥A is not possible due

to (Safety).

• 𝜉 ¥A = 𝜖 : Execute 𝑘 edges in X before a non-𝜖 path is encountered, where 𝑘 is the

length of the longest sequence of edges in X such that an edge 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) with

𝜉 ¥A ≠ 𝜖 is reached; then repeat the coinductive step above. Due to (Similar-speed), 𝑘

must be defined.

□

Theorem 3.3.7 (X witnesses C ⊒ ¥A). If there exists X = ¥A ⊠ C that satisfies the

soundness requirements, then C ⊒ ¥A holds.

Proof. Consider an execution of ¥A under world Ω. Using lemma 3.3.6, we have:

∀Ω, 𝑇¥A : (¥A ↓Ω 𝑇¥A) ⇒ ∃𝑇 ′¥A, 𝑇
′
C : (X ↓Ω (𝑇 ′¥A, 𝑇

′
C))

∧ (𝑇¥A =𝑠𝑡 𝑇
′
¥A

∨ ((𝑒(𝑇 ′C) = 𝒰) ∧ (𝑒(𝑇 ′¥A) ≠ 𝒲) ∧ (𝑒(𝑇 ′C) ≤𝑠𝑡 𝑇¥A)))
(3.3)

Instantiating lemma 3.3.5, we obtain,

∀Ω, 𝑇¥A : (¥A ↓Ω 𝑇¥A) ⇒ ∃𝑇 ′¥A, 𝑇
′
C : (X ↓Ω (𝑇 ′¥A, 𝑇

′
C))

∧ (𝑇¥A =𝑠𝑡 𝑇
′
¥A

∨ ((𝑒(𝑇 ′C) = 𝒰) ∧ (𝑒(𝑇 ′¥A) ≠ 𝒲) ∧ (𝑒(𝑇 ′C) ≤𝑠𝑡 𝑇¥A)))
∧ (∃𝑇C : (C ↓Ω 𝑇C)

∧ (𝑇 ′C =𝑠𝑡 𝑇C

∨ ((𝑒(𝑇 ′¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇C))))
(3.4)

We consider each minterm in the sum-of-products representation of the following terms

Witnessing Refinement through a Determinized Cross-Product 87

in the RHS of eq. (3.4):

(𝑇¥A =𝑠𝑡 𝑇
′
¥A

∨ ((𝑒(𝑇 ′C) = 𝒰) ∧ (𝑒(𝑇 ′¥A) ≠ 𝒲) ∧ (𝑒(𝑇 ′C) ≤𝑠𝑡 𝑇¥A)))
∧ (𝑇 ′C =𝑠𝑡 𝑇C

∨ ((𝑒(𝑇 ′¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇C)))

1. (𝑇¥A =𝑠𝑡 𝑇
′
¥A) ∧ (𝑇

′
C
=𝑠𝑡 𝑇C) holds.

Instantiating lemma 3.3.4 in eq. (3.4), there are three cases:

(a) 𝑇 ′¥A =𝑠𝑡 𝑇
′
C
holds.

Due to =𝑠𝑡 being an equivalence relation, we have 𝑇¥A =𝑠𝑡 𝑇C and, therefore, C ⊒ ¥A
holds.

(b) (𝑒(𝑇 ′¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇
′
C
) holds.

As =𝑠𝑡 is congruent with respect to ≤𝑠𝑡 , we have (𝑒(𝑇¥A) = 𝒲) ∧ (𝑒(𝑇¥A) ≤𝑠𝑡 𝑇C),
which is equivalent to 𝑊

Ω,𝑇 ¥A
pre (C). Therefore, C ⊒ ¥A holds.

(c) (𝑒(𝑇 ′
C
) = 𝒰) ∧ (𝑒(𝑇 ′¥A) ≠ 𝒲) ∧ (𝑒(𝑇 ′

C
) ≤𝑠𝑡 𝑇 ′¥A) holds.

Using congruence of =𝑠𝑡 with respect to ≤𝑠𝑡 , we have (𝑒(𝑇C) = 𝒰) ∧ (𝑒(𝑇C) ≤𝑠𝑡 𝑇¥A),
which is equivalent to 𝑈

Ω,𝑇 ¥A
pre (C). Therefore, C ⊒ ¥A holds.

2. (𝑇¥A =𝑠𝑡 𝑇
′
¥A) ∧ ((𝑒(𝑇

′
¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇C)) holds.

Using definition of =𝑠𝑡 and congruence of =𝑠𝑡 with respect to ≤𝑠𝑡 , we have (𝑒(𝑇¥A) =
𝒲) ∧ (𝑒(𝑇¥A) ≤𝑠𝑡 𝑇C), which is equivalent to 𝑊

Ω,𝑇 ¥A
pre (C). Therefore, C ⊒ ¥A holds.

3. ((𝑒(𝑇 ′
C
) = 𝒰) ∧ (𝑒(𝑇 ′

C
) ≤𝑠𝑡 𝑇¥A)) ∧ (𝑇 ′C =𝑠𝑡 𝑇C) holds.

Using definition of =𝑠𝑡 and congruence of =𝑠𝑡 with respect to ≤𝑠𝑡 , we have (𝑒(𝑇C) =
𝒰) ∧ (𝑒(𝑇C) ≤𝑠𝑡 𝑇¥A), which is equivalent to 𝑈

Ω,𝑇 ¥A
pre (C). Therefore, C ⊒ ¥A holds.

4. ((𝑒(𝑇 ′
C
) = 𝒰) ∧ (𝑒(𝑇 ′¥A) ≠ 𝒲) ∧ (𝑒(𝑇 ′

C
) ≤𝑠𝑡 𝑇¥A)) ∧ ((𝑒(𝑇 ′¥A) = 𝒲) ∧ (𝑒(𝑇 ′¥A) ≤𝑠𝑡 𝑇C))

holds.

This case is not possible due to the mutually unsatisfiable clauses . . . ∧ (𝑒(𝑇 ′¥A) ≠
𝒲) ∧ . . . ∧ (𝑒(𝑇 ′¥A) = 𝒲) ∧

□

88 Witnessing Refinement through a Determinized Cross-Product

3.3.3 Global Invariants in C, ¥A, and X

Definition 3.3.8 (Non-entry Node). Let 𝑃 ∈ { ¥A,C}. A node 𝑛𝑃 ∈ N𝑃 is called a

non-entry node iff it does not correspond to a node due to (EntryC) and (Entry ¥A)
(figs. 2.5 and 2.7) in 𝑃. A node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NX is called a non-entry node iff both

𝑛 ¥A and 𝑛C are non-entry nodes.

Due to the execution semantics of ¥A and C, certain invariants hold by construction

in ¥A and C. We call these invariants global invariants as they hold at each error-free,

non-entry node.

Theorem 3.3.9 (Global Invariants in ¥A). The following invariants hold at each error-

free, non-entry node 𝑛 ¥A ∈ NHH𝑈𝑊
¥A :

• (em. 𝑓 tracks emptiness) Σ
𝑓

¥A = ∅ ⇔ em. 𝑓 , for 𝑓 ∈ 𝐹. Note that because |Σ 𝑓

¥A | > 0 by

definition, em. 𝑓 = false holds for all 𝑓 ∈ 𝐹.

• (sz. 𝑓 tracks size) sz. 𝑓 = |Σ 𝑓

¥A | = sz(T(𝑓)) for 𝑓 ∈ 𝐹 5.

• (Address sets of 𝐹 are intervals) (em. 𝑓 ∨ [lb. 𝑓 , ub. 𝑓] = Σ
𝑓

¥A), for 𝑓 ∈ 𝐹. Or, using

em. 𝑓 = false, [lb. 𝑓 , ub. 𝑓] = Σ
𝑓

¥A.

• (Alignment of 𝑓) alignedalgnmnt(𝑓) (lb. 𝑓), for 𝑓 ∈ 𝐹 6.

• (Stack bounds) Σ
{𝑠𝑡𝑘}∪𝑌
¥A ∪ (Σ𝑍

¥A \ (Σ
𝑍𝑙
¥A |

𝑣)) = [esp, stk𝑒].

• (𝑐𝑠 and 𝑐𝑙) Σ
{𝑐𝑠,𝑐𝑙}
¥A = [stk𝑒 + 1, cs𝑒]

• (Heap subset) Σ
ℎ𝑝

¥A ⊆ comp(Σ𝐺∪𝐹∪{𝑐𝑣}
¥A ∪ Σ

𝑍𝑙
¥A |

𝑣 ∪ [esp, cs𝑒])

• (Disjoint regions in ¥A) ¬ov(Σℎ𝑝

¥A , Σ𝑐𝑙
¥A , Σ

𝑐𝑣
¥A , Σvrdc

¥A , . . . , Σ
𝑔

¥A, . . . , Σ
𝑦

¥A, . . . , Σ
𝑧
¥A, . . .) and

¬ov(Σℎ𝑝

¥A , Σ𝑐𝑙
¥A , Σ

vrdc
¥A , . . . , Σ

𝑔

¥A, . . . , Σ
𝑦

¥A, . . . , Σ
𝑧
¥A |

𝑠, . . . , Σ
𝑓

¥A, . . . , Σ
𝑠𝑡𝑘
¥A , Σ𝑐𝑠

¥A).

• (Read-only memory in ¥A) 𝑀 ¥A =𝑖𝑟¥A
ROM𝑟¥A(𝑖

𝑟
¥A) for 𝑟 ∈ 𝐹𝑟 .

Proof sketch: By induction on the number of transitions executed in ¥A with the base

case defined by the first transition out of (Entry ¥A) in fig. 2.11. □
5Recall that sz(T(𝑟)) gives the size in bytes of the variable named 𝑟 (table 2.1).
6Recall that alignedalgnmnt(𝑟) (lb.𝑟) holds iff lb.𝑟 is aligned by the alignment of variable 𝑟

(table 2.1).

Witnessing Refinement through a Determinized Cross-Product 89

Theorem 3.3.10 (Global Invariants in C). The following invariants hold at each

error-free, non-entry node 𝑛C ∈ NHH𝑈𝑊
C

:

• (em.𝑟 tracks emptiness) Σ𝑟
C
= ∅ ⇔ em.𝑟 , for 𝑟 ∈ 𝐺 ∪ 𝑌 ∪ 𝑍. Note that Σ𝑟

C
= ∅ may

hold only for 𝑟 ∈ {vrdc} ∪ 𝑍.

• (sz.𝑟 tracks size) sz.𝑟 = |Σ𝑟
C
| for 𝑟 ∈ 𝐺∪𝑌 . sz.𝑟 = sz(T(𝑟)), for 𝑟 ∈ 𝐺∪(𝑌\{vrdc}).

• (lstSz.𝑧𝑙 tracks size) lstSz.𝑧𝑙 = |Σ𝑧𝑙

C
| for 𝑧𝑙 ∈ 𝑍𝑙.

• (lb.𝑟 , ub.𝑟 track bounds) em.𝑟 ∨(lb.𝑟 = lb(Σ𝑟
C
)∧ ub.𝑟 = ub(Σ𝑟

C
)), for 𝑟 ∈ 𝐺∪𝑌∪𝑍.

• (Address sets of 𝐺,𝑌, 𝑍𝑙 are intervals) em.𝑟 ∨ ([lb.𝑟 , ub.𝑟] = Σ𝑟
C
), for 𝑟 ∈ 𝐺∪𝑌 ∪𝑍𝑙.

As a consequence, we have: em.𝑟 ∨ ((lb.𝑟 ≤𝑢 ub.𝑟) ∧ (ub.𝑟 = lb.𝑟 + sz.𝑟 − 1i32)),
for 𝑟 ∈ 𝐺 ∪ 𝑌 and em.𝑧𝑙 ∨ ((lb.𝑧𝑙 ≤𝑢 ub.𝑧𝑙) ∧ (ub.𝑧𝑙 = lb.𝑧𝑙 + lstSz.𝑧𝑙 − 1i32))
for 𝑧𝑙 ∈ 𝑍𝑙.

• (Alignment of 𝑔 and 𝑦) alignedalgnmnt(𝑟) (lb.𝑟), for 𝑟 ∈ 𝐺 ∪ (𝑌 \ {vrdc}).

• (Disjoint regions in C) ¬ov(Σℎ𝑝

C
, Σ𝑐𝑙

C
, Σ𝑐𝑣

C
, Σvrdc

C
, . . . , Σ

𝑔

C
, . . . , Σ

𝑦

C
, . . . , Σ𝑧

C
, . . .).

• (Read-only memory in C) 𝑀C =𝑖𝑟
C
ROM𝑟

C
(𝑖𝑟
C
) for 𝑟 ∈ 𝐺𝑟 .

Proof sketch. By induction on the number of transitions executed in C with the base

case defined by the first transition out of (EntryC) in fig. 2.5 □

Theorem 3.3.11 (Global Invariants in X). Let X = ¥A ⊠ C be a product graph that

satisfies the search-algorithm requirements of section 3.3.1. The following invariants

hold at an error-free, non-entry node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

.

1. The invariants stated in theorems 3.3.9 and 3.3.10.

2. (Stack subset) Σ𝑠𝑡𝑘
¥A ⊆ Σ

{𝑐𝑣,free}
C

∪ Σ
𝑍𝑙
¥A |

𝑣

Proof sketch. Item 1 follows because 𝑛X is an error-free, non-entry node iff both 𝑛 ¥A and

𝑛C are error-free, non-entry nodes.

Item 2 follows from (Disjoint regions in ¥A) of item 1 and the (Equivalence) requirement.

□

90 Witnessing Refinement through a Determinized Cross-Product

3.4 Callers’ Virtual Smallest Semantics

We are going to introduce two different semantics for C and A: callers’ virtual smallest

semantics (this section) and safety-relaxed semantics (section 3.5). These semantics are

amenable to a faster SMT encoding and we separately prove that the theorems proved

using these new semantics translate to theorems proved with the original semantics.

We construct C′ and A′ from C and A by using new callers’ virtual smallest semantics

where the 𝑐𝑣 region is made empty, i.e., Σ𝑐𝑣
C′ = Σ𝑐𝑣

A′ = ∅. With an empty 𝑐𝑣, we compute

the address set of region free as Σfree
𝑃

= comp(Σ𝐵∪𝐹∪𝑆
𝑃

) for 𝑃 ∈ {C′,A′}.

Formally, we obtain C′ and A′ from C and A by removing assignments to Σ𝑐𝑣
C

and Σ𝑐𝑣
A

due

to (EntryC) and (EntryA) respectively (figs. 2.5 and 2.7) and replacing uses of Σ𝑐𝑣
C

and Σ𝑐𝑣
A

due to (EntryC), (EntryA), (Op-esp’), (Load ¥A), (Store ¥A), (AllocS’),
and (AllocV) (figs. 2.4 and 2.11) with ∅:

1. In (EntryC) and (EntryA), addrSetsAreWF(Σℎ𝑝

𝑃
, Σ𝑐𝑙

𝑃
, Σ𝑐𝑣

𝑃
, . . . , 𝑖

𝑔

𝑃
, . . . , Σ

𝑓

𝑃
, . . . , 𝑖

𝑦

𝑃
,

. . . , Σvrdc
𝑃
) is replaced with addrSetsAreWF(Σℎ𝑝

𝑃
, Σ𝑐𝑙

𝑃
, . . . , 𝑖

𝑔

𝑃
, . . . , Σ

𝑓

𝑃
, . . . , 𝑖

𝑦

𝑃
, . . . , Σvrdc

𝑃
)

for 𝑃 ∈ {C,A}.

2. In (Op-esp’), intrvlInSet(𝑡, esp − 1i32 , Σ{free}¥A ∪ ((Σ𝑐𝑣
¥A ∪ Σ

𝑍𝑙
¥A |

𝑣) \ Σ𝐹
¥A)) is replaced

with intrvlInSet(𝑡, esp − 1i32 , Σfree
¥A ∪ (Σ𝑍𝑙

¥A |
𝑣 \ Σ𝐹

¥A)).

3. In (Load ¥A), ov([𝑝]𝑤, Σfree
¥A ∪((Σ𝑐𝑣

¥A ∪(Σ
𝑍𝑙
¥A |

𝑣))\Σ𝐹∪𝑆
¥A)) is replaced with ov([𝑝]𝑤, Σfree

¥A ∪
((Σ𝑍𝑙

¥A |
𝑣) \ Σ𝐹∪𝑆

¥A)).

4. In (Store ¥A), ov([𝑝]𝑤, Σ{free}∪𝐺𝑟∪𝐹𝑟
¥A ∪ ((Σ𝑐𝑣

¥A ∪ (Σ
𝑍𝑙
¥A |

𝑣)) \ Σ𝐹𝑤∪𝑆
¥A)) is replaced with

ov([𝑝]𝑤, Σ{free}∪𝐺𝑟∪𝐹𝑟
¥A ∪ ((Σ𝑍𝑙

¥A |
𝑣) \ Σ𝐹𝑤∪𝑆

¥A)).

5. In (AllocS’), ov([𝑣]𝑤, Σ𝑐𝑣
¥A ∪ Σ

𝑍𝑙
¥A |

𝑣) is replaced with ov([𝑣]𝑤, Σ𝑍𝑙
¥A |

𝑣).

6. In (AllocV), intrvlInSet𝑎 (𝑣, 𝑣+𝑤−1i32 , comp(Σ𝐵∪{𝑐𝑣}
¥A)) is replaced with intrvlInSet𝑎 (𝑣,

𝑣 + 𝑤 − 1i32 , comp(Σ𝐵
¥A)).

The callers’ virtual smallest semantics are useful because they allow an over-approximation

of the heap (ℎ𝑝) region in C′, which can be efficiently encoded in SMT to achieve faster

discharge (as described in chapter 5).

Witnessing Refinement through a Determinized Cross-Product 91

3.4.1 Soundness of Callers’ Virtual Smallest semantics

Let A and C be transition graphs obtained due to original semantics described in figs. 2.4

to 2.8, 2.10 and 2.11. Let A′ and C′ be obtained from A and C respectively by applying

the callers’ virtual smallest semantics described in previous section. Let ¥A′ be obtained

by annotating A′ as described in section 2.4. Let ¥A be obtained by annotating A such

that annotations made in ¥A′ and ¥A are identical. Let X′ = ¥A′ ⊠ C′ = (NX′ , EX′ ,DX′) be
a product graph such that X′ satisfies the search-algorithm requirements. We prove

that there exists a product graph X = ¥A ⊠ C = (NX, EX,DX) such that X satisfies the

search-algorithm requirements. In other words, we show that existence of a product

graph between procedures with callers’ virtual smallest semantics implies existence of a

product graph between the same procedures without callers’ virtual smallest semantics.

Definition 3.4.1 ((CoverageC) holds for 𝜉 ¥A at 𝑛X in X). At a node 𝑛X ∈ NX, let

{𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
} be the set of all outgoing edges such that 𝑒

𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→(𝑛𝑡¥A, 𝑛

𝑡 𝑗

C
)) (for

1 ≤ 𝑗 ≤ 𝑚). Then, (CoverageC) holds for 𝜉 ¥A at 𝑛X in X iff {𝑒1
X
, 𝑒2

X
, . . . , 𝑒𝑚

X
}⟨DX, 𝜉 ¥A⟩

holds.

Notice that this definition is identical to the (CoverageC) definition in section 3.3.1,

except that it defines (CoverageC) for a specific path 𝜉 ¥A starting at a specific node 𝑛X.

We define (Coverage ¥A) at node 𝑛X analogously.

Theorem 3.4.2 (Soundness of Callers’ Virtual Smallest Semantics). Given X′ = ¥A′⊠C′ =
(NX′ , EX′ ,DX′) that satisfies the search-algorithm requirements (section 3.3.1) , it is

possible to construct X = ¥A ⊠ C = (NX, EX,DX) that also satisfies the search-algorithm

requirements.

Proof. Construct X = X′. Add extra edges in X to nodes (𝒲 ¥A, 𝑛C) where 𝑛C is an

error-free node such that (Mutex ¥A) is not violated. These extra edges help in ensuring

(Coverage ¥A) in X.

As the use of callers’ virtual smallest semantics does not affect the graph structure of A

and C (recall that the changes were limited to modifications to instructions of an edge),

the seven structural requirements, (Mutex ¥A), (MutexC), (Termination), (SingleIO),

(Well-formedness), (Safety), and (Similar-speed), should continue to hold for X.

Let 𝑛X′ = (𝑛 ¥A′ , 𝑛C′) ∈ NX′ be a node in X′ and let 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NX be its corresponding

node in X. Let 𝜉 ¥A′ be an outgoing path at 𝑛 ¥A′ in ¥A′ and let 𝜉 ¥A be its structurally similar

92 Witnessing Refinement through a Determinized Cross-Product

path originating at 𝑛 ¥A in ¥A. Let {𝑒1
X′ , . . . , 𝑒

𝑚
X′} be the set of all outgoing edges at 𝑛X′

such that ∀1≤ 𝑗≤𝑚 : 𝑒
𝑗

X′ = (𝑛X′
𝜉 ¥A′ ; 𝜉

𝑗
C′−−−−−→𝑛𝑡

X′) ∈ EX′ . Let the set {𝑒1
X′ , . . . , 𝑒

𝑚
X′} be defined

analogously for X. Our proof completes by induction on the number of edges executed

in X, starting at 𝑛X.

We analyze the instructions in ¥A and C affected by the semantics change and consider

the case when an edge 𝑒 ¥A ∈ 𝜉 ¥A or 𝑒C ∈ 𝜉 𝑗

C′ corresponds to it 7.

• (EntryC) and (Entry ¥A): The ¬addrSetsAreWF(. . .) condition is weaker in ¥A and

C than ¥A′ and C′ respectively. Consequently, the path condition for paths 𝜉 ¥A =

(𝑛 ¥A ↠ 𝑛��𝒲¥A) (where 𝑛��𝒲¥A ∈ N¥A \𝒲 ¥A) and 𝜉C = (𝑛C ↠ 𝑛��𝒲
C
) (where 𝑛��𝒲

C
∈ NC \𝒲C)

that do not go to 𝒲 ¥A and 𝒲C respectively is stronger in ¥A and C than ¥A′ and C′

respectively.

Because the address sets returned by the rd instruction are arbitrary and identical

across C and ¥A, due to (Equivalence), (CoverageC) holds by construction in this case.

As the results of the rd instruction are arbitrary, the difference in infeasibility of

𝜉 ¥A′ = (𝑛 ¥A′ ↠ 𝒲 ¥A′) and structurally similar 𝜉 ¥A = (𝑛 ¥A ↠ 𝒲 ¥A) can only be due to the

address set of regions in 𝐹 (see definition of addrSetsAreWF(. . .) in table 2.1) As

Σ𝐹
¥A′ = Σ𝐹

¥A, (Coverage
¥A) at 𝑛X should continue to hold in this case.

• (Alloc), (AllocV), and (AllocS’): As (Σ𝑐𝑣
¥A = Σ𝑐𝑣

C
) ⊇ (Σ𝑐𝑣

¥A′ = Σ𝑐𝑣
C′ = ∅), the

¬intrvlInSet𝑎 (. . .) condition of (Alloc) and (AllocV) and ov(. . .) condition
of (AllocS’) is weaker in ¥A and C than ¥A′ and C′ respectively. Consequently,

similarly to previous case, the path condition for paths that do not go to 𝒲 ¥A and

𝒲C respectively is stronger in ¥A and C than ¥A′ and C′ respectively.

Due to (SingleIO), the nodes 𝑛 ¥A and 𝑛C must either correspond to PCs due to: (1)

(AllocV) and (Alloc); or (2) (AllocS’) and (Alloc). Due to (Equivalence),

Σ
comp(𝐵∪{𝑐𝑣})
¥A = Σ

comp(𝐵∪{𝑐𝑣})
C

= Σfree
C

must hold at 𝑛X. As, for 𝑃 ∈ { ¥A, ¥A′,C,C′},
Σ
{ℎ𝑝,𝑐𝑙}
𝑃

is assigned arbitarily at entry, the set of possible values for Σ
comp(𝐵∪{𝑐𝑣})
𝑃

(note

Σ𝑐𝑣
¥A′ = Σ𝑐𝑣

C′ = ∅) remain identical in 𝑃 at an error-free node 𝑛X and 𝑛X′ . Thus, in case

(1), the affected ¬intrvlInSet𝑎 (. . .) condition should have identical semantics in

both X′ and X and (Coverage ¥A) and (CoverageC) should continue to hold.

In case (2), a path 𝜉 ¥A′ = (𝑛 ¥A′ ↠ 𝒲 ¥A′) with an edge with the ov(. . .) condition
could be provably infeasible at 𝑛X′ in X′ but a similarly structured path 𝜉 ¥A could

7Note that (LoadC), (StoreC), (CallV), and (CallC), are not affected as the 𝑐𝑣 region is
inaccessible in C and cannot be returned by 𝛽(𝑥) for any variable 𝑥 and 𝛽𝑀 (𝑟) for any region 𝑟.

Witnessing Refinement through a Determinized Cross-Product 93

potentially be feasible at 𝑛X in X — e.g., when Σ
𝑍𝑙
¥A′ |

𝑣 = ∅. To ensure (Coverage ¥A), we
introduce edge 𝑒′

X
= ((𝑛 ¥A, 𝑛C) 𝜉 ¥A; 𝜖−−−→(𝒲 ¥A, 𝑛C)) for each such path 𝜉 ¥A in X. Notice that

(CoverageC) holds for 𝜉 ¥A at 𝑛X. Because 𝜉 ¥A does not contain any memory access,

introduction of 𝑒′
X
would not disturb (MAC).

For a path (𝑛 ¥A ↠ 𝑛��𝒲¥A) (where 𝑛��𝒲¥A ∈ N¥A \ {𝒲 ¥A}), (CoverageC) holds due to (Stack

subset) invariant (theorem 3.3.11) and by using identical reasoning as case (1) above.

• (Op-esp’): The condition intrvlInSet() is not affected by the semantics change as

the address sets Σfree
¥A ∪ ((Σ𝑐𝑣

¥A ∪ Σ
𝑍𝑙
¥A |

𝑣) \ Σ𝐹
¥A) and Σfree

¥A′ ∪ (Σ
𝑍𝑙
¥A′ |

𝑣 \ Σ𝐹
¥A′) must evaluate

to identical values (on states 𝜎 and 𝜎′ at nodes 𝑛X and 𝑛X′ in X and X′ resp. such
that 𝜙𝑛X (𝜎) and 𝜙𝑛X′ (𝜎′) hold) due to new definition of Σfree

¥A′ in ¥A′.

• (Load ¥A) and (Store ¥A): Identical reasoning as (Op-esp’) case; the address set

expressions should evaluate to identical values. Hence, no change in semantics for

this case too.

As the path condition to an error-free node is only stronger (or equivalent) in ¥A and C,

the remaining semantic requirements, (Inductive), (Equivalence), (MAC), and (MemEq)

should also continue to hold in X.

□

3.5 Safety-Relaxed Semantics

We define new safety-relaxed semantics for the assembly procedure A with callers’ virtual

smallest semantics. These semantics relax the memory-safety checks in A; the soundness

is retained in the context of product graph because of the (MAC) requirement.

Under the safety-relaxed semantics, we construct A′ from A such that

(a) a 𝜑𝑙 = ov([𝑝]𝑤, Σfree
¥A ∪ ((Σ𝑍𝑙

¥A |
𝑣) \Σ𝐹∪𝑆

¥A)) check due to (Load ¥A) in A is replaced with

𝜑′
𝑙
= ov([𝑝]𝑤, (Σ𝑍𝑙

¥A |
𝑣) \ (Σ𝐹

¥A ∪ [esp, cs𝑒])) in A′.

(b) a 𝜑𝑠 = ov([𝑝]𝑤, Σ{free}∪𝐺𝑟∪𝐹𝑟
¥A ∪ ((Σ𝑍𝑙

¥A |
𝑣) \ Σ𝐹𝑤∪𝑆

¥A)) check due to (Store ¥A) in A is

replaced with 𝜑′𝑠 = ov([𝑝]𝑤, (Σ𝑍𝑙
¥A |

𝑣) \ (Σ𝐹𝑤
¥A ∪ [esp, cs𝑒])) in A′.

(c) a 𝜑𝑟 = ¬(𝑀𝑐𝑠 =Σ𝑐𝑠
A

𝑀A) check due to (RetA) in A is replaced with 𝜑′𝑟 = false in

A′.

94 Witnessing Refinement through a Determinized Cross-Product

We call this construction a safety-relaxed rewrite and call A′ the safety-relaxed version

of A.

The callers’ virtual smallest and safety-relaxed semantics are useful in enabling an

efficient SMT encoding where the ℎ𝑝 region in C′ and A′ is over-approximated and the

𝑐𝑠 region in A′ is under-approximated (as described in chapter 5).

3.5.1 Soundness of Safety-Relaxed Semantics

Let ¥A′ be obtained by annotating A′ as described in section 2.6. Let ¥A be the annotated

version of A such that the annotations made in ¥A and ¥A′ are identical. Let C be the

corresponding unoptimized IR procedure with the callers’ virtual smallest semantics.

Let X′ = ¥A′ ⊠ C = (NX′ , EX′ ,DX′) be a product graph that satisfies the search-algorithm

requirements. We prove that it is possible to construct X = ¥A ⊠ C = (NX, EX,DX)
such that X also satisfies search-algorithm requirements (theorem 3.5.3). In other

words, we prove that the existence of a product graph between procedures with safety-

relaxed semantics implies the existence of a product graph between procedures without

safety-relaxed semantics.

Lemma 3.5.1 (Paths containing memory accesses do not modify allocation state of

common regions). Let 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX. If 𝜉 ¥A contains an edge corresponding

to (Load ¥A) or (Store ¥A) (i.e., a load or store instruction), then 𝜉 ¥A does not modify

the address sets corresponding to regions in 𝐵: Σ
𝑔

¥A (for each 𝑔 ∈ 𝐺), Σ
ℎ𝑝

¥A , Σ𝑐𝑙
¥A , Σ

𝑦

¥A (for

each 𝑦 ∈ 𝑌), and Σ𝑧
¥A (for each 𝑧 ∈ 𝑍).

Proof. Once initialized in (EntryA) in an I/O path that does not contain any load

or store instruction (fig. 2.7), the address sets corresponding to regions 𝐵 \ 𝑍 are not

modified during the entire execution of ¥A.

The address set corresponding to a region 𝑧 ∈ 𝑍 may only be modified by the

(de)allocs,v instructions. Due to (SingleIO) requirement, these (de)allocs,v instruc-

tions cannot exist as a part of longer paths that may contain load or store instructions

(as evident from translations given in figs. 2.8, 2.10 and 2.11). □

Note the the lemma holds for both original and safety-relaxed version of ¥A. As a

corollary, due to (SingleIO), 𝜉C also does not modify the address sets corresponding to

regions in 𝐵.

Witnessing Refinement through a Determinized Cross-Product 95

Lemma 3.5.2 (𝜋Σ𝑐𝑠
¥A′
(𝑀 ¥A′) is not modified in X′). Let X′ = ¥A′ ⊠C be a product graph for

a lockstep execution between ¥A′ (with safety-relaxed semantics) and C. If X′ satisfies the
search-algorithm requirements, then 𝑀𝑐𝑠 =Σ𝑐𝑠

¥A′
𝑀 ¥A′ holds at each error-free, non-entry

node 𝑛X′ ∈ NHH𝑈𝑊
X′ .

Proof. For simplicity, let’s first assume that there is only one outgoing edge 𝑒𝑠
X′ =

(𝑛𝑠
X′

𝜉𝑠¥A′ ; 𝜉
𝑠
C−−−−−→𝑛𝑠2

X′) from the start node 𝑛𝑠
X′ to an error-free node 𝑛𝑠2

X′ such that 𝜉𝑠¥A′ and 𝜉𝑠
C

represent the program paths corresponding to (Entry ¥A) and (EntryC) respectively.
Let’s call this the start-edge assumption.

The proof proceeds by induction over the number of edges executed in X′ starting from

𝑛𝑠2
X′ .

𝑀𝑐𝑠 =Σ𝑐𝑠
¥A′
𝑀 ¥A′ holds at 𝑛

𝑠2
X′ due to (Entry ¥A), which forms our base case.

Consider a node 𝑛X′ such that 𝑀𝑐𝑠 =Σ𝑐𝑠
¥A′
𝑀 ¥A′ holds at 𝑛X′ , and let 𝑒X′ = (𝑛X′ 𝜉 ¥A′ ; 𝜉C−−−−−→𝑛𝑡

X′) ∈
EX′ such that 𝑛𝑡

X′ = (𝑛𝑡¥A′ , 𝑛
𝑡
C
) ∈ NHH𝑈𝑊

X′ is an error-free node. Two cases for 𝜉 ¥A′ :

1. If 𝜉 ¥A′ does not contain a store instruction, then 𝑀𝑐𝑠 =Σ𝑐𝑠
¥A′

𝑀 ¥A′ holds trivially at

𝑛𝑡
X′ .

2. If 𝜉 ¥A′ contains a store instruction, then it cannot modify the allocation state of

common regions (𝐵) in ¥A′ (due to lemma 3.5.1). Similarly, 𝜉C also cannot modify

the allocation state of common memory regions in C (corollary of lemma 3.5.1).

Let 𝛼 be an address such that a store is performed to 𝛼 in 𝜉 ¥A′ . If 𝛼 ∈ Σ𝑐𝑠
¥A′ , then due to

(MAC), there must be a store to the same address in C before execution may reach 𝑛𝑡
C
.

Then, due to the global invariants (Disjoint regions in ¥A) and (𝑐𝑠 and 𝑐𝑙) (section 3.3.3)

and requirement (Equivalence), Σ𝑐𝑠
¥A′ ⊆ (Σ

𝑍𝑙
¥A′ |

𝑣 ∪ Σfree
C
) ∩ [stk𝑒 + 1, cs𝑒] must hold

during the execution of 𝑒X′ . So, 𝛼 ∈ (Σ𝑍𝑙
¥A′ |

𝑣 ∪ Σfree
C
) ∩ [stk𝑒 + 1, cs𝑒]. However,

𝛼 ∈ (Σ𝑍𝑙
¥A′ |

𝑣) \ (Σ𝐹𝑤
¥A′ ∪ [esp, cs𝑒]) is not possible for an error-free node going 𝜉 ¥A′ due

to (Store ¥A) with the safety-relaxed semantics. Thus, 𝛼 ∈ (Σfree
C
∩ [stk𝑒 + 1, cs𝑒])

must hold. However, this is not possible for an error-free node going 𝜉C due to

(StoreC). Thus, by contradiction, a store to address 𝛼 ∈ Σ𝑐𝑠
¥A′ is infeasible in 𝜉 ¥A′ .

Thus, 𝑀𝑐𝑠 =Σ𝑐𝑠
¥A′
𝑀 ¥A′ holds at 𝑛

𝑡
X′ .

To generalize beyond the start-edge assumption, we only need to show that for an

outgoing edge 𝑒X′ = (𝑛X′ 𝜉 ¥A′ ; 𝜉C−−−−−→𝑛𝑡
X′) ∈ EX′ such that 𝑛X′ is not a non-entry node but

96 Witnessing Refinement through a Determinized Cross-Product

𝑛𝑡
X′ = (𝑛𝑡¥A′ , 𝑛

𝑡
C
) is a non-entry node, 𝑀𝑐𝑠 =Σ𝑐𝑠

¥A′
𝑀 ¥A′ holds at 𝑛

𝑡
X′ . We observe that there

must exist a node 𝑛′¥A′ in 𝜉 ¥A′ where 𝑀𝑐𝑠 =Σ𝑐𝑠
¥A′
𝑀 ¥A′ holds due to (Entry ¥A). The rest of

the argument remains identical for the path 𝜉′¥A′ = (𝑛
′
¥A′ ↠ 𝑛𝑡¥A′). □

Theorem 3.5.3 (Soundness of Safety-Relaxed Semantics). Given X′ = ¥A′ ⊠ C that

satisfies the search-algorithm requirements, it is possible to construct X = ¥A ⊠ C that

also satisfies the search-algorithm requirements.

Proof. Construct X = X′ with some extra edges from nodes in X to the error-node

(𝒰 ¥A,𝒰C) such that (Mutex ¥A), (MutexC) and (SingleIO) are not violated. We later

describe what edges are added to X and why X continues to satisfy the search-algorithm

requirements even after the addition of these edges. It is already possible to see that

the structural requirements viz., (Termination), (Similar-speed), (Well-formedness),

and (Safety), will hold for X even after the addition of such edges.

Let 𝜉 ¥A be a path in ¥A on which there exists an overlap check 𝜑𝑙 = ov([𝑝]𝑤, Σfree
¥A ∪

((Σ𝑍𝑙
¥A |

𝑣) \Σ𝐹∪𝑆
¥A)) (for triggering 𝒰) due to a (Load ¥A) instruction 8, In ¥A′, 𝜑𝑙 is replaced

by 𝜑′
𝑙
= ov([𝑝]𝑤, (Σ𝑍𝑙

¥A |
𝑣) \ (Σ𝐹

¥A ∪ [esp, cs𝑒]))
9 to obtain 𝜉 ¥A′ .

Recall that A’s translation for (Load ¥A) has “if 𝜑𝑙 then halt(𝒰)” 10 while A′’s
translation has “if 𝜑′

𝑙
then halt(𝒰)” 11. Because 𝜑′

𝑙
⇒ 𝜑𝑙 , ¥A may trigger 𝒰 when

¥A′ would simply execute the error-free path (the path that does not end at an error

node) in (Load ¥A). Conversely, if ¥A executes an error-free path (of (Load ¥A)) on an

initial state 𝜎, then ¥A′ will also execute the same error-free path on 𝜎 12.

Similarly, let 𝜑𝑟 = ¬(𝑀𝑐𝑠 =Σ𝑐𝑠
¥A
𝑀 ¥A) be a check in ¥A (due to (RetA)), that has been

replaced with 𝜑′𝑟 = false in ¥A′. Again, if ¥A executes an error-free path of (RetA) on
an initial state 𝜎, then ¥A′ will also execute the same error-free path on 𝜎.

Thus, it can be shown through induction that four of the six semantic requirements

— (Inductive), (Equivalence), (MAC), (MemEq) — hold on X if they hold on X′ with
ΦX = ΦX′ . The common argument in this part of the proof is that the path condition

of an error-free path in X (containing ¬𝜑𝑙,𝑠,𝑟 for (Load ¥A), (Store ¥A), and (RetA)) is
always stronger than the path condition of an error-free path in X′ (containing ¬𝜑′

𝑙,𝑠,𝑟
).

8Or, an overlap check 𝜑𝑠 = ov([𝑝]𝑤 , Σfree
¥A ∪ ((Σ𝑍𝑙

¥A |
𝑣) \Σ𝐹𝑤∪𝑆

¥A)) (for triggering 𝒰) due to a (Store ¥A)
instruction.

9𝜑′𝑠 = ov([𝑝]𝑤 , (Σ𝑍𝑙

¥A |
𝑣) \ (Σ𝐹𝑤

¥A ∪ [esp, cs𝑒])) in case of a (Store ¥A).
10“if 𝜑𝑠 then halt(𝒰)” for (Store ¥A)
11“if 𝜑′𝑠 then halt(𝒰)” for (Store ¥A)
12𝜑′𝑠 ⇒ 𝜑𝑠 in case of (Store ¥A)) — rest of the argument remains identical.

Witnessing Refinement through a Determinized Cross-Product 97

We next show that if (CoverageC) holds for path 𝜉 ¥A′ starting at node 𝑛X′ in X′,
(CoverageC) also holds for corresponding path 𝜉 ¥A starting at corresponding node 𝑛X

in X (note: using definition 3.4.1 here). For an edge 𝑒
𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→(𝑛𝑡¥A, 𝑛

𝑡 𝑗

C
)) ∈ EX

(1 ≤ 𝑗 ≤ 𝑚), if 𝜉 ¥A ends at a node 𝑛𝑡¥A ≠ 𝒰 ¥A, then this is easy to show by induction

on the number of edges executed on a path: because the path condition of 𝜉 ¥A in ¥A
is always equal or stronger than the path condition of a corresponding (structurally

identical) path 𝜉 ¥A′ in ¥A′. If (CoverageC) holds for 𝜉 ¥A′ at a node 𝑛′
X
in X′, it must also

hold for 𝜉 ¥A at the corresponding node 𝑛X in X. We next show that (CoverageC) holds

for a path 𝜉 ¥A terminating in 𝒰 ¥A (𝑛𝑡¥A = 𝒰 ¥A).

Consider a path 𝜉 ¥A in ¥A and the corresponding path 𝜉 ¥A′ in ¥A′. If on a machine state 𝜎

both paths 𝜉 ¥A and 𝜉 ¥A′ transition to 𝒰 ¥A and 𝒰 ¥A′ respectively, then because X′ satisfies
(CoverageC), 𝜎 must execute one of 𝜉

𝑗

C
(for 1 ≤ 𝑗 ≤ 𝑚) to completion, thus satisfying

(CoverageC) in X in this case. Thus, we only need to cater to the following two situations

where execution on ¥A may deviate from ¥A′ (i.e., execution does not complete for ¥A but

completes for ¥A′)

• (RetA): Let 𝜑𝑟 = ¬(𝑀𝑐𝑠 =Σ𝑐𝑠
¥A
𝑀 ¥A) be the check in ¥A (due to (RetA)), that has

been replaced with 𝜑′𝑟 = false in ¥A′. We show that 𝜑𝑟 must evaluate to false in X

at procedure return. In other words, the ¥A path “if 𝜑𝑟 then halt(𝒰)” is infeasible

and so ¥A does not deviate from ¥A′ in this case.

By lemma 3.5.2, 𝑀𝑐𝑠 =Σ𝑐𝑠
¥A′
𝑀 ¥A′ holds at every error-free node 𝑛X′ ∈ NHH𝑈𝑊

X′ and there-

fore 𝑛X ∈ NX. Further, using the (MAC) requirement at the error-free terminating

node exit, this can be generalized to show that 𝑀𝑐𝑠 =Σ𝑐𝑠
¥A
𝑀 ¥A holds at the beginning

of the path corresponding to (RetA) in ¥A. Thus, because the ¥A path “if 𝜑𝑟 then

halt(𝒰)” is infeasible, (CoverageC) holds trivially for this path at 𝑛X in X.

• (Load ¥A) or (Store ¥A): Let 𝜉𝑈¥A = (𝑛 ¥A ↠ 𝒰 ¥A) be a path that terminates with 𝒰 ¥A.

Lemma 3.5.4. Let 𝜎 be a state at an error-free node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

such

that 𝜙𝑛X (𝜎) holds and 𝜎 executes 𝜉𝑈¥A = (𝑛 ¥A ↠ 𝒰 ¥A) to completion. Then 𝜎 must

execute some path 𝜉C = (𝑛C ↠ 𝒰C) to completion in C.

Proof. Consider the execution of 𝜎 on X′ starting at 𝑛X′ = (𝑛 ¥A′ , 𝑛C), such that 𝑛X′

in X′ is structurally identical to 𝑛X in X. Due to (Mutex ¥A) and (Coverage ¥A), there
can be only two cases:

98 Witnessing Refinement through a Determinized Cross-Product

1. 𝜎 executes some path 𝜉𝑥¥A′ = (𝑛 ¥A′ ↠ 𝒰 ¥A) to completion in ¥A′. In this case, due to

(CoverageC) and (Safety), some 𝜉𝑥
C
= (𝑛C ↠ 𝒰C) must be executed to completion

on 𝜎 in C. In this case, the lemma holds with 𝜉C = 𝜉𝑥
C
.

2. 𝜎 executes some path 𝜉𝑥¥A′ = (𝑛 ¥A′ ↠ 𝑛𝑥¥A′) to completion in ¥A′, where 𝑛𝑥¥A′ ≠ 𝒰 ¥A′

and 𝑒
𝑥𝑣
X′ = (𝑛X′

𝜉𝑥¥A′ ; 𝜉
𝑥𝑣
C−−−−−→𝑛

𝑥𝑣
X′) ∈ EX′ (for 1 ≤ 𝑣 ≤ 𝑤) are 𝑤 ≥ 1 edges in X′, where

𝑛
𝑥𝑣
X′ = (𝑛𝑥¥A′ , 𝑛

𝑥𝑣
C
). Because X′ satisfies (CoverageC), 𝜎 must execute a path 𝜉

𝑥𝑣
C

=

(𝑛C ↠ 𝑛
𝑥𝑣
C
) to completion in C, for some 1 ≤ 𝑣 ≤ 𝑤. We show by contradiction

that ∀1≤𝑣≤𝑤 : 𝑛𝑥𝑣
C

= 𝒰C must hold.

Assume 𝑛
𝑥𝑣
C

≠ 𝒰C. Let memory access instructions 𝑑1, 𝑑2, . . . , 𝑑𝑘 exist on path

𝜉𝑥¥A′ , such that 𝜉𝑥¥A′ deviates from 𝜉𝑈¥A on one of these memory access instructions 𝑑𝑟

(1 ≤ 𝑟 ≤ 𝑘), so that 𝜉𝑈¥A transitions to 𝒰 ¥A due to 𝜑 evaluating to true in a check

“if 𝜑 halt(𝒰)” in a (Load ¥A) or (Store ¥A) in ¥A, while 𝜉𝑥¥A′ continues execution
to reach 𝑛𝑥¥A′ ≠ 𝒰 ¥A′ due to 𝜑′ (safety-relaxed rewrite of 𝜑) evaluating to false in

a corresponding check “if 𝜑′ halt(𝒰)” in ¥A′.
Let [𝑝]𝑤 represent the addresses being accessed by the memory access instruction

𝑑𝑟 . It must be true that ∃𝛼 ∈ [𝑝]𝑤 : 𝛼 ∈ comp(Σ𝐵∪𝐹∪𝑆
¥A′) if 𝑑𝑟 is a load instruction

and ∃𝛼 ∈ [𝑝]𝑤 : 𝛼 ∈ comp(Σ(𝐵\𝐺𝑟)∪𝐹𝑤∪𝑆
¥A′) if 𝑑𝑟 is a store instruction; this is because

𝜑′ evaluates to false but 𝜑 evaluates to true (for load and store instructions).

Because X′ satisfies (MAC), the execution of 𝜎 starting at 𝑛C must cause all

addresses in [𝑝]𝑤 to be accessed before execution can reach 𝑛
𝑥𝑣
C

in C (and 𝑛
𝑥𝑣
X′

in X′); this is because 𝛼 ∉ Σ𝐺∪𝐹
¥A′ ∪ [esp, stk𝑒]. Further, because 𝜉𝑥¥A′ contains a

memory access instruction, due to lemma 3.5.1, both 𝜉𝑥¥A′ and 𝜉𝑥
C
cannot modify

the address sets of common regions 𝐵. Thus, during the execution of 𝜎 starting

at 𝑛C, the accessIsSafeC𝜏,𝑎 () check must necessarily evaluate to false and the

execution must transition to 𝒰C. This is a contradiction, and so it must be true

that 𝑛𝑥𝑣
C

= 𝒰C. Hence, the lemma holds in this case with 𝜉C = 𝜉𝑥
C
= (𝑛C ↠ 𝒰C).

□

Using lemma 3.5.4, we enumerate all such paths 𝜉C = (𝑛C ↠ 𝒰C) that can be

executed in C if 𝜉𝑈¥A = (𝑛 ¥A ↠ 𝒰 ¥A) is executed in ¥A starting at node 𝑛X ∈ NX. As

described in the proof of lemma 3.5.4, there are only a finite number of such paths.

For each such path 𝜉C, we add an edge 𝑒𝑥
X
= (𝑛X

𝜉𝑈¥A ; 𝜉C−−−−→(𝒰 ¥A,𝒰C)) to EX if it does not

exist already. (CoverageC) thus follows from lemma 3.5.4. Further, (Coverage ¥A) also
holds for X because all assembly paths that exist in X′ also exist in X and additional

paths, only potentially feasible in ¥A, are added.

Witnessing Refinement through a Determinized Cross-Product 99

□

Using theorems 3.4.2 and 3.5.3, hereafter, we will use only the safety-relaxed and callers’

virtual smallest semantics of the unoptimized IR and assembly procedures. We will

continue to refer to the unoptimized IR with the callers’ virtual smallest semantics and

assembly procedure with the safety-relaxed and callers’ virtual smallest semantics as C

and A respectively. The corresponding annotated procedure of A will be referred as ¥A.

100 Witnessing Refinement through a Determinized Cross-Product

Chapter 4

Automatic Construction of a

Product-Program

In the previous chapter, we established that a product program X = ¥A ⊠ C can be

used as a witness of refinement from an unoptimized IR procedure C to an annotated

assembly procedure ¥A. In this chapter, we describe our algorithm, called Dynamo, for

simultaneous automatic annotation of A, to produce ¥A, and construction of X. The

product program X produced by our algorithm is guaranteed to satisfy the thirteen

requirements that enable it to be used as a witness of refinement between an input

unoptimized IR procedure C and the annotated assembly procedure ¥A, also produced

by our algorithm from the input assembly procedure A.

Dynamo uses a set of internal heuristics for discovering the required annotation for

A — we call this blackbox setting. In the other whitebox setting, Dynamo is capable

of utilizing external untrusted hints for annotating A. These hints may be untrusted

because the annotation is validated by the algorithm. As the hints need not be trusted,

they could be generated through lightweight compiler instrumentation which may be

incorrect or sourced from potentially inaccurate sources such as debug headers.

4.1 The Dynamo algorithm

The Dynamo algorithm takes the transition graphs corresponding to the LLVM𝑑 and

assembly procedures (C and A resp.) and an unroll factor 𝜇 as input and returns, if

successful, an annotated ¥A and a product graph X = ¥A⊠C = (NX, EX,DX) as output. In

101

102 Automatic Construction of a Product-Program

addition, it also identifies an inductive invariant network ΦX that maps each error-free

node 𝑛X ∈ NHH𝑈𝑊
X

to its node invariant 𝜙𝑛X .

Given enough computational time, Dynamo is guaranteed to find the required (¥A,X)
if:

(a) A is a translation of C through, potentially path-specializing, bisimilar transformations

up to a maximum unrolling of 𝜇.

(b) For two or more allocations or procedure calls that reuse stack space in A, their

relative order in C is preserved in A.

(c) An allocation due to alloca() is always stack-allocated in A.

(d) An allocation-containing path is not specialized by the compiler, such that on one

specialization stack-allocation is performed and on another register-allocation is

performed.

(e) The desired annotation to ¥A is identifiable either through search heuristics (blackbox

mode) or through user-supplied and/or compiler hints (whitebox).

(f) Our invariant inference procedure is able to identify the required invariant network

ΦX that captures the compiler transformations from C to A.

The restriction on non-bisimilar and de-specializing transformations stated in clause (a)

stems from the limitations of the COUNTER algorithm [17] of which our algorithm

is a derivative of — the former is fundamental to the algorithm. The restriction on

de-specializing transformations is a performance trade-off and can potentially be lifted

at the cost of runtime (see §4.4 of [17]). Clause (b) is simply a restatement of the

limitation of our refinement definition (section 2.5.4), and clauses (c) and (d) are due to

restrictions on a virtual-allocation annotation (section 2.6). We describe our blackbox

annotation algorithm that dictates clause (e) in section 4.1.3 and our invariant inference

algorithm (for clause (f)) in section 4.2.

Dynamo constructs the solution incrementally, by relying on the property that for a non-

coverage requirement to hold for a fully-annotated ¥A and a fully-constructed X, it must

also hold for a partially-annotated ¥A and a partially-constructed subgraph of X rooted

at its entry node 𝑛𝑠
X
. A partially-constructed X (based on a partially-annotated ¥A),

constructed from the entry node 𝑛𝑠
X
, that does not meet the non-coverage requirements

may be safely discarded without affecting the completeness of the algorithm.

Automatic Construction of a Product-Program 103

Recall that we defined callers’ virtual smallest and safety-relaxed semantics for the

procedures C and A (sections 3.4 and 3.5) — we assume that the transition graphs C

and A passed to the algorithm have these semantics. Before beginning the construction

of X (and annotation of A), we run an intraprocedural, flow-sensitive, field-insensitive

points-to dataflow analysis [3] to compute over-approximate states of the 𝛽 and 𝛽𝑀

maps for each node 𝑛C ∈ NC
1. These sound but over-approximate values, computed

at each node 𝑛C, are substituted in to replace all references to 𝛽 and 𝛽𝑀 in C’s graph.

After this substitution, the assignments to 𝛽 and 𝛽𝑀 (e.g., in (LoadC), (StoreC), etc.)
become vacuous.

Algorithm 1 presents the pseudo-code of the algorithm. The algorithm has two phases.

In the first phase (line 4 in algorithm 1), it attempts to correlate the paths in A with

the paths in C while simultaneously identifying the required annotation for A. At the

successful completion of the first phase, all paths in the original, non-annotated A are

correlated. However, recall that the annotation instructions, alloc𝑠 and alloc𝑣, have

additional paths to error nodes 𝒰 ¥A and 𝒲 ¥A (figs. 2.8, 2.10 and 2.11). These paths to

error nodes are not correlated in the first phase. The second phase of the algorithm

(line 6 in algorithm 1) correlates these additionally introduced (error) paths.

The sub-procedure constructX(), used in both phases, identifies the required correlations

and annotation and builds the product program X incrementally. It assumes the

availability of an oracle chooseFrom operator, such that 𝜌 ←� chooseFrom #‰𝜌 chooses a

quantity 𝜌 from a finite set #‰𝜌 , such that the algorithm is able to complete the refinement

proof, if such a choice exists. If the search space is limited, an exhaustive search could

be used to implement chooseFrom. For larger search spaces, a counterexample-guided

best-first search procedure (described in section 4.1.9) is employed to approximate

chooseFrom. At a high-level, constructX() systematically visits each uncorrelated

path 𝜉 ¥A in A and tries to identify a pathset ⟨𝜉⟩C in C that can be correlated with 𝜉 ¥A
such that the non-coverage requirements are not violated. If required, 𝜉 ¥A is annotated

on-the-fly. We discuss the algorithm in detail in the following sections.

1Recall that 𝛽(𝑥) returns the set of regions that a state variable 𝑥 in C may point to and 𝛽𝑀 (𝑟)
returns the set of regions that some pointer stored in region 𝑟 may point to.

104 Automatic Construction of a Product-Program

Algorithm 1: Automatic construction of X

1 Function Dynamo(A,C, 𝜇)
2 ¥A← � A; C← � pointsToAnalysis (C);
3 NX ← � {(𝑛𝑠¥A, 𝑛

𝑠
C
)}; EX ← � ∅; DX ← � ∅; ΦX ← � {(𝑛𝑠¥A, 𝑛

𝑠
C
) ↦→ (Ω ¥A = ΩC)};

4 if ¬constructX(¥A,C, 𝜇,NX, EX,DX,ΦX, CORRELATE AND ANNOTATE) then
5 return Failure

6 if ¬constructX(¥A,C, 𝜇,NX, EX,DX,ΦX, CORRELATE NEW ERROR PATHS) then
7 return Failure

8 if ¬checkCoverageReqs(NX, EX,DX,ΦX, ¥A,C) then
9 return Failure

10 return Success(¥A, (NX, EX,DX),ΦX)
11 end

12 Function constructX(¥A,C, 𝜇,NX, EX,DX,ΦX, 𝑝ℎ𝑎𝑠𝑒)
13 𝑄 ¥A ←� getCutPointsInRPO(¥A);
14 foreach 𝑞 ¥A in 𝑄 ¥A do
15 foreach 𝑞𝑡¥A in cutPointSuccessorsRPO(𝑞 ¥A, 𝑄 ¥A, ¥A) do
16 foreach 𝜉 ¥A in getAllSimplePathsBetweenCutPoints(𝑞 ¥A, 𝑞𝑡¥A, ¥A) do
17 if pathExists(𝜉 ¥A, EX) then
18 continue

19 if pathIsInfeasible(𝜉 ¥A,NX,ΦX) then
20 continue

21 ⟨𝜉⟩C ← � chooseFrom correlatedPathsInCOpts (𝜉 ¥A, 𝜇,NX, EX, ¥A,C);
22 foreach 𝜉C in ⟨𝜉⟩C do
23 if 𝑝ℎ𝑎𝑠𝑒 = CORRELATE AND ANNOTATE then
24 (¥A, 𝜉 ¥A) ←� chooseFrom asmAnnotOpts (𝜉 ¥A, 𝜉C, ¥A,C);
25 end

26
#‰
𝜉 ′¥A ← � breakIntoSingleIOPaths(𝜉 ¥A);

27
#‰
𝜉 ′C ←� breakIntoSingleIOPaths(𝜉C);

28
#‰
𝜉 ∗¥A,

#‰
𝜉 ∗C ←� trimToMatchPathToErrorNode(#‰

𝜉 ′¥A,
#‰
𝜉 ′C);

29 if ¬haveSimilarStructure(#‰
𝜉 ∗¥A,

#‰
𝜉 ∗C) then

30 return Failure

31 foreach 𝜉′¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A), 𝜉
′
C = (𝑛C ↠ 𝑛𝑡

C
) in zip(#‰

𝜉 ∗¥A,
#‰
𝜉 ∗C) do

32 𝑒X ← � (𝜉′¥A; 𝜉
′
C); 𝑛𝑡

X
← � (𝑛𝑡¥A, 𝑛

𝑡
C
);

33 if addingEdgeWillCreateEmptyCCycle(NX, EX, 𝑒X) then
34 return Failure

35 EX ← � EX ∪ {𝑒X}; NX ←� NX ∪ {𝑛𝑡X};
36 DX ← � addDetMappings (𝑒X,DX);
37 ΦX ← � inferInvariantsAndCounterexamples (𝑛𝑡

X
,NX, EX,DX,ΦX, ¥A,C);

38 if ¬checkSemanticReqsExceptCoverage(NX, EX,DX,ΦX, ¥A,C) then
39 return Failure

40 end

41 end

42 end

43 end

44 end
45 return Success

46 end

Automatic Construction of a Product-Program 105

4.1.1 Enumerating A paths

Cut-points and Simple Paths

We first define some useful predicates. Let 𝑃 ∈ {C, ¥A}.

Definition 4.1.1 (io(𝑛𝑃)). io(𝑛𝑃) evaluates to true iff 𝑛𝑃 is either a source or sink

node of an I/O path.

Definition 4.1.2 (term(𝑛𝑃)). term(𝑛𝑃) evaluates to true iff 𝑛𝑃 is a terminating node.

We define an ordered set of nodes 𝑄𝑃 ⊆ N𝑃, called the cut-points in procedure 𝑃, such

that 𝑄𝑃 ⊇ {𝑛𝑃 : 𝑛𝑃 ∈ N𝑃∧ (𝑛𝑃 = 𝑛𝑠
𝑃
∨io(𝑛𝑃) ∨term(𝑛𝑃))} and the maximum length of a

path between two nodes in 𝑄𝑃 (not containing any other intermediate node that belongs

to 𝑄𝑃) is finite. The algorithm to identify 𝑄𝑃 for a procedure 𝑃, getCutPointsInRPO(𝑃),

first initializes 𝑄𝑃 := {𝑛𝑃 : 𝑛𝑃 ∈ N𝑃∧ (𝑛𝑃 = 𝑛𝑠
𝑃
∨io(𝑛𝑃) ∨term(𝑛𝑃))}, and then identifies

all cycles in the transition graph 𝑃 that do not already contain a cut-point; for each such

cycle, the first node belonging to that cycle in reverse postorder is added to 𝑄𝑃. The

cut-points 𝑄𝑃 returned by getCutPointsInRPO(𝑃) are arranged in a reverse postorder

(RPO).

A simple path (𝑞𝑃 ↠ 𝑞𝑡
𝑃
) is a non-empty path connecting two cut-points 𝑞𝑃, 𝑞

𝑡
𝑃
∈ 𝑄𝑃

and not containing any other cut-point as an intermediate node; 𝑞𝑡
𝑃
is called a cut-point

successor of 𝑞𝑃. By definition, a simple path must be finite.

The cutPointSuccessorsRPO(𝑞𝑃, 𝑄𝑃, 𝑃) function returns the cut-point successors of 𝑞𝑃

ordered in reverse postorder. The error node successors of 𝑞𝑃, if any, are ordered after

the error-free successors. Further, the error node successor 𝒲𝑃 (if it exists) is arranged

at the very end, after all other cut-point successors. This property is expected during

path enumeration.

The getAllSimplePathsBetweenCutPoints(𝑞𝑃, 𝑞
𝑡
𝑃
, 𝑃) function returns all simple paths

of the form 𝑞𝑃 ↠ 𝑞𝑡
𝑃
, for 𝑞𝑃, 𝑞

𝑡
𝑃
∈ 𝑄𝑃. The returned paths are mutually exclusive by

construction.

Reverse postorder enumeration of A paths

The procedure constructX() first identifies a set of cut-points 𝑄 ¥A of procedure ¥A using

getCutPointsInRPO(¥A) (line 13 in algorithm 1). Then, for each cut-point 𝑞 ¥A ∈ 𝑄 ¥A,

106 Automatic Construction of a Product-Program

Algorithm 2: Pseudo-code of the pathIsInfeasible() procedure.

1 Function pathIsInfeasible(𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A),NX,ΦX)
2 𝑛X ← � getXNode(𝑞 ¥A,NX) ; // unique X node corresponding to source of 𝜉 ¥A
3 if Hoare triple {𝜙𝑛X

}(𝜉 ¥A; 𝜖){false} holds then
4 return true

5 else
6 return false

7 end

8 end

visited in reverse postorder, it identifies the set of cut-point successors of 𝑞𝑡¥A using

cutPointSuccessorsRPO(𝑞 ¥A, 𝑄 ¥A, ¥A) (line 15 in algorithm 1). These cut-point successors

are visited in reverse postorder, and all simple paths
#‰
𝜉 ¥A between 𝑞 ¥A and its cut-

point successor 𝑞𝑡¥A are enumerated through getAllSimplePathsBetweenCutPoints

(𝑞 ¥A, 𝑞𝑡¥A, ¥A) (line 16 in algorithm 1).

The paths
#‰
𝜉 ¥A are enumerated in reverse postorder (i.e., the source and sink nodes are

enumerated in reverse postorder) so that annotation (if any) over a path 𝜉 ¥A = (𝑞 ¥A ↠

𝑞𝑡¥A) ∈
#‰
𝜉 ¥A is performed before the address sets (potentially modified by annotation) are

used in successor instructions of 𝑞𝑡¥A. This property ensures consistency in the invariant

network ΦX and enables incremental building of the product program X.

Given a simple path 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A) ∈
#‰
𝜉 ¥A, pathIsInfeasible (𝜉 ¥A,NX,ΦX) returns

true iff 𝜉 ¥A is infeasible at every node 𝑛X = (𝑞 ¥A,) ∈ NX; our construction ensures

there can be at most one 𝑛X = (𝑞 ¥A,) for each 𝑞 ¥A ∈ 𝑄 ¥A. An infeasible path is not

considered for correlation (line 19 in algorithm 1). Algorithm 2 shows the pseudo-code

of pathIsInfeasible().

For an ¥A path 𝜉 ¥A, pathExists (𝜉 ¥A, EX) returns true iff 𝜉 ¥A is already correlated with

some 𝜉C = (𝑞C ↠ 𝑞𝑡
C
) in EX (i.e., ∃𝑒X : 𝑒X = ((𝑞 ¥A, 𝑞C) 𝜉 ¥A; 𝜉C−−−−→(𝑞𝑡¥A, 𝑞

𝑡
C
)) ∈ EX holds).

Because the same constructX() procedure is invoked in both phases, the use of pathEx-

ists() in line 17 of algorithm 1 is an optimization to avoid correlating the same

paths again in the second phase. In the first call to constructX(), when 𝑝ℎ𝑎𝑠𝑒 =

CORRELATE AND ANNOTATE, pathExists(𝜉 ¥A, EX) will always return false as the enumera-

tion returns fresh, uncorrelated paths. However, in the second call to constructX(), when

𝑝ℎ𝑎𝑠𝑒 = CORRELATE NEW ERROR PATHS, the algorithm is only correlating the newly in-

troduced error paths, and pathExists (𝜉 ¥A, EX) will return false only for the uncorrelated

paths to error nodes introduced due to annotation of ¥A.

Automatic Construction of a Product-Program 107

Trade-off between completeness and efficiency

Dynamo attempts to correlate each cut-point in 𝑄 ¥A with a cut point in 𝑄C. To allow

maximum transformations, 𝑄 ¥A should be as small as possible. On the other hand, a

smaller 𝑄 ¥A could result in potentially longer paths between cut-points; a Hoare triple

over longer paths could be potentially harder for SMT solvers to reason about due to

larger expression sizes. Our algorithm of getCutPointsInRPO (𝑃) returns the minimum

set of cut-points for a procedure 𝑃.

4.1.2 Correlating C paths

Given an ¥A path 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A), correlatedPathsInCOpts (𝜉 ¥A, 𝜇, . . .) identifies a

non-empty set of options for candidate pathset2 [⟨𝜉⟩C] in C that can potentially be

correlated with 𝜉 ¥A. The chooseFrom operator is used to choose a pathset ⟨𝜉⟩C from

the returned options [⟨𝜉⟩C]. All paths in ⟨𝜉⟩C must originate at a unique error-free

cut-point 𝑞C such that (𝑞 ¥A, 𝑞C) ∈ NX. The enumeration by correlatedPathsInCOpts()

ensures that there will be exactly one such (𝑞 ¥A, 𝑞C) in NX. Paths in ⟨𝜉⟩C may have

different sinks, however. Unlike 𝜉 ¥A, a path 𝜉C ∈ ⟨𝜉⟩C need not be a simple path, and can

visit a node 𝑛C ∈ NC up to 𝜇 times — this enables Dynamo to handle transformations

such as loop peeling, unrolling, etc.

Before we describe correlatedPathsInCOpts(), we define a 𝒰-maximal pathset.

Definition 4.1.3 (𝒰-maximal pathset). A pathset ⟨𝜉⟩𝑃 of procedure 𝑃 is 𝒰-maximal

iff whenever there exists a path 𝜉′
𝑃
= 𝜖 or 𝜉′

𝑃
= (𝑞𝑃 ↠ 𝑞𝑡

𝑃
) such that 𝜉′

𝑃
⪯ 𝜉𝑃

3 for

𝜉𝑃 ∈ ⟨𝜉⟩𝑃 and 𝜉𝑢
𝑃
= 𝜉′

𝑃
· (𝑞𝑡

𝑃
→ 𝒰𝑃) for some edge (𝑞𝑡

𝑃
→ 𝒰𝑃) ∈ E𝑃, 𝜉𝑢𝑃 ∈ ⟨𝜉⟩𝑃 holds.

Informally, a 𝒰-maximal pathset ⟨𝜉⟩𝑃 is a set of paths where the 𝒰𝑃-going path of

a potentially 𝒰-producing instruction is included (as part of a path) in ⟨𝜉⟩𝑃 , if the

instruction is included (as part of a path) in ⟨𝜉⟩𝑃. The union of two 𝒰-maximal pathsets,

if it is a pathset, is also a 𝒰-maximal pathset.

The correlatedPathsInCOpts() procedures enumerates 𝒰-maximal pathsets as candidate

options. Enumerating 𝒰-maximal pathsets is essential for a fast SMT encoding (see

chapter 5). The key property that 𝒰-maximality enables is that the pathset condition

2Recall that a pathset is a set of pairwise mutually-exclusive paths originating at the same node
(definition 3.1.2).

3Recall that 𝜉′𝑃 ⪯ 𝜉𝑃 iff 𝜉′𝑃 is a prefix of 𝜉𝑃 (section 3.1).

108 Automatic Construction of a Product-Program

(disjunction of the path conditions of the individual paths) does not depend on the

𝒰-triggering condition of an instruction in the pathset.

The Dynamo algorithm requires correlatedPathsInCOpts() to behave differently based

on the sink node 𝑞𝑡¥A of 𝜉 ¥A. We present the associated requirements first and then later

discuss our implementation.

• If 𝑞𝑡¥A ∉ {𝒰 ¥A,𝒲 ¥A}, i.e. 𝑞𝑡¥A is an error-free cut-point node, correlatedPathsInCOpts()

must return candidates where each candidate ⟨𝜉⟩C is a 𝒰-maximal non-empty pathset

such that each path 𝜉C ∈ ⟨𝜉⟩C starts at 𝑞C and either:

(a) ends at a unique error-free cut-point node, say 𝑞𝑡
C
, i.e., all paths 𝜉C ∈ ⟨𝜉⟩C ending

at an error-free node end at 𝑞𝑡
C
, or

(b) ends at error node 𝒰C.

Because we restrict all paths in ⟨𝜉⟩C with an error-free sink node to have the same

sink 𝑞𝑡
C
, for a 𝑞𝑡¥A node, this creates exactly one node 𝑛𝑡

X
= (𝑞𝑡¥A, 𝑞

𝑡
C
) ∈ NX.

If 𝜖 ∈ ⟨𝜉⟩C, then no other path to an error-free node can be present in ⟨𝜉⟩C. In other

words, 𝜖 is treated as a path that starts and ends at 𝑞C.

• If 𝑞𝑡¥A = 𝒰 ¥A, correlatedPathsInCOpts() must return candidates where each candidate

⟨𝜉⟩C is a 𝒰-maximal non-empty pathset such that each path 𝜉C ∈ ⟨𝜉⟩C starts at 𝑞C

and ends at 𝒰C.

correlatedPathsInCOpts() must return a pathset option containing the empty path,

⟨𝜉⟩C = {𝜖}, if the aforementioned enumeration is not possible, e.g., if no path from

𝑞C to 𝒰C exists in C. Notice that this choice is never a valid correlation option

for a 𝒰 ¥A-going path because it does not satisfy the (Safety) requirement. However,

because correlatedPathsInCOpts() must return a non-empty set of options, we simply

choose ⟨𝜉⟩C = {𝜖} as a sentinel value so that Dynamo may fail as early as possible.

• If 𝑞𝑡¥A = 𝒲 ¥A, correlatedPathsInCOpts() must return candidates where each candidate

⟨𝜉⟩C is a 𝒰-maximal non-empty pathset such that each path 𝜉C ∈ ⟨𝜉⟩C either has an

error-free sink or has the error node 𝒰C as sink. Unlike the 𝑞𝑡¥A ∉ {𝒰 ¥A,𝒲 ¥A} case,
the paths to error-free nodes are not required to have the same, unique sink node. In

this case, not restricting the enumeration to a unique error-free sink node facilitates

a simultaneous proof of (MAC) and (CoverageC). We demonstrate this through an

example.

Consider the C and (abstracted) assembly code fragments shown below:

Automatic Construction of a Product-Program 109

𝑞C : ...

// load/store to ℎ𝑝/𝑐𝑙
...

...

if (cc) {

𝑞
𝑡1
C
: fcall1() ...

} else {

𝑞
𝑡2
C
: fcall2() ...

}

𝑞 ¥A : ...

// load/store to ℎ𝑝/𝑐𝑙
...

𝑞𝑡¥A : esp = ... // ... halt(𝒲)

if (ca) {

𝑞
𝑡1
¥A : fcall1() ...

} else {

𝑞
𝑡2
¥A : fcall2() ...

}

Assume that Dynamo has already correlated (𝑞C, 𝑞 ¥A), (𝑞𝑡1C , 𝑞
𝑡1
¥A), and (𝑞

𝑡2
C
, 𝑞

𝑡2
¥A), and

is now trying to correlate 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A) such that 𝑞𝑡¥A = 𝒲 ¥A. Consider the different
possibilities for a pathset ⟨𝜉⟩C, identified by correlatedPathsInCOpts():

– If ⟨𝜉⟩C = {𝜖, (𝑞C ↠ 𝒰C)}, such that 𝜉C = 𝜖 is correlated with 𝜉 ¥A producing

𝑒X = ((𝑞 ¥A, 𝑞C) 𝜉 ¥A; 𝜖−−−→(𝒲 ¥A, 𝑞C)), then 𝑒X would fail to uphold the (MAC) con-

dition because the memory access to ℎ𝑝 or 𝑐𝑙 (load/store to ℎ𝑝/𝑐𝑙) would

remain unmatched in 𝜉 ¥A (recall that (MAC) requires a ℎ𝑝 or 𝑐𝑙 access in 𝜉 ¥A to be

matched in 𝜉C; see also the checkMAC() algorithm in section 4.1.6).

– If ⟨𝜉⟩C = {(𝑞C ↠ 𝑞
𝑡1
C
), (𝑞C ↠ 𝒰C)} or ⟨𝜉⟩C = {(𝑞C ↠ 𝑞

𝑡2
C
), (𝑞C ↠ 𝒰C)}, i.e., ⟨𝜉⟩C

includes paths from either of the two already correlated pathsets (but not both),

then (CoverageC) would fail to hold because the correlated path 𝜉C = (𝑞C ↠ 𝑞
𝑡1
C
)

(or (𝑞C ↠ 𝑞
𝑡2
C
)) may not execute to completion when 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A) is executed to

completion, i.e., cc (or ¬cc) may not necessarily hold even if 𝜉 ¥A, which terminates

before reaching corresponding if statement, executes to completion.

– If ⟨𝜉⟩C = {(𝑞C ↠ 𝑞
𝑡1
C
), (𝑞C ↠ 𝑞

𝑡2
C
), (𝑞C ↠ 𝒰C)}, i.e., ⟨𝜉⟩C includes paths with dif-

ferent sink nodes (𝑞𝑡1
C

and 𝑞
𝑡2
C
), then it is easy to see that both (MAC) and

(CoverageC) can simultaneously hold.

Note that both (MAC) and (CoverageC) can simultaneously hold when 𝜉 ¥A = (𝑞 ¥A ↠

𝑞
𝑡1
¥A) is correlated with 𝜉C = (𝑞C ↠ 𝑞

𝑡1
C
) or 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞

𝑡2
¥A) is correlated with

𝜉C = (𝑞C ↠ 𝑞
𝑡2
C
). In both cases, (CoverageC) can hold if cc (¬cc) and ca (¬ca)

evaluate to identical value in a lockstep execution of 𝜉C and 𝜉 ¥A. Thus, not restricting
the candidates in ⟨𝜉⟩C to a single sink node is required for satisfying (MAC) in the

particular case of 𝑞𝑡¥A = 𝒲 ¥A.

As correlatedPathsInCOpts() identifies options of a pathset, which, by definition, is a

set of mutually-exclusive paths, the (MutexC) requirement is satisfied by construction.

110 Automatic Construction of a Product-Program

Further, because a path 𝜉C = (𝑞C ↠ 𝒲C) is never returned as part of any candidate,

(Well-formedness) is also satisfied.

With an appropriate unroll-factor 𝜇, this path enumeration strategy supports path

specializing compiler transformations like loop peeling, unrolling, splitting, unswitching,

etc., but does not support a path de-specializing transformation like loop re-rolling. A

path de-specialization transformation requires a single 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A) to be correlated

with a set of paths {𝜉1
C
, 𝜉2

C
, . . . , 𝜉𝑚

C
} with potentially different end-points such that

∀1≤ 𝑗≤𝑚 : 𝜉
𝑗

C
= (𝑞C ↠ 𝑞

𝑗

C
) and ∀1≤ 𝑗1< 𝑗2≤𝑚 : 𝑞

𝑗1
C

≠ 𝑞
𝑗2
C
. Such a construction would require

an error-free cut-point in ¥A to be correlated with multiple error-free cut-points in C —

recall that we correlate an error-free cut-point in ¥A with exactly one error-free cut-point

in C. For comparison, a path specialization transformation requires a cut-point 𝑞C in C

to be correlated with multiple cut-points in ¥A (which our algorithm supports).

correlatedPathsInCOpts() algorithm

Algorithm 3 shows the pseudo-code of the correlatedPathsInCOpts() procedure. The

procedure accepts the path 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A), unroll-factor 𝜇, nodes NX and edges EX of

X, and the two procedures ¥A and C as input parameters and produces a set of pathsets

(pathset options) as output.

correlatedPathsInCOpts() presumes the existence of a pathset enumeration sub-procedure

enumPathsetsTillUnroll(). The enumPathsetsTillUnroll(𝑞𝑃, 𝑞𝑡𝑃, 𝜇, 𝑃) procedure
returns a set of pathsets

‰⟨𝜉⟩𝑃 such that for each pathset ⟨𝜉⟩𝑃 ∈ # ‰⟨𝜉⟩𝑃 and each path

𝜉𝑃 ∈ ⟨𝜉⟩𝑃, 𝜉𝑃 has 𝑞𝑃 as source node and 𝑞𝑡
𝑃
as sink node, i.e., 𝜉𝑃 = (𝑞𝑃 ↠ 𝑞𝑡

𝑃
) and max-

imum unrolling of a node in 𝜉𝑃 is bounded by 𝜇. Thus, enumPathsetsTillUnroll()

returns options for a mutually exclusive set of paths such that each path in the set

starts at 𝑞𝑃 and ends at 𝑞𝑡
𝑃
and a node appears at most 𝜇 times in a path. The

getFullPathsetAtAllDelta(𝑞𝑃, 𝑞𝑡 , 𝑃, 𝜇) procedure from COUNTER (§3.11 in [17])

satisfies the requirements for enumPathsetsTillUnroll() and is used in our implemen-

tation. getFullPathsetAtAllDelta(𝑞𝑃, 𝑞𝑡 , 𝑃, 𝜇) returns a set of (𝜇, 𝛿)-unrolled full

pathsets that are constructed such that paths in a returned pathset are disjoint from

paths in rest of the pathsets. We will elaborate on (𝜇, 𝛿)-unrolled full pathset when we

talk about representation of a pathset later in this section.

correlatedPathsInCOpts() begins by identifying the unique node 𝑞C such that 𝑛X =

(𝑞 ¥A, 𝑞C) ∈ NX (recall that 𝑞C is guaranteed to exist and be unique). It then constructs

Automatic Construction of a Product-Program 111

Algorithm 3: Pseudo-code of the correlatedPathsInCOpts() algorithm.

1 Function correlatedPathsInCOpts(𝜉 ¥A = (𝑞 ¥A ↠ 𝑞𝑡¥A), 𝜇,NX, EX, ¥A,C)
2 𝑛X = (𝑞 ¥A, 𝑞C) ←� getXNode(𝑞 ¥A,NX) ; // unique X node corresponding to 𝑞 ¥A
3 𝑟𝑒𝑡 ← � {mkPathset({𝜖})} ; // pathset with empty path is always an option

4 if 𝑞𝑡¥A = 𝒰 ¥A then // enumerate options for 𝒰C-going paths

5
‰⟨𝜉⟩C ← � enumPathsetsTillUnroll(𝑞C,𝒰C, 𝜇,C);

6 foreach ⟨𝜉⟩C ∈ # ‰⟨𝜉⟩C do
7 𝑟𝑒𝑡 ← � 𝑟𝑒𝑡 ∪ getAllUMaximalSubsets (⟨𝜉⟩C,C);
8 end

9 else if 𝑞𝑡¥A = 𝒲 ¥A then // enumerate combinations of already correlated paths

10
‰
𝑒𝑜X ←� getOutgoingEdges(𝑛X, EX);

11
‰⟨𝜉⟩C ← � prjCPathsets(# ‰

𝑒𝑜X) ; // project C pathsets out of outgoing edges

12 𝑟𝑒𝑡 ←� 𝑟𝑒𝑡 ∪ # ‰⟨𝜉⟩C;
/* include the maximal combinations of the pathsets as well */

13 foreach ⟨𝜉⟩C ∈ # ‰⟨𝜉⟩C do
14 𝑟 ← � ⟨𝜉⟩C;
15 foreach ⟨𝜉⟩′C ∈

‰⟨𝜉⟩C do
16 if unionRemainsMutex(𝑟, ⟨𝜉⟩′C) then
17 𝑟 ← � unionPathsets(𝑟, ⟨𝜉⟩′C);
18 end
19 𝑟𝑒𝑡 ← � 𝑟𝑒𝑡 ∪ 𝑟;
20 end

21 else // 𝑞𝑡¥A ∉ {𝒰 ¥A,𝒲 ¥A}: enumerate 𝜇-unrolled paths to reachable cut-points

22 foreach 𝑞𝑡
C
∈ getAllNonErrorReachableCutPoints(𝑞C,C) do

23
‰⟨𝜉⟩C ← � enumPathsetsTillUnroll(𝑞C, 𝑞𝑡C, 𝜇,C);

24 foreach ⟨𝜉⟩𝑡
C
∈ # ‰⟨𝜉⟩C do

25 𝑟𝑒𝑡 ←� 𝑟𝑒𝑡 ∪ getAllUMaximalSubsets (⟨𝜉⟩𝑡
C
,C);

26 end

27 end

28 return ret

29 end
30 Function getAllUMaximalSubsets(⟨𝜉⟩𝑃 , 𝑃)
31 𝑟𝑒𝑡 ← � ∅;
32 foreach ⟨𝜉⟩′𝑃 ∈ powerset(⟨𝜉⟩𝑃) do
33 𝑟𝑒𝑡 ←� 𝑟𝑒𝑡 ∪ mkUMaximal(⟨𝜉⟩′𝑃 , 𝑃);
34 end
35 return 𝑟𝑒𝑡

36 end

(using mkPathset({𝜖})) the pathset containing the empty path 𝜖 (line 3 in algorithm 3)

as an output option. This ensures that the procedure returns at least one candidate

option — even though it may not the correct candidate in all cases, e.g., when 𝑞𝑡¥A = 𝒰 ¥A.
The other output options returned by correlatedPathsInCOpts() are determined by 𝑞𝑡¥A.

When 𝑞𝑡¥A = 𝒰 ¥A (line 4 in algorithm 3), the procedure uses enumPathsetsTillUnroll()
to enumerate a set of pathsets

‰⟨𝜉⟩C containing 𝜇-unrolled paths to 𝒰C. For a pathset

112 Automatic Construction of a Product-Program

⟨𝜉⟩C ∈
‰⟨𝜉⟩C, the getAllUMaximalSubsets (⟨𝜉⟩C,C) sub-procedure (defined in lines 30

to 36 of algorithm 3) computes a 𝒰-maximal pathset for each subset of ⟨𝜉⟩C — com-

puting over each subset of ⟨𝜉⟩C instead of just ⟨𝜉⟩C increases generality at the cost of

exponential increase in the number of returned candidates. The ranking and pruning

strategies proposed by COUNTER [17] have been demonstrated to help in effectively

navigating such large search-spaces. The mkUMaximal(⟨𝜉⟩𝑃, 𝑃) function, used in line 33

of algorithm 3, returns the smallest 𝒰-maximal pathset ⟨𝜉⟩𝑈
𝑃
such that ⟨𝜉⟩𝑃 ⊆ ⟨𝜉⟩𝑈𝑃 .

The computed 𝒰-maximal pathsets are added as candidate output options.

When 𝑞𝑡¥A = 𝒲 ¥A (line 9 in algorithm 3), the procedure returns a set of pathset

options derived from the already correlated paths in EX. Recall that cutPointSucces-
sorsRPO (𝑞𝑃, . . .) orders the cut-point successor 𝒲 ¥A of 𝑞𝑃 after all other cut-point

successors of 𝑞𝑃. Due to this, 𝜉 ¥A = (𝑞 ¥A ↠ 𝒲 ¥A) is considered for correlation only after

all paths of the form 𝜉��𝒲¥A = (𝑞 ¥A ↠ 𝑞��𝒲¥A) (for 𝑞��𝒲¥A ≠ 𝒲 ¥A) have been correlated. A

pathset ⟨𝜉⟩��𝒲
C

already correlated with 𝜉��𝒲¥A ((𝜉��𝒲¥A ; ⟨𝜉⟩��𝒲
C
) ∈ EX) is used as a candidate

option.

To increase coverage, the procedure also includes the maximal mutually-exclusive

combinations of the pathsets
‰⟨𝜉⟩��𝒲

C
— computed using iterative merging in lines 13

to 20 of algorithm 3 — as candidate options. For example, if there are two pathsets
‰⟨𝜉⟩��𝒲 1

C
and

‰⟨𝜉⟩��𝒲 2

C
correlated with paths of the form 𝜉��𝒲¥A (as described above), such

that a union of
‰⟨𝜉⟩��𝒲 1

C
and

‰⟨𝜉⟩��𝒲 2

C
is also a pathset

‰⟨𝜉⟩��𝒲 𝑢

C
, then all three pathsets

‰⟨𝜉⟩��𝒲 1

C
,

‰⟨𝜉⟩��𝒲 2

C
, and

‰⟨𝜉⟩��𝒲 𝑢

C
will be included in the candidate options. An example where

this is useful was presented earlier in this section when requirements associated with

correlatedPathsInCOpts() were described. Note that each of the returned candidate

pathset will be 𝒰-maximal by construction.

When 𝑞𝑡 ∉ {𝒰 ¥A,𝒲 ¥A} (line 21 in algorithm 3), the procedure first identifies all

error-free cut-points 𝑄��𝑈𝑊
C

(𝑄��𝑈𝑊
C
∩ {𝒰C,𝒲C} = ∅) reachable from 𝑞C using the func-

tion getAllNonErrorReachableCutPoints() (line 22 in algorithm 3). For each cut-

point 𝑞𝑡
C
∈ 𝑄��𝑈𝑊

C
, pathsets

‰⟨𝜉⟩C with paths from 𝑞C to 𝑞𝑡
C
are enumerated using

enumPathsetsTillUnroll(). For each enumerated pathset ⟨𝜉⟩𝑡
C
∈ # ‰⟨𝜉⟩C, the procedure

identifies a 𝒰-maximal pathset for each subset of ⟨𝜉⟩𝑡
C
and adds it to the set of candidate

options (lines 24 to 26 in algorithm 3).

Automatic Construction of a Product-Program 113

C0: for (i = 0; i < n; ++i) {

C1: if (c[i]) {

C2: x += a[i];

C3: } else {

C4: x += b[i];

C5: }

C6: }

(a) C source fragment.

C0 C1 C5

C4

C2

(b) Abbreviated graph for fig. 4.1a.

Figure 4.1: C source fragment and its abbreviated control-flow graph.

Representation of a pathset

The number of enumerated paths can be exponential in the number of procedure nodes

and unroll factor 𝜇. COUNTER [17] suggests use of a compact series-parallel digraph

representation, called SP-graph representation in [42], for efficiently representing a

(𝜇, 𝛿)-unrolled full pathset — a (𝜇, 𝛿)-unrolled full pathset is a maximal set of pairwise

mutually-exclusive paths such that all paths have same source node and same sink

node and no node in a path is repeated more than 𝜇 times in a path and the sink

node repeats exactly 𝛿 times in each path (𝛿 ≤ 𝜇). The SP-graph representation

of a pathset is a structured serial (·) and parallel (+) combination defined by the

grammar 𝑆𝑃 ::= 𝜖 | 𝑒 | 𝑆𝑃 · 𝑆𝑃 | 𝑆𝑃 + 𝑆𝑃, where 𝑒 is an edge and 𝜖 represents the

empty path. The paths represented by an SP-graph can be enumerated by a recursive

traversal of its structure. For example, consider the C procedure fragment and its

abbreviated control-flow graph in fig. 4.1. A (1, 1)-unrolled full pathset of loop path

from C0, say FP1,1C0⇝C0, has paths corresponding to both branches of if at C1, i.e.,

FP1,1C0⇝C0 = {C0→ C1→ C2→ C5→ C0, C0→ C1→ C4→ C5→ C0}. The SP-graph of

FP1,1C0⇝C0 is (C0→ C1) · (((C1→ C2) · (C2→ C5)) + ((C1→ C4) · (C4→ C5))) · (C5→ C0),
or, after abbreviating serial combinations, FP1,1C0⇝C0 = (C0→C1) · (C1→C2→C5 + C1→
C4→C5) · (C5→C0). An another example, the (4, 4)-unrolled full pathset of loop path

from C0, say FP4,4C0⇝C0, contains 16 paths and is represented by a serial concatenation

of four FP0,0C0⇝C0: FP
4,4
C0⇝C0 = ((C0→C1) · (C1→C2→C5 + C1→C4→C5) · (C5→C0))4,

where the repetition is indicated by the exponent.

COUNTER correlates a (𝜇, 𝛿)-unrolled full pathset in a single step (such that a product

graph edge contains a (𝜇, 𝛿)-unrolled full pathset). The primary advantage of using

(𝜇, 𝛿)-unrolled full pathset is that its SP-graph representation enables an efficient SMT

114 Automatic Construction of a Product-Program

encoding of a Hoare triple over such a pathset. Using such SP-graph representation,

it is possible to have linear-sized (in number of nodes in the SP-graph) SMT proof

obligations even if the SP-graph represents an exponential number of paths. SMT

solvers are able to discharge these linear-sized SMT obligations faster than time taken

to discharge the exponential number of proof obligations for individual paths. For

example, the weakest precondition[14] of predicate x = 0 over FP4,4C0⇝C0 is a linear sized

expression

x + (c[i] ? a[i] : b[i])
+ (c[i + 1] ? a[i + 1] : b[i + 1])
+ (c[i + 2] ? a[i + 2] : b[i + 2])
+ (c[i + 3] ? a[i + 3] : b[i + 3]) = 0

where the C-like ternary operator ‘?:’ is used as a shorthand for the ‘if-then-else’

operator of SMT. SMT solvers are able to discharge one such proof obligation faster

than 16 obligations (for each path in FP4,4C0⇝C0) performed over individual paths.

Recall that the set of paths in a pathset ⟨𝜉⟩C must be mutually exclusive by definition.

Further, a candidate pathset ⟨𝜉⟩C enumerated for a path 𝜉 ¥A = (𝑞 ¥A ↠ 𝑞�
�𝑈𝑊
¥A) (𝑞��𝑈𝑊

¥A ∉

{𝒰 ¥A,𝒲 ¥A}) can be partitioned into two pathsets ⟨𝜉⟩𝑡
C
and ⟨𝜉⟩𝑢

C
where the pathset

⟨𝜉⟩𝑡
C
contains paths with an error-free sink node 𝑞𝑡

C
and the pathset ⟨𝜉⟩𝑢

C
contains

paths with sink node 𝒰C. If the ⟨𝜉⟩𝑡C pathset is a (𝜇, 𝛿)-unrolled full pathset, i.e., the

enumPathsetsTillUnroll() function uses the getFullPathsetAtAllDelta() from

[17] (as we do in our implementation) then the SP-graph representation can be used for

representing ⟨𝜉⟩𝑡
C
.

4.1.3 Identifying A annotation

For each feasible simple path 𝜉 ¥A and each (potentially non-simple) path 𝜉C ∈ ⟨𝜉⟩C, the
asmAnnotOpts() procedure enumerates the options for annotating 𝜉 ¥A with alloc𝑠,𝑣,

dealloc𝑠,𝑣 instructions and operands for assembly call instructions.

An annotation option includes the positions and the operands of the (de)allocation

instructions:

• For an alloc𝑠 instruction ‘𝑝
𝑗

¥A : alloc𝑠 𝑒𝑣, 𝑒𝑤, 𝑎, 𝑧’, an annotation option would

have 𝑝
𝑗

¥A as the position, 𝑒𝑣 as the start address, 𝑒𝑤 as the allocation size, 𝑎 as the

Automatic Construction of a Product-Program 115

alignment, and 𝑧 ∈ 𝑍 as the allocation site.

• For an alloc𝑣 instruction ‘𝑝
𝑗

¥A : alloc𝑣 𝑒𝑤, 𝑎, 𝑧𝑙’, an annotation option would have

𝑝
𝑗

¥A as the position, 𝑒𝑤 as the allocation size, 𝑎 as the alignment, and 𝑧𝑙 ∈ 𝑍𝑙 as the

allocation site.

Recall that we restrict alloc𝑣 annotation to allocation sites due to a declaration

of a local variable 𝑧𝑙 ∈ 𝑍𝑙 , excluding allocation sites due to alloca() (section 2.6).

asmAnnotOpts() thus limits enumeration of annotation options for alloc𝑣 to allocation

sites 𝑍𝑙 .

For an assembly call instruction ‘𝑝
𝑗

¥A : call 𝜌’, an annotation option would have the

return type 𝛾, the types and values of arguments (#‰𝜏 #‰𝑥), and the set of callee-observable

regions 𝛽∗. The annotated call instruction would be ‘𝑝
𝑗

¥A : call 𝛾 𝜌(#‰𝜏 #‰𝑥) 𝛽∗’.

asmAnnotOpts() algorithm

Algorithm 4 shows the pseudo-code for the asmAnnotOpts() procedure. The procedure

takes two correlated paths 𝜉 ¥A and 𝜉C and procedures ¥A and C as input and returns the

options for (potentially) annotated ¥A and modified path 𝜉∗¥A as output.

(SingleIO) requirement enforces a lockstep correlation between (de)allocation and

procedure-call instructions in 𝜉 ¥A and 𝜉C. asmAnnotOpts() thus annotates a (de)alloc𝑠,𝑣,
call instruction in 𝜉 ¥A only if a corresponding (de)alloc, call instruction is present in

𝜉C. The call to collectAllocDeallocCallInsns() at line 2 in algorithm 4 returns, in
#‰

✤C, the list of (de)alloc and call instructions in input 𝜉C. asmAnnotOpts() attempts

to generate annotation options, represented using #‰𝜋 , for each returned instruction

✤C ∈
#‰

✤C (lines 4 to 24 in algorithm 4). The Cartesian product of the generated

annotation options #‰𝜋 (for each instruction ✤C ∈
#‰

✤C) forms the annotation candidates
#‰
✏ for 𝜉 ¥A and each annotation candidate ✏ ∈ #‰

✏, which is a sequence of annotation

options (one for each ✤C ∈
#‰

✤C), is separately applied to input ¥A to generate an output

annotated ¥A (and the updated 𝜉 ¥A, 𝜉
∗
¥A) option.

In the whitebox setting (lines 6 to 9 in algorithm 4), annotation hints are available

that can be used for precisely identifying the required annotation 𝜋. These annotation

hints are derived from multiple sources, including hints from instrumented compiler (see

section 6.1.4 for an example), debug headers of the executable, or manually provided

by the user. Further, they annotation hints are of varied quality, for example, hints

harvested from debug headers of an highly optimized executable are not very reliable

116 Automatic Construction of a Product-Program

Algorithm 4: Pseudo-code of the asmAnnotOpts() procedure.

1 Function asmAnnotOpts(𝜉 ¥A, 𝜉C, ¥A,C)
2

#‰

✤C ← � collectAllocDeallocCallInsns(𝜉C,C);
3

#‰
✏←� {∅};

4 foreach ✤C in
#‰

✤C do
5

#‰𝜋 ← � ∅;
6 if hints are available for ✤C then // whitebox setting

7 foreach hint ℎ do
8

#‰𝜋 ← � #‰𝜋 ∪ genAnnotOptUsingHint(𝜉 ¥A,✤C, 𝜉C, ℎ, ¥A,C);
9 end

// blackbox enumeration

10 if ✤C is alloc then
11 if alloc insn not already present for ✤C in ¥A then
12

#‰𝜋 ← � genAnnotOptsForAlloc(𝜉 ¥A,✤C, 𝜉C,
#‰
✏, ¥A,C);

13 else if ✤C is dealloc then
14

#‰𝜋 ←� genAnnotOptsForDealloc(𝜉 ¥A,✤C, 𝜉C,
#‰
✏, ¥A,C);

15 else // procedure call

16
#‰𝜋 ←� genAnnotOptsForFcallUsingCallConvAndCPath(𝜉 ¥A,✤C, 𝜉C,

#‰
✏, ¥A,C);

17
‰

✏′ = ∅;
// cross-product all possibilities with existing options

18 foreach ✏ in
#‰
✏ do

19 foreach 𝜋 in #‰𝜋 do

20
‰

✏′ ← � # ‰

✏′ ∪ {✏ · 𝜋};
21 end

22 end

23
#‰
✏← � # ‰

✏′;
24 end
25 𝑟𝑒𝑡 ← � ∅;

// generate an annotated ¥A for each option

26 foreach ✏ in
#‰
✏ do

27 ¥A′, 𝜉∗¥A ← � applyAnnots(¥A, 𝜉 ¥A,✏);
28 𝑟𝑒𝑡 ← � 𝑟𝑒𝑡 ∪ (¥A′, 𝜉∗¥A);
29 end
30 return ret

31 end

[26]. We use all available hints for generating (multiple) annotation options. A best-first

search implementation (see section 4.1.9) may choose to rank options from certain

sources (e.g., hints from instrumented compiler) ahead of others.

If no annotation hints are available, the correlated (de)alloc/call instruction ✤C

in 𝜉C can be utilized for deducing partial annotation. The allocation size, alignment,

and allocation site operands of an (de)alloc𝑠,𝑣 instruction are uniquely identified

from the correlated (de)alloc instruction ✤C. Similarly, the arguments’ count and

types, the return type, and the callee-observable regions for a call instruction in 𝜉 ¥A
are identified using a correlated call instruction ✤C; the deduction of arguments’

Automatic Construction of a Product-Program 117

count further enables identification of the addresses for the arguments of call using

calling conventions (genAnnotOptsForFcallUsingCallConvAndCPath() at line 16 in

algorithm 4).

After the deduction of other parameters, only the position and start address4 of an

(de)alloc𝑠,𝑣 instruction need to be determined (or guessed) for a complete annotation.

For a (de)alloc𝑠 due to a procedure call argument, the position and start address

are determined based on argument order and calling conventions. For rest of the

(de)alloc𝑠,𝑣 instructions, we reduce the search space for the position and start address

(at the cost of reduced generality) using the following three restrictions:

1. An alloc𝑠,𝑣 (dealloc𝑠,𝑣) annotation is added only after (before) an instruction that

updates the stackpointer esp.

2. For an alloc𝑠 instruction, the stackpointer value esp after the update is used as the

annotation for the start address expression.

3. For a single allocation site in C, at most one alloc𝑠,𝑣 instruction (but potentially

multiple dealloc𝑠,𝑣 instructions) is added to ¥A (line 11 in algorithm 4).

Thus, in a blackbox setting, due to the third restriction, a refinement proof may fail if

the compiler specializes a path containing a local variable allocation. Due to the first

and second restriction, a refinement proof may fail for certain (arguably rare) types of

(de)allocation order preserving stack reallocation and stack merging performed by the

compiler. An example is discussed in section 6.2.4. Note that these limitations hold

only for the blackbox setting.

An annotation option 𝜋, obtained either from whitebox hints or blackbox enumeration,

is accumulated in each sequence of annotation options ✏ ∈ #‰
✏ enumerated so far

(lines 18 to 22 in algorithm 4). Once all instructions in
#‰

✤C have been considered,
#‰
✏

contains the Cartesian product of annotation options enumerated for each ✤C ∈
#‰

✤C

and each ✏ ∈ #‰
✏ forms an annotation candidate for 𝜉 ¥A.

Each enumerated annotation candidate ✏ ∈ #‰
✏ is applied separately to A to incre-

mentally construct ¥A (applyAnnots() at line 27 in algorithm 4). The application of

an annotation may potentially update the path 𝜉 ¥A to 𝜉∗¥A due to addition of edges for

(de)alloc𝑠,𝑣 and annotated call. asmAnnotOpts() returns the options for the updated
¥A and 𝜉∗¥A.

4start address is only required for the alloc𝑠 instruction

118 Automatic Construction of a Product-Program

Algorithm 5: Pseudo-code of the trimToMatchPathToErrorNode() procedure.

1 Function trimToMatchPathToErrorNode(#‰
𝜉 ¥A,

#‰
𝜉 C)

2 𝑙 ←� min(| #‰𝜉 ¥A |, |
#‰
𝜉 C |);

3
#‰
𝜉 ∗¥A,

#‰
𝜉 ∗C ←� take(𝑙,

#‰
𝜉 ¥A), take(𝑙,

#‰
𝜉 C); ; // take first 𝑙 elements from

#‰
𝜉 ¥A and

#‰
𝜉 C

4 if sink(last(#‰
𝜉 ∗¥A)) ∈ {𝒰 ¥A,𝒲 ¥A} or sink(last(

#‰
𝜉 ∗C)) = 𝒰C then // return trimmed

sequences if either ends with error node

5 return (
#‰
𝜉 ∗¥A,

#‰
𝜉 ∗C)

6 else // otherwise, return the original sequences

7 return
#‰
𝜉 ¥A,

#‰
𝜉 C

8 end

4.1.4 Validating structure of identified paths

asmAnnotOpts() produces a set of options for annotation and the chooseFrom operator

chooses one such that (if possible) the annotated instructions generate identical traces

in ¥A and C.

It must be emphasized here that due to these annotated instructions, extra paths to

error nodes 𝒰 ¥A and 𝒲 ¥A are added to ¥A — recall the multi-line graph instructions

translations of (de)alloc𝑠,𝑣 instructions, with checks for overlap and alignment, pre-

sented in (AllocS’), (DeallocS’), (AllocV), and (DeallocV). These paths are

not a part of the annotated 𝜉∗¥A that contains the error-free sub-paths of the annotated

(de)alloc𝑠,𝑣 instructions. Instead, the correlation of these extra paths to error nodes

happens in second phase of the algorithm (when 𝑝ℎ𝑎𝑠𝑒 = CORRELATE NEW ERROR PATHS;

recall that the algorithm operates in two phases).

After annotation, the annotated path 𝜉∗¥A may become a non-simple path5 due to the extra

I/O instructions introduced by the annotation. The (potentially non-simple) path 𝜉∗¥A is

therefore broken into a sequence of constituent paths
#‰
𝜉 ′¥A using breakIntoSingleIOPaths()

(line 26 of algorithm 1) so that each I/O path appears by itself (and not as a sub-path

of a longer constituent path) — this caters to the (SingleIO) requirement (section 3.3.1).

breakIntoSingleIOPaths() is similarly used on 𝜉C to obtain a sequence of simple paths
#‰
𝜉 ′
C
.

The (SingleIO) requirement requires that each I/O path 𝜉′¥A ∈
#‰
𝜉 ′¥A is correlated separately

with an I/O path 𝜉′
C
∈ #‰

𝜉 ′
C
of similar kind. However, the sequences of simple paths

#‰
𝜉 ′¥A

and
#‰
𝜉 ′
C
obtained after breakIntoSingleIOPaths() may not have identical lengths. For

5Recall that a simple path cannot have a cut-point as an intermediate node.

Automatic Construction of a Product-Program 119

Algorithm 6: Pseudo-code of the haveSimilarStructure() procedure.

1 Function haveSimilarStructure(#‰
𝜉 ¥A,

#‰
𝜉 C)

2 if | #‰𝜉 ¥A | ≠ |
#‰
𝜉 C | then

3 return false

4 (𝑛 ¥A, 𝑛𝑡¥A) ←� src(first(
#‰
𝜉 ¥A)), sink(last(

#‰
𝜉 ¥A));

5 (𝑛C, 𝑛𝑡C) ←� src(first(
#‰
𝜉 C)), sink(last(#‰

𝜉 C));
6 if 𝑛𝑡¥A = 𝒰 ¥A ∧ 𝑛𝑡

C
≠ 𝒰C then // (Safety)

7 return false

8 if 𝑛𝑡¥A ∉ {𝒰 ¥A,𝒲 ¥A} ∧ 𝑛𝑡
C
∉ {𝒰C,𝒲C} ∧ term(𝑛𝑡¥A) ≠ term(𝑛𝑡

C
) then // (Termination)

9 return false

// (SingleIO) --- each I/O path-pair is of same kind

10 foreach (𝜉 ¥A, 𝜉C) in zip(#‰
𝜉 ¥A,

#‰
𝜉 C) do

11 if isIOPath(𝜉 ¥A) ≠ isIOPath(𝜉C) then
12 return false

13 if isIOPath(𝜉 ¥A) ∧ ¬IOPathsOfSameKind(𝜉 ¥A, 𝜉C) then
14 return false

15 end
16 return true

17 end

example, if 𝜉 ¥A is a path to an error-free node 𝑛𝑡¥A and 𝜉C is a path to the error node

𝒰C, then the sequence
#‰
𝜉 ′¥A may be larger than

#‰
𝜉 ′
C
. In such a scenario, because 𝒰C is a

terminating node, the path sequence
#‰
𝜉 ′¥A can be trimmed to make the sequence lengths

identical. This trimming is permissible because under the refinement definition the

generated traces are required to be identical only till C halts with error 𝒰 or ¥A halts with

error 𝒲 (section 2.4). The procedure trimToMatchPathToErrorNode() (line 28 of algo-

rithm 1) attempts to make the lengths of
#‰
𝜉 ′¥A and

#‰
𝜉 ′
C
identical by trimming

#‰
𝜉 ′¥A and

#‰
𝜉 ′
C

in this fashion. Algorithm 5 shows the pseudo-code of trimToMatchPathToErrorNode().

Next, the haveSimilarStructure() procedure validates the structure of
#‰
𝜉 ¥A and

#‰
𝜉 C ob-

tained after trimToMatchPathToErrorNode() (line 29 in algorithm 1). haveSimilarStruc-

ture (#‰
𝜉 ¥A,

#‰
𝜉 C) returns true iff the sequence of paths

#‰
𝜉 ¥A and

#‰
𝜉 C have identical lengths

and are similarly structured, where structural similarity is defined with respect to the

structural requirements of X. Algorithm 6 shows the pseudo-code of haveSimilarStruc-

ture(). Let pos(𝜉, #‰
𝜉) represent the position of path 𝜉 in a sequence of paths

#‰
𝜉 . Let 𝜉

𝑗

¥A
and 𝜉

𝑗

C
denote paths such that 𝜉

𝑗

¥A ∈
#‰
𝜉 ¥A, 𝜉

𝑗

C
∈ #‰

𝜉 C and pos(𝜉C, #‰
𝜉 C) = pos(𝜉 ¥A,

#‰
𝜉 ¥A) = 𝑗 ;

we will refer to the pair (𝜉 𝑗

¥A, 𝜉
𝑗

C
) as a “coupled path-pair”. haveSimilarStructure()

ensures that, i.e., it returns true if, if the partially-constructed X satisfies the structural

requirements of section 3.3.1, then it will continue to satisfy the (SingleIO), (Safety),

and (Termination) requirements after adding edges corresponding to coupled path-pairs

𝑒
𝑗

X
= (𝜉 𝑗

¥A, 𝜉
𝑗

C
) (for all 𝑗) to X. Let 𝜉 ¥A and 𝜉C be the last paths in the path sequences

120 Automatic Construction of a Product-Program

#‰
𝜉 ¥A and

#‰
𝜉 C respectively such that pos(𝜉 ¥A,

#‰
𝜉 ¥A) = pos(𝜉C, #‰

𝜉 C) = | #‰𝜉 ¥A |. (Safety) re-

quires that if the sink node 𝑛𝑡¥A of 𝜉 ¥A is 𝒰 ¥A, then the sink node 𝑛𝑡
C
of 𝜉C must be

𝒰C and (Termination) requires that if both 𝑛𝑡¥A and 𝑛𝑡
C
are error-free, then they must

agree on terminating status, i.e., term(𝑛𝑡¥A) = term(𝑛𝑡
C
). The (SingleIO) check obliga-

tions include ensuring that a coupled I/O path-pair (𝜉 𝑗

¥A, 𝜉
𝑗

C
) is an I/O path-pair of

same kind. This is expressed through IOPathsOfSameKind() in algorithm 6 wherein

IOPathsOfSameKind(𝜉 𝑗

¥A, 𝜉
𝑗

C
) returns true iff 𝜉

𝑗

¥A and 𝜉
𝑗

C
are either both reads or both

writes for the same type of value (implemented as syntactic checks on the read/written

value6).

4.1.5 Incremental construction of (¥A,X)

At this point (line 31 in algorithm 1), we have two sequences of paths
#‰
𝜉 ∗¥A and

#‰
𝜉 ∗
C

that have identical number of elements. In its next step, the Dynamo algorithm

constructs an X edge 𝑒X = (𝜉′¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A), 𝜉
′
C
= (𝑛 ¥A ↠ 𝑛𝑡¥A)) from a coupled path-

pair (𝜉′¥A, 𝜉
′
C
) (through zip() in line 31 of algorithm 1). To ensure (Similar-Speed)

requirement (section 3.3.1), the algorithm checks that the addition of 𝑒X does not

create an empty cycle of C paths in EX (addingEdgeWillCreateEmptyCCycle() in

algorithm 1). We only need to perform the check on C paths because our enumeration

guarantees that 𝜉′¥A is never empty — recall that correlatedPathsInCOpts() allows a

path 𝜉C in a pathset ⟨𝜉⟩C to be empty (so that 𝜉′
C
can be empty) but 𝜉 ¥A, as returned

by getAllSimplePathsBetweenCutPoints(), can never be empty. The constructed edge

𝑒X = (𝜉′¥A; 𝜉
′
C
) is added to EX and its destination node (𝑛𝑡¥A, 𝑛

𝑡
C
) is added to NX, if not

already present.

If 𝜉′
C
contains an edge labeled with a choose instruction (‘ #‰𝑣 := 𝜃 (#‰𝜏)’), then we update

the deterministic choice map DX to include determinized mappings for each choose

instruction in 𝜉′
C
through addDetMappings(); algorithm 7 shows the pseudo-code of

addDetMappings(). For example, if 𝜉′
C
represents a path between wr(allocBegin(. . . ,),)

and wr(allocEnd(. . . ,),) for an alloc instruction in C ((Alloc) in fig. 2.5), and 𝜉′¥A
is a corresponding path due to an alloc𝑠,𝑣 instruction, and edges 𝑒

𝜃𝑎
C

and 𝑒
𝜃𝑚
C

in 𝜉′
C

are labeled with instructions ‘𝛼𝑏 := 𝜃 (i32)’ and ‘𝜃 (i32 → i8)’ respectively due to

(Alloc), we add mappings DX(𝑒X, 𝑒𝜃𝑎C , 1) = 𝑣 and DX(𝑒X, 𝑒𝜃𝑚C , 1) = 𝑀 ¥A, where 𝑣 is

the address defined in 𝜉′¥A due to either alloc𝑠 ((AllocS)) or alloc𝑣 ((AllocV)).
In algorithm 7, the 𝑒

𝜃𝑎
C

edge is identified using identifyAllocAddr𝜃Edge() and the

6Recall that we use different value constructors for different instructions; see item 4 in section 2.2.7

Automatic Construction of a Product-Program 121

Algorithm 7: Pseudo-code of the addDetMappings() and inferInvariantsAnd-
Counterexamples() procedures.

1 Function addDetMappings(𝑒X,DX)
2 DX

′ ← � DX;
3 (𝜉 ¥A, 𝜉C) ←� 𝑒X;
4 if 𝑒

𝜃𝑎
C
← � identifyAllocAddr𝜃Edge(𝜉C) then

5 𝑒
𝜃𝑚
C
← � identifyAllocMem𝜃Edge(𝜉C);

6 DX
′ (𝑒X, 𝑒𝜃𝑎C , 1) ←� identifyAllocAddr(𝜉 ¥A); ; // 𝑣 in (AllocS),(AllocV)

7 DX
′ (𝑒X, 𝑒𝜃𝑚C , 1) ←� 𝑀 ¥A;

8 else if 𝑒′C ← � identifyEntryMem𝜃Edge(𝜉C) then
9 DX

′ (𝑒X, 𝑒′C, 1) ←� 𝑀 ¥A;
10 return DX

′

11 end

12 Function inferInvariantsAndCounterexamples(𝑛X,NX, EX,DX,ΦX, ¥A,C)
13 if 𝑛X is an error node then
14 return

15 ✩ ¥A (𝑛X) ←� computeInterestingExprsAtNodeForA(¥A,NX, EX,ΦX);
16 ✩C (𝑛X) ←� computeInterestingExprsAtNodeForC(C,NX, EX,ΦX);
17 ΦX ← � inferInvariantsForExprs(✩ ¥A,✩C,NX, EX,DX,ΦX, ¥A,C);
18 end

𝑒
𝜃𝑚
C

edge is identified using identifyAllocMem𝜃Edge(). Notice that our algorithm only

populates DX(𝑒X, 𝑒𝜃C, 𝑛) for 𝑛 = 1, even though section 3.2 defines DX more generally.

Algorithm 7 also populates DX for an edge 𝑒′
C
that corresponds to the ‘𝜃 (i32 → i8)’

edge due to procedure-entry ((EntryC) in fig. 2.5 and (EntryA) in fig. 2.7), identified

using identifyEntryMem𝜃Edge() in algorithm 7.

Recall that Dynamo maintains the invariant that all non-coverage requirements hold

over the partially-constructed X. So far, the algorithm has ensured that each structural

requirement is satisfied by the newly added edge 𝑒X = (𝑛X → (𝑛𝑡¥A, 𝑛
𝑡
C
)). If the destination

node (𝑛𝑡¥A, 𝑛
𝑡
C
) is an error-free node, the invariant network ΦX may no longer be inductive

due to the addition of the new edge, thereby violating the (Inductive) requirement

(see section 3.3.1). The inferInvariantsAndCounterexamples() procedure, shown in

algorithm 7, updates ΦX to ensure its inductivity. To keep invariant inference tractable,

the state elements and expressions participating in invariant inference at a node 𝑛X =

(𝑛 ¥A, 𝑛C) are restricted to interesting expressions at 𝑛X — which include at least the live

registers, ghost variables, and stack slots at 𝑛 ¥A in ¥A (shown as ✩ ¥A(𝑛X) in algorithm 7)

and a subset of all defined variables (including ghost variables) for C (shown as ✩C(𝑛X)
in algorithm 7). These choices are similar to the ones considered in [42]. We defer a

detailed discussion of the invariant inference, including a description of the candidate

invariant grammar, to section 4.2.

122 Automatic Construction of a Product-Program

Algorithm 8: Pseudo-code of the checkSemanticReqsExceptCoverage() proce-
dure.
1 Function checkSemanticReqsExceptCoverage(NX, EX,DX,ΦX, ¥A,C)
2 if ¬invariantsAreInductive(NX, EX,DX,ΦX, ¥A,C) then
3 return false

4 if ¬checkEquivalence(NX, EX,DX,ΦX, ¥A,C) then
5 return false

6 if ¬checkMAC(NX, EX,DX,ΦX, ¥A,C) then
7 return false

8 if ¬checkMemEq(NX, EX,DX,ΦX, ¥A,C) then
9 return false

10 return true

11 end

4.1.6 Checking requirements on partial X

Once the invariant network has been updated, the non-coverage semantic requirements

are checked through checkSemanticReqsExceptCoverage() procedure. A partially con-

structed X that fails to satisfy the requirements check is discarded7. The pseudo-code

of checkSemanticReqsExceptCoverage(), shown in algorithm 8, performs checks for the

following semantic requirements on the partial X: (Inductive), (Equivalence), (Memory

Access Correspondence) or (MAC), and (MemEq). The (Inductive) check is realized

through invariantsAreInductive(), which fails if the invariant network ΦX is not

inductive. Similarly, the (Equivalence), (MemEq), and (Memory Access Correspon-

dence) or (MAC) checks are realized through checkEquivalence(), checkMemEq(), and

checkMAC() respectively. The former two, checkEquivalence() and checkMemEq(),

simply involve checking if the set of invariants 𝜙𝑛X , inferred at each error-free node

𝑛X ∈ NX, include the required invariants, ΩC = Ω ¥A and 𝑀 ¥A =
Σ𝐵
¥A\(Σ

𝑍𝑙
¥A |

𝑣) 𝑀C respectively8.

(Memory Access Correspondence) or (MAC) check

The pseudo-code for the checkMAC() sub-procedure is shown in algorithm 8. Recall

that the (MAC) requirement check (section 3.3.1) entails ensuring that for each edge

𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX, such that 𝑛𝑡

X
≠ (,𝒰C) and for each memory access to interval

[𝛼]𝑤 in 𝜉 ¥A, either:

7Recall that the chooseFrom operator chooses option such that this check does not fail if the
required X can be constructed using Dynamo.

8As we will see later in section 4.2, these are instantiations of the invariant shapes WEq and

MemEq respectively.

Automatic Construction of a Product-Program 123

Algorithm 9: Pseudo-code of the checkMAC() procedure.

1 Function checkMAC(NX, EX,DX,ΦX, ¥A,C)
2 foreach 𝜉 ¥A,𝜉C such that 𝑒X = (𝑛X 𝜉¥A; 𝜉C−−−−−→𝑛𝑡

X
) ∈ EX and 𝑛𝑡

X
≠ (,𝒰C) do

3 𝑚𝑒𝑚𝐴𝑐𝑐C ←� collectMemAccessesInPath(𝜉C);
4 𝑖𝑠𝑆𝑎 𝑓 𝑒C (rd) ←�

∧
(𝜉 𝑗

C
,𝛼𝑗 ,𝑤 𝑗 ,rd) ∈𝑚𝑒𝑚𝐴𝑐𝑐C

WP[𝜉 𝑗

C
]𝑒XDX

(accessIsSafe (𝛼 𝑗 , 𝑤 𝑗 , rd,C));

5 𝑖𝑠𝑆𝑎 𝑓 𝑒C (wr) ←�
∧

(𝜉 𝑗

C
,𝛼𝑗 ,𝑤 𝑗 ,wr) ∈𝑚𝑒𝑚𝐴𝑐𝑐C

WP[𝜉 𝑗

C
]𝑒XDX

(accessIsSafe (𝛼 𝑗 , 𝑤 𝑗 , wr,C));

6 foreach (𝜉 𝑗
¥A, 𝛼 𝑗 , 𝑤 𝑗 , 𝑘 𝑗) ∈ collectMemAccessesInPath(𝜉 ¥A) do

7 𝑖𝑠𝑆𝑎 𝑓 𝑒 ¥A ← � accessIsSafe (𝛼 𝑗 , 𝑤 𝑗 , 𝑘 𝑗 , ¥A);
8 if Hoare triple {𝜙𝑛X

∧ 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉C]𝑒XDX
)}(𝜉 𝑗

¥A; 𝜖){𝑖𝑠𝑆𝑎 𝑓 𝑒C (𝑘 𝑗) =⇒ 𝑖𝑠𝑆𝑎 𝑓 𝑒 ¥A} does
not hold then

9 return false

10 end

11 end
12 return true

13 end
14 Function accessIsSafe(𝛼, 𝑤, 𝑘, 𝑃)

// page size parametric access-is-safe condition generator

15 pgMask←� ∼(PAGE SIZE − 1);
16 𝑢𝑛← � unique variable different from all state variables in C and ¥A;
17 𝑢𝑛𝐿 ← � 𝑢𝑛 & pgMask; 𝑢𝑛𝐻 ← � 𝑢𝑛𝐿 + PAGE SIZE − 1;
18 𝑙, ℎ←� 𝛼, 𝛼 + 𝑤 − 1;
19 𝑖𝑛𝑈𝑛𝑎𝑙𝑙𝑜𝑐 ← � ov([𝑙, ℎ], [𝑢𝑛𝐿, 𝑢𝑛𝐻]);
20 if P = ¥A then
21 if 𝑘 = rd then
22 𝑖𝑛𝐺𝐹𝑆 ←� [𝑙, ℎ] ⊆ (Σ𝐺∪𝐹

¥A ∪ [esp, stk𝑒]);
23 else // 𝑘 = wr

24 𝑖𝑛𝐺𝐹𝑆 ←� [𝑙, ℎ] ⊆ (Σ𝐺𝑤∪𝐹𝑤

¥A ∪ [esp, stk𝑒]);
25 return 𝑖𝑛𝑈𝑛𝑎𝑙𝑙𝑜𝑐 =⇒ 𝑖𝑛𝐺𝐹𝑆)
26 else // 𝑃 = C
27 return ¬𝑖𝑛𝑈𝑛𝑎𝑙𝑙𝑜𝑐

28 end

• A corresponding memory access (a corresponding read or a corresponding write) to

identical interval is present in 𝜉C. In other words, the access is matched in 𝜉C.

• Or, for a read access, [𝛼]𝑤 ⊆ (Σ𝐺∪𝐹
¥A ∪ [esp, stk𝑒]), and for a write access, [𝛼]𝑤 ⊆

(Σ𝐺𝑤∪𝐹𝑤
¥A ∪ [esp, stk𝑒]).

In the checkMAC() procedure, the first clause is generalized to page-granularity where

an access in 𝜉 ¥A is deemed to be matched if it remains within the same memory page as

an access in 𝜉C, i.e., an access interval [𝛼]𝑤 ([𝛼]𝑤 ⊆ Σrd
¥A or [𝛼]𝑤 ⊆ Σwr

¥A) is matched

124 Automatic Construction of a Product-Program

iff the following holds:

∀𝑝 :
(

alignedPAGE SIZE(𝑝)
∧ ov([𝛼]𝑤, [𝑝]PAGE SIZE)

)
=⇒ ∃𝛼′,𝑤′ : ©­«

[𝛼′]𝑤′ ⊆ Σ
rd/wr
C

∧ ov([𝛼′]𝑤′ , [𝑝]PAGE SIZE)
ª®¬

where Σ
rd/wr
C

= Σrd
C

if [𝛼]𝑤 ⊆ Σrd
¥A and Σ

rd/wr
C

= Σwr
C

if [𝛼]𝑤 ⊆ Σwr
¥A , and PAGE SIZE

is the size of the page (e.g., PAGE SIZE = 4096). This page granular version is equivalent

to the original requirement when PAGE SIZE = 1.

The checkMAC() implementation in algorithm 8 formulates the (MAC) check as a search

for an arbitrary unallocated page of size PAGE SIZE starting at an (page-aligned) address

𝑢𝑛 such that the access interval [𝛼]𝑤 (in ¥A) overlaps with it but none of the memory

accesses in 𝜉C overlap with it.

Let 𝑒X = ((𝑛 ¥A, 𝑛C) 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) such that 𝑛𝑡

X
≠ (,𝒰C). A memory access on 𝜉 ¥A to address

𝛼 ¥A, of size 𝑤 ¥A, and kind 𝑘 ¥A ∈ {rd, wr} (𝑘 ¥A = rd for memory read and 𝑘 ¥A = wr for

memory write) reachable after traversing path 𝜉′¥A starting from 𝑛 ¥A is represented by

tuple (𝜉′¥A, 𝛼 ¥A, 𝑤 ¥A, 𝑘 ¥A). Similarly, (𝜉 𝑗

C
, 𝛼

𝑗

C
, 𝑤

𝑗

C
, 𝑘

𝑗

C
) for 1 ≤ 𝑗 ≤ 𝑚 represents 𝑗th memory

access (out of 𝑚) on 𝜉C of same kind as 𝑘 ¥A, i.e., ∀1≤ 𝑗≤𝑚 : 𝑘
𝑗

C
= 𝑘 ¥A. Let WP𝜉𝑃 (𝛼) represent

weakest precondition[14] of 𝛼 after executing 𝜉𝑃. An access (𝜉′¥A, 𝛼 ¥A, 𝑤 ¥A, 𝑘 ¥A) is safe iff

the following holds:

©­­­­­­«

𝜙(𝑛 ¥A,𝑛C)

∧ 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 (𝜉′¥A) ∧ 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉C]𝑒XDX
)

∧
𝑚∧
𝑗=1

WP
𝜉
𝑗
C
(¬ov([𝑢𝑛]PAGE SIZE, [𝛼 𝑗

C
]
𝑤

𝑗
C
))

ª®®®®®®¬
=⇒ WP𝜉′¥A

(ov([𝑢𝑛]PAGE SIZE, [𝛼 ¥A]𝑤 ¥A)
=⇒ [𝛼 ¥A]𝑤 ¥A ⊆ Σ𝐺𝐹𝑆)

(4.1)

where Σ𝐺𝐹𝑆 = Σ𝐺∪𝐹
¥A ∪ [esp, stk𝑒] if 𝑘 ¥A = rd, and Σ𝐺𝐹𝑆 = Σ

𝐺𝑤∪𝐹𝑤
¥A ∪ [esp, stk𝑒] if

𝑘 ¥A = wr (see procedure accessIsSafe() in algorithm 9).

It is easy to see that eq. (4.1) will not hold for an access [𝛼 ¥A]𝑤 ¥A if it is neither matched

by any of the accesses ([𝛼 𝑗

C
]
𝑤

𝑗
C
for any 𝑗) in 𝜉C nor does it belong to the address set

Σ𝐺𝐹𝑆.

Automatic Construction of a Product-Program 125

4.1.7 Correlating paths to error nodes due to annotated in-

structions

Recall that the Dynamo operates in two phases: in the first phase all paths in the

original, non-annotated A are annotated and correlated, and in the second phase the

extra error-going paths introduced due to annotation are correlated.

The correlation of these extra paths follow the same procedure, shown as call to the

same phase-parametric constructX() procedure at line 6 in algorithm 1. As the required

annotation is assumed to have been performed in the first phase, in the second call to

constructX() with 𝑝ℎ𝑎𝑠𝑒 = CORRELATE NEW ERROR PATHS, the procedure skips the call

to the asmAnnotOpts() procedure (line 23 in algorithm 1). Similarly, as an optimization,

the procedure avoids correlating an already correlated 𝜉 ¥A (line 17 in algorithm 1).

4.1.8 Soundness of Dynamo algorithm

When all feasible simple paths between the cut points of ¥A are exhaustively correlated

(including the paths introduced due to annotation), the (Coverage ¥A) requirement must

be satisfied. The checkCoverageReqs() procedure further checks the satisfaction of

(CoverageC) before returning Success (line 8 in algorithm 1).

Recall that the path enumeration ensures (Mutex ¥A), (MutexC) and (Well-formedness)

are satisfied by construction, the addingEdgeWillCreateEmptyCCycle() procedure en-

sures that (Similar-Speed) holds, and the haveSimilarStructure() procedure ensures that

the remaining three structural requirements are also satisfied. The four non-coverage

semantic requirements are checked in checkSemanticReqsExceptCoverage(). Dynamo is

sound because it returns Success only if all the thirteen search-algorithm requirements

are satisfied.

4.1.9 Counterexample Guided Best-First Search

The chooseFrom operator must attempt to maximize the chances of returning Success,

even if only a fraction of the search space has been explored. Dynamo uses the

counterexamples generated when a proof obligation is falsified (e.g., during invariant

inference) to guide the search towards the more promising options. A counterexample

is a proxy for the machine states of C and ¥A that may appear at a node 𝑛X during the

126 Automatic Construction of a Product-Program

lockstep execution encoded by X. Thus, if at any step during the construction of X,

the execution of a counterexample for a candidate partial solution (¥A,X) results in the

violation of a non-coverage requirement (e.g., (MemEq)) that candidate is discarded

and the search backtracks (instead of failing). The counterexample-guided best-first

search exhausts the entire search space of correlations before returning Failure.

Our (MemEq) requirement is generalization of the heap relation9 pruning criteria of

COUNTER [17]. In COUNTER, a candidate that does not have matching heap states

at the end of counterexample execution is discarded. Dynamo, through (MemEq),

extends this to matching of memory states of stack-allocated locals as well. If the

assembly procedure ¥A does not have store-sinking like memory optimizations that cause

divergence in the non-stack memory state of the two procedures, (MemEq) effectively

prunes the search space without any loss in completeness guarantee.

The execution of counterexamples opportunistically weakens the node invariants in X.

Like COUNTER [17], we use the number of live registers in ¥A related through the current

invariants in ΦX to rank the enumerated partial candidate solutions to implement a

best-first search. This ranking criteria is key to (relative) scaling of COUNTER and

Dynamo algorithms.

4.2 Invariant Inference

Our invariant inference procedure for identifying node invariants is a counterexample-

guided algorithm, similar to COUNTER [17]. Candidate invariants of a partial product

graph X are formed by conjoining the predicates drawn from the predicate grammar

shown in fig. 4.2. A candidate invariant 𝜙 at node 𝑛X is validated using Hoare

triples of the form: {𝜙
𝑛
𝑗
X
}(𝜉 𝑗𝑘
¥A ; 𝜉

𝑗𝑘
C
){ 𝜙 } for all 𝑛 𝑗

X
∈ NX and (𝜉 𝑗𝑘

¥A , 𝜉
𝑗𝑘
C
) such that 𝑒

𝑗𝑘
X

=

(𝑛 𝑗

X

𝜉
𝑗𝑘
¥A ; 𝜉 𝑗𝑘

C−−−−−→𝑛X) ∈ EX.

The predicate grammar includes shape for inferring affine relations (affine) between

interesting bitvector expressions of ¥A and C — recall that the set of expressions

participating in invariant inference are drawn from a set of interesting expressions in
¥A and C (inferInvariantsAndCounterexamples() in algorithm 7). Apart from affine ,

we also infer inequality relations through ineq and ineqC over these interesting

9Unlike Dynamo, COUNTER does not distinguish between different global variables in the program
and treat all memory as a single ”heap”.

Automatic Construction of a Product-Program 127

affine
∑

𝑖 𝑐𝑖𝑣𝑖 = 𝑐 ineqC 𝑣 ⊙ 𝑐 ineq 𝑣1 ⊙ 𝑣2

MemEq 𝑀C =
Σ𝐵
¥A\(Σ

𝑍𝑙
¥A |

𝑣) 𝑀 ¥A AllocEq ∀𝑟∈𝐵 : Σ𝑟
C
= Σ𝑟

¥A WEq Ω ¥A = ΩC

spOrd sp.𝑝
𝑗1
¥A ≤𝑢 (sp.𝑝

𝑗2
¥A − 𝑣

∗) zEmpty {Σ𝑧

C
, Σ𝑧𝑙
¥A |

𝑠, Σ𝑧𝑙
¥A |

𝑣} {=,≠} ∅
spzBd em.𝑧 ∨ (sp.𝑝 𝑗

¥A ⊙ { lb.𝑧 , ub.𝑧 }) spzBd’ em.𝑧 ∨ (sp.𝑝 𝑗

¥A ≤𝑢 (lb.𝑧 − 𝑣
∗))

Figure 4.2: Predicate grammar for constructing candidate invariants. 𝑣 represents a
bitvector variable (registers, stack slots, and ghost variables), 𝑐 represents a bitvector
constant. ⊙ ∈ {≤𝑠,𝑢, <𝑠,𝑢, >𝑠,𝑢, ≥𝑠,𝑢}. 𝑣∗ represents a bitvector value drawn from a
restricted grammar (explained in text).

expressions. An efficient counterexample-guided algorithm for computing affine relations

over bitvectors in an incremental setting such as ours is described in [42].

The candidate invariants include shapes MemEq and AllocEq for equality of memory

and allocation state of common regions across ¥A and C and the WEq shape for capturing

the equality of outside world states. MemEq and WEq cater to the (MemEq) and

(Equivalence) requirements respectively. Note that AllocEq follows from Dynamo’s

DX construction (addDetMappings() in algorithm 1) and the execution semantics

that observe each (de)allocation event. If the (de)allocations in both ¥A and C were

unobservable (and thus allowed to potentially differ indefinitely), invariant inference

would become significantly harder, especially when equating memory regions of locals.

Recall that in our graph representations we save stackpointer value at the boundary

of a stackpointer updating instruction at PC 𝑝
𝑗

¥A in ghost variable sp.𝑝
𝑗

¥A ((Op-esp)
in fig. 2.6). These ghost variables make it convenient to express relationships between

stack-allocated local regions. To prove separation between different local variables

(allocated by different stackpointer decrements), we require invariants that lower-bound

the gap between two ghost variables, say sp.𝑝
𝑗1
¥A and sp.𝑝

𝑗2
¥A , by some value 𝑣∗ that

depends on the allocation size operand of an alloc𝑠 instruction (spOrd).

To capture the various relations between lower bounds, upper bounds, region sizes,

and sp.𝑝
𝑗

¥A , the guessing grammar includes shapes spzBd and spzBd’ that are of the

form: “either a local variable region is empty or its bounds are related to sp.𝑝
𝑗

¥A in

these possible ways”. The “a local variable region is empty” part caters to the case of a

conditional alloca() where 𝑛X may have some incoming paths where allocation did

not happen. Similar to spOrd , the value 𝑣∗ in spzBd’ is derived from the allocation

128 Automatic Construction of a Product-Program

Empty ∀𝑟∈𝐺∪𝐹∪𝑌∪𝑍 : (Σ𝑟
¥A = ∅ ⇔ em.𝑟)

gfySz ∀𝑟∈𝐺∪𝐹∪𝑌\{vrdc} : (sz.𝑟 = sz(T(𝑟))) vrdcSz (em.vrdc ⇔ sz.vrdc = 0)

gfyIntvl ∀
𝑟∈𝐺∪𝐹∪𝑌

:

[
em.𝑟 ∨

((lb.𝑟 ≤𝑢 ub.𝑟) ∧ (lb.𝑟 + sz.𝑟 − 1i32 = ub.𝑟)
∧ ([lb.𝑟 , lb.𝑟] = Σ𝑟

¥A)

)]
zlIntvl em.𝑧𝑙 ∨

((lb.𝑧𝑙 ≤𝑢 ub.𝑧𝑙) ∧ (lb.𝑧𝑙 + lstSz.𝑧𝑙 − 1i32 = ub.𝑧𝑙)
∧ ([lb.𝑧𝑙 , lb.𝑧𝑙] = Σ𝑧𝑙

¥A)

)
zaBd em.𝑧𝑎 ∨

((lb.𝑧𝑎 ≤𝑢 ub.𝑧𝑎) ∧ (lb.𝑧𝑎 + lstSz.𝑧𝑎 − 1i32 ≤𝑢 ub.𝑧𝑎)
∧ (lb.𝑧𝑎 = lb(Σ𝑧𝑎

¥A) ∧ ub.𝑧𝑎 = ub(Σ𝑧𝑎
¥A))

)
StkBd Σ

{𝑠𝑡𝑘}∪𝑌
¥A ∪ (Σ𝑍

¥A \ (Σ
𝑍𝑙
¥A |

𝑣)) = [esp, stk𝑒] 𝑐𝑠Bd Σ
{𝑐𝑠,𝑐𝑙}
¥A = [stk𝑒 + 1, cs𝑒]

NoOverlapC ¬ov(Σℎ𝑝

¥A , Σ𝑐𝑙
¥A , Σ

vrdc
¥A , . . . , 𝑖

𝑔

¥A, . . . , 𝑖
𝑦

¥A, . . . , Σ
𝑧
¥A)

NoOverlapA ¬ov(Σ{ℎ𝑝,𝑐𝑙}∪𝐺∪𝑌¥A , . . . , Σ𝑧
¥A |

𝑠, . . . , 𝑖
𝑓

¥A, . . . , Σ
𝑠𝑡𝑘
¥A , Σ𝑐𝑠

¥A)
ROMA ∀𝑟∈𝐹𝑟 : (𝑀 ¥A =𝑖𝑟¥A

ROM𝑟¥A(𝑖
𝑟
¥A)) ROMC ∀𝑟∈𝐺𝑟 : (𝑀C =𝑖𝑟

C
ROM𝑟

C
(𝑖𝑟
C
))

Figure 4.3: Global invariants that hold at each non-entry, error-free node 𝑛X ∈ NHH𝑈𝑊
X

.

size operand of an alloc𝑠 instruction. zEmpty tracks the emptiness of the address set

of a local region 𝑧 in C and the address sets Σ𝑧𝑙
¥A |

𝑠 and Σ𝑧𝑙
¥A |

𝑣 for 𝑧𝑙 ∈ 𝑍𝑙 in ¥A. We need

to track the emptiness of the latter address sets in ¥A to prove the infeasibility of the

𝒰-going paths due to (DeallocV) and (DeallocS’) (sections 2.6.1 and 2.6.2).

Together, the predicate shapes spOrd , spzBd , spzBd’ , zEmpty (and affine and

ineq for relations between sp.𝑝
𝑗

¥A), enable disambiguation between stack writes in-

volving spilled pseudo-registers and stack-allocated locals.

4.2.1 Global Invariants

Recall that due to our execution semantics certain global invariants hold by construction

at each non-entry, error-free node 𝑛X ∈ NHH𝑈𝑊
X

in X (section 3.3.3). We add these global

invariants to the set of node invariants 𝜙𝑛X at a node 𝑛X, along with the inferred

invariants described in previous section. We list the predicate expressions for these

global invariants in fig. 4.3 and discuss each below.

• Empty asserts that the ghost variable em.𝑟 (for tracking the emptiness of region)

for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍 tracks the emptiness of its address set.

Automatic Construction of a Product-Program 129

• gfySz equates the ghost variable sz.𝑟 (for tracking size of region 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ (𝑌 \
{vrdc})) to the size of the variable named 𝑟 (recall that a region identifier is also

the name of the variable)10.

vrdcSz encodes that the sz.vrdc is zero iff em.vrdc holds for the variadic parameter

vrdc ∈ 𝑌 .

• gfyIntvl encodes that the address set of region 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 is an interval of size

sz.𝑟 bounded by ghost variables lb.𝑟 and ub.𝑟 . Note that only the vrdc region

can potentially be empty such that em.𝑟 holds for 𝑟 = vrdc.

• zlIntvl captures the property that a local variable region 𝑧𝑙 ∈ 𝑍𝑙 , if non-empty,

must be an interval of size lstSz.𝑧𝑙 bounded by ghost variables lb.𝑧𝑙 and ub.𝑧𝑙 .

zlIntvl is encoding the same “𝑟 is an interval” property presented in gfyIntvl

for 𝑟 ∈ 𝑍𝑙 .

• zaBd captures a weaker property (than zlIntvl) for a local region 𝑧𝑎 ∈ 𝑍𝑎 (recall

that 𝑧𝑎 is a local allocated using alloca()): if non-empty, this region must be

bounded by its ghost variables (lb.𝑧𝑙 and ub.𝑧𝑙) and must be at least lstSz.𝑧𝑎

large.

The difference from zlIntvl is that the region 𝑧𝑎 need not be an interval. This

matches the expectation from intuition that multiple stack decrements in ¥A corre-

sponding to executions of an alloca() in C need not be contiguous.

• StkBd encodes the invariant that the interval [esp, stk𝑒] represents the union of

the address sets of 𝑠𝑡𝑘, regions in 𝑌 , and stack-allocated local regions (Σ𝑍
¥A \ (Σ

𝑍𝑙
¥A |

𝑣)).

• 𝑐𝑠Bd is similarly shaped as StkBd and encodes that the interval [stk𝑒 + 1, cs𝑒]
represents the union of the address sets of regions 𝑐𝑠 and 𝑐𝑙.

• NoOverlapC encodes the disjointedness of all regions 𝑟 ∈ 𝐵 (recall that 𝐵 denote the

common regions present in both C and A).

• NoOverlapA encodes the disjointedness of all regions in ¥A except virtually-allocated

regions. Note that NoOverlapA does not encode disjointedness of regions {ℎ𝑝, 𝑐𝑙} ∪
𝐺 ∪ 𝑌 — we rely on AllocEq and NoOverlapC for this.

10Note that sz(T(𝑟)) > 0 for all 𝑟 because a variable can never have zero size in the C programming
language.

130 Automatic Construction of a Product-Program

• ROMC and ROMA encode the preservation of memory contents of read-only regions

in C and ¥A.

Let 𝜙X represent the conjunction of the global invariants listed in fig. 4.3. Let 𝜙𝑛X

represent the conjunction of the inductively provable invariants drawn from grammar

shown in fig. 4.2. The invariants 𝜙𝑛X at an error-free node 𝑛X ∈ NX are obtained through

conjunction of 𝜙X and 𝜙𝑛X , i.e., 𝜙𝑛X = 𝜙X ∧ 𝜙𝑛X .

4.3 Running Example of the Algorithm

Figure 4.5 shows the abbreviated Transition Graphs of the unoptimized IR and fully

annotated assembly procedure of the fib procedure from fig. 2.1, reproduced for

convenience in fig. 4.4. A node in figs. 4.5a and 4.5b is identified by its PC and we use a

subscript notation for the PCs due to constituent edges of an unoptimized IR/assembly

instruction, e.g., the procedure call at I13 corresponds to graph edges I13→ I131,

I131 → I132, I132 → I133, and I133 → I14. The abbreviated graphs retain only

a subset of the nodes — roughly, we retain nodes corresponding to the PCs of the

statements in the listings in fig. 4.4. We omit almost all edge labels except for the rd

and wr instructions. We show transitions to error nodes in an abbreviated edge using

edge labels, e.g., in fig. 4.5a, the transition to error node 𝒲C due to (EntryC) is shown
as the label �𝒲C on the edge I01→I02. For an abbreviated edge due to (de)alloc
and (de)alloc𝑠,𝑣 instruction, we show the constituent (still abbreviated) edges using an

exploded view, e.g., the abbreviated edge I1→I2 corresponding to alloc instruction at

I1 in fig. 4.4 is exploded into (still abbreviated) edges I1→I11, I11→I12, I12→I13,

I13→I14, and I14→I2 in fig. 4.5a. In the exploded view for edges due to alloc at

I9 and I10 in fig. 4.4b and due to alloc𝑠 at A17
1 and A172, we omit the nodes as well

and just retain the labels. Because the graphs are abbreviated we will refer both the

unoptimized IR and assembly procedures in fig. 4.4 and the graphs in fig. 4.5 in our

discussion below.

We show the execution of the Dynamo algorithm on the two graphs in fig. 4.5 at

unroll-factor 𝜇 = 2. Note that the ¥A graph in fig. 4.5b shows the fully annotated graph.

During our exposition, we will treat the graph as if it were not annotated till the point

it becomes annotated in our discussion i.e., we will ignore the annotated edges until

they are inserted by our execution of the algorithm. The algorithm begins with the

points-to analysis on C that over-approximates the 𝛽 and 𝛽𝑀 sets at each PC of C.

Automatic Construction of a Product-Program 131

int printf(const char*, ...);

C0: int fib(int n, int m) {

C1: int v[n+2];

C2: v[0]=0; v[1]=1;

C3: for(int i=2; i<=m; ++i)

C4: v[i]=v[i-1]+v[i-2];

C5: printf("fib(%d)␣=␣%d", m, v[m]);

C6: return v[m];

C7: }

(a) C program with VLA.

I0: int fib(int* n, int* m):

I1: i=alloc 1, int, 4;

I2: v=alloc *n+2, int, 4;

I3: v[0]=0; v[1]=1;

I4: *i=2;

I5: if(*i >𝑠 *m) goto I9;

I6: v[*i]=v[*i-1]+v[*i-2];

I7: ++(*i);

I8: goto I5;

I9: 𝑝I9=alloc 1, char*, 4;

I10: 𝑝I10=alloc 1, struct{int;int;}, 4;

I11: *𝑝I9=__S__;

I12: *𝑝I10=*m; *(𝑝I10 + 4)=v[*m];
I13: t=call int printf(𝑝I9, 𝑝I10);

I14: dealloc I10;

I15: dealloc I9;

I16: r=v[*m];

I17: dealloc I2;

I18: dealloc I1;

I19: ret r;

(b) (Abstracted) Unoptimized IR.

A0: fib:

A1: push ebp; ebp = esp;

A2: push {edi, esi, ebx};

A3: esp -= 12;

A31: vI1 = alloc𝑣 4, 4, I1;

A4: eax = mem4[ebp+8]; ebx = mem4[ebp+12];

A5: esp -= 0xFFFFFFF0 & (4*(eax+2)+15));

A51: alloc𝑠 esp, 4*(eax+2), 4, I2;

A6: esi = ((esp+3)>>2)*4;

A7: mem4[esi] = 0; mem4[esi+4] = 1;

A8: if(ebx ≤𝑠 1) jmp A15;

A9: edi = 0; edx = 1; eax = 2;

A10: ecx = edx+edi;

A11: edi = edx; edx = ecx;

A12: mem4[esi+4*eax] = ecx;

A13: ++eax;

A14: if(eax ≤𝑠 ebx) jmp A10;

A15: edi = mem4[esi+4*ebx];

A16: esp -= 4;

A17: push {edi, ebx, __S__};

A171: alloc𝑠 esp, 4, 4, I9;

A172: alloc𝑠 esp+4, 8, 4, I10;

A18: call int printf

(<char*> esp,

<struct{int; int;}> esp+4)

{ℎ𝑝, 𝑐𝑙, I9, I10};
A181: dealloc𝑠 I10;

A182: dealloc𝑠 I9;

A19: eax = edi;

A191: dealloc𝑠 I2;

A192: dealloc𝑣 I1;

A20: esp = ebp-12;

A21: pop {ebx, esi, edi, ebp};

A22: ret;

(c) (Abstracted) 32-bit x86 assembly code.

Figure 4.4: Reproduced C program and its unoptimized IR and assembly from fig. 2.1.

For example, at node I3 (or PC I3 in fig. 4.4b), 𝛽(n) = {n}, 𝛽(m) = {m}, 𝛽(i) = {I1},
𝛽(v) = {I2} and 𝛽𝑀 (n) = 𝛽𝑀 (m) = {ℎ𝑝, 𝑐𝑙}, 𝛽𝑀 (I1) = 𝛽𝑀 (I2) = ∅, where n and m refer

to both the state variables and regions n, m ∈ 𝑌 and I1, I2 ∈ 𝑍𝑙 .

Enumerating A paths

After the points-to analysis, Dynamo begins its first phase with the call to the con-

structX() procedure with parameter 𝑝ℎ𝑎𝑠𝑒 = CORRELATE AND ANNOTATE. constructX()

132 Automatic Construction of a Product-Program

I0

I01
rd

I02
�𝒲C

I03
rd

I1

I2

I1

I2

I11
�𝒰C

I12

wr

I13
�𝒲C

I14

wr
I3

I2

I3

I21
�𝒰C

I22

wr

I23
�𝒲C

I24

wr
I5

�𝒰C

I6

I8
�𝒰C

I9

I10

I9

I10

�𝒰C
wr
�𝒲C
wr

I11

I10

I11

�𝒰C
wr
�𝒲C
wr

I13
�𝒰C

I131

wr

I132
rd

I133
rd

I14

I15

I14

I15

I141

wr

I16

I15

I16

I151

wr

I17
�𝒰C

I18

I17

I18

I171

wr

I19

I18

I19

I181

wr

I191

wr

IE
halt

I0

I01

I02

I03

I5

I13

I131

I132

I133

I19

I191

IE

(a) Abbreviated Transition Graph for the
unoptimized IR of the fib procedure from
fig. 4.4b.

A0

A01
rd

A02

�𝒲 ¥A

A03
rd

A1
�𝒲 ¥A

A31
�𝒰 ¥A,𝒲 ¥A

A4

A31

A4

A31
1

wr

A31
2

�𝒲 ¥A

A31
3

wr

A51
�𝒰 ¥A,𝒲 ¥A

A6

A51

A6

A51
1

wr

A51
2

�𝒰 ¥A

A51
3

�𝒲 ¥A

A51
4

wrA8
�𝒰 ¥A

A10

A14
�𝒰 ¥A

A15

A171
�𝒰 ¥A,𝒲 ¥A

A172

A171

A172

wr
�𝒰 ¥A
�𝒲 ¥A
wr

A18

A172

A18

wr
�𝒰 ¥A
�𝒲 ¥A
wr

A181

�𝒰 ¥A

A182

wr

A183
rd

A184
rd

A181

A182

A181

A182

A181
1

�𝒰 ¥A

A181
2

wr

A19

A182

A19

A182
1

�𝒰 ¥A

A182
2

wr

A191

A192

A191

A192

A191
1

�𝒰 ¥A

A191
2

wr

A20

A192

A20

A192
1

�𝒰 ¥A

A192
2

wr

A22
�𝒰 ¥A,𝒲 ¥A

A221

�𝒰 ¥A

A222

wr

AE
halt

A0

A01

A02

A03

A10

A181

A182

A183

A184

A221

A222

AE

(b) Abbreviated Transition Graph for the
compiler-generated assembly of the fib

procedure from fig. 4.4c.

Figure 4.5: Abbreviated Transition Graphs for the unoptimized IR and assembly of the
fib procedure from fig. 4.4.

Automatic Construction of a Product-Program 133

identifies the set of cut-points in fig. 4.5b. A subset of cut-points nodes in figs. 4.5a

and 4.5b are highlighted with background11. The cut-points nodes identified by get-

CutPointsInRPO() are: A0, A01, A02, A03, A10, A181, A182, A183, A184, A221, A222, and

AE12. The correlation of (abbreviated) edges, A0→A01, A01→A02, and A02→A03, due to

(Entry ¥A), is rather straightforward and we will instead consider the case when the cut-

point node is A03, i.e., when NX = {(A0, I0), (A01, I01), (A02, I02), (A03, I03)} and EX =

{((A0, I0) (A0 ↠ A01); (I0 ↠ I01)−−−−−−−−−−−−−−−−−−→(A01, I01)), ((A01, I01) (A01 ↠ A02); (I01 ↠ I02)−−−−−−−−−−−−−−−−−−−→(A02, I02)),
((A02, I02) (A02 ↠ A03); (I02 ↠ I03)−−−−−−−−−−−−−−−−−−−→(A03, I03))}.

The (ordered) cut-point successors of A03, as identified by cutPointSuccessorsRPO(),

are: A10, A181, 𝒰 ¥A, and 𝒲 ¥A
13. The cut-point A10, due to the cycle A10→A14→A10,

is considered first as it precedes others in the order. The only simple path between A03

and A10 is the path (A03 ↠ A10) = A03→A1→A4→A6→A8→A10. As (A03 ↠ A10)
is not demonstrably infeasible, it is considered for the next step where its C pathset

options are enumerated.

Correlating C paths

The correlatedPathsInCOpts() procedure (algorithm 3) is called with arguments 𝜉 ¥A =

(A03 ↠ A10) and 𝜇 = 2. The unique X node for A03 in NX is (A03, I03). As the sink

A10 of (A03 ↠ A10) is an error-free node, the third case in correlatedPathsInCOpts() is

triggered (line 21 in algorithm 3):

1. First, the set of all error-free cut-points reachable from I03 are identified (getAll-

NonErrorReachableCutPoints()). In fig. 4.5a, these are: I11, I12, I13, I14, I21, I22,

I23, I24, I5, I13, I131, I132, I133, I19, I191, IE, . . . (omitting the ones due to

(de)alloc instructions at I9, I10, I14, I15, I17, and I18).

2. For each cut-point 𝑞𝑡
C
enumerated in previous step, the set of pathsets from I03 to

𝑞𝑡
C
with unrolling up to 𝜇 = 2 are enumerated using enumPathsetsTillUnroll().

For 𝑞𝑡
C
= I5, the possible pathsets returned by enumPathsetsTillUnroll() are the

singleton sets {I03→ I1→ I2→ I3→ I5} and {I03→ I1→ I2→ I3→ I5→ I6→
I8→I5}14 — notice that the latter has two unrolling of node I5.

11All cut-point nodes except those due to (de)alloc and (de)allocs,v instructions are highlighted
in figs. 4.5a and 4.5b.

12As established earlier, we will ignore the inserted edges at this point.
13Recall that the nodes between A31 and A4 and between A51 and A6 will not be considered because

they are inserted later due to annotation.
14Here and henceforth, we will omit the edges due to (de)alloc for brevity.

134 Automatic Construction of a Product-Program

3. For each pathset ⟨𝜉⟩𝑡
C
returned by enumPathsetsTillUnroll(), set of its all 𝒰-

maximal subsets are added as candidate options. A candidate pathset added due

to the singleton pathset ⟨𝜉⟩𝑡
C
= {I03→ I1→ I2→ I3→ I5} includes the paths:

I03→I1→𝒰C, I03→I1→I2→𝒰C, I03→I1→I2→I3→𝒰C, and I03→I1→
I2→I3→I5, where the 𝒰C going paths due to the statement I3 in fig. 4.4b have

been appreviated to I03→I1→I2→I3→𝒰C for brevity.

In constructX(), let the chooseFrom operator choose the pathset containing the paths

{I03 → I1 → 𝒰C, I03 → I1 → I2 → 𝒰C, I03 → I1 → I2 → I3 → 𝒰C, I03 → I1 →
I2→ I3→ I5} as the candidate pathset ⟨𝜉⟩C for correlation with 𝜉 ¥A = (A03 ↠ A10).
Each path 𝜉C ∈ ⟨𝜉⟩C is considered separately; we demonstrate the correlation of 𝜉C =

I03→ I1→ I2→ I3→ I5. As 𝑝ℎ𝑎𝑠𝑒 = CORRELATE AND ANNOTATE, constructX() calls

asmAnnotOpts() for potentially annotating 𝜉 ¥A = (A03 ↠ A10) (line 23 in algorithm 1).

Identifying A annotation

The asmAnnotOpts() procedure begins by collecting the sequence of (edges due to)

alloc, dealloc, and call instructions in 𝜉C = I03 → I1 → I2 → I3 → I5. The

(abbreviated) edges I1→I2 and I2→I3 correspond to the alloc instructions at I1

and I2 respectively in fig. 4.4b. For each alloc instruction, asmAnnotOpts() enumerates

alloc𝑠,𝑣 annotation options in the path 𝜉 ¥A = A03→A1→A4→A6→A8→A10.

In the blackbox mode, the enumeration is dictated by the restrictions described in

section 4.1.3. The first restriction confines the position of an alloc𝑠,𝑣 annotation to

just after a stackpointer updating instruction — in our case (fig. 4.4c), the candidates

are the PCs just after the statements A1, A2, A3, and A5. The second restriction

confines the options for start address in an alloc𝑠 annotation to the stackpointer

value esp at the respective position — for each of the positions enumerated above,

the corresponding stackpointer values are represented by the ghost variables sp.A1 ,

sp.A2 , sp.A3 , and sp.A5 15. The other parameters for the alloc𝑠,𝑣 instructions are

inferred from the corresponding alloc instruction, e.g. for the alloc instruction at I2

(fig. 4.4b), the size of allocation is inferred to be 4*(eax+2) (inferred using the relation

eax = (∗n) = sel4(mem, ebp + 8)16), the required alignment to be 4 (from alignment of

15Recall that the translation rule (Op-esp) for a stackpointer updating instruction at PC 𝑝
𝑗
¥A stores

the stackpointer value at the end of the update to a ghost variable sp.𝑝
𝑗
¥A identified uniquely by 𝑝

𝑗
¥A.

16A more general method is to build a DX-like map for enabling propagation of information from C
to ¥A. Such a construction is enabled due to lockstep correlation of alloc and alloc𝑠,𝑣 in X.

Automatic Construction of a Product-Program 135

int), and the region identifier to be I2. Thus, the annotation ‘alloc𝑣 4, 4, I1’ after

A3 for alloc at I1 and ‘alloc𝑠 sp.A5 , 4 ∗ (eax + 2), 4, I2’ after A5 for alloc at I2 will

be enumerated by the blackbox enumeration procedure (genAnnotOptsForAlloc() in
algorithm 4). The asmAnnotOpts() procedure considers all combinations of individual

annotation options, one of which will include the combined annotation ‘alloc𝑣 4, 4, I1’

after A3 and ‘alloc𝑠 sp.A5 , 4 ∗ (eax + 2), 4, I2’ after A5 as an annotation candidate.

The application of the above annotation candidate inserts the edges A31→A311→A312→
A313→ A4 and A51→ A511→ A512→ A513→ A514→ A6 to ¥A as shown in fig. 4.5b. Note

that the updated 𝜉 ¥A, 𝜉
∗
¥A = A03→ A1→ A31→ A4→ A51→ A6→ A8→ A1017, obtained

after including the annotated edges, does not include the 𝒰 ¥A and 𝒲 ¥A going paths

added due to annotation — these paths are correlated in the second phase (when

𝑝ℎ𝑎𝑠𝑒 = CORRELATE NEW ERROR PATHS).

Transforming identified paths to correlation paths

After annotation, constructX() breaks 𝜉 ¥A and 𝜉C into constituent paths using breakIntoS-

ingleIOPaths(), so that each I/O path (section 3.1) appears by itself and not as sub-path

of some larger path. The path sequences obtained after both calls to breakIntoSin-

gleIOPaths() are
#‰
𝜉 ′¥A = ((A03 ↠ A31), (A31 ↠ A311), (A311 ↠ A312), (A312 ↠ A313), (A313 ↠

A51), (A51 ↠ A511), (A511 ↠ A513), (A513 ↠ A514), (A514 ↠ A10)) and #‰
𝜉 ′
C

= ((I03 ↠

I11), (I11 ↠ I12), (I12 ↠ I13), (I13 ↠ I14), (I14 ↠ I21), (I21 ↠ I22), (I22 ↠

I23), (I23 ↠ I24), (I24 ↠ I5)).

As neither 𝜉C nor 𝜉 ¥A ends at an error node, the call to trimToMatchPathToErrorNode()

(algorithm 5) will not perform any trimming. For demonstrating trimToMatchPath-

ToErrorNode(), we consider the case when for the same 𝜉 ¥A, 𝜉C = I03→I1→I2→𝒰C

is correlated so that
#‰
𝜉 ′
C
(obtained after breakIntoSingleIOPaths()) comes out to be

((I03 ↠ I11), (I11 ↠ I12), (I12 ↠ I13), (I13 ↠ I14), (I14 ↠ 𝒰C)). In this case,
#‰
𝜉 ′
C

ends at error node 𝒰C and the two paths sequences have difference lengths (| #‰𝜉 ′¥A | = 9

and | #‰𝜉 ′
C
| = 5). trimToMatchPathToErrorNode() trims

#‰
𝜉 ′¥A to match the length of the

error going path sequence
#‰
𝜉 ′
C
, i.e., we obtain

#‰
𝜉 ∗¥A = ((A03 ↠ A31), (A31 ↠ A311), (A311 ↠

A312), (A312 ↠ A313), (A313 ↠ A51)) (dropping the last four path components from
#‰
𝜉 ′¥A)

and
#‰
𝜉 ∗
C
remains identical to

#‰
𝜉 ′
C
. Effectively, with trimToMatchPathToErrorNode(),

the lockstep execution of either of the error-free path in an X edge is restricted to the

point where the other path encounters error.

17Omitting the constituent edges between A31 and A4, and A51 and A6.

136 Automatic Construction of a Product-Program

Validating the structure of the paths

constructX() validates the structure of
#‰
𝜉 ∗¥A and

#‰
𝜉 ∗
C
using haveSimilarStructure(). The

haveSimilarStructure() predicate verifies that both path sequences
#‰
𝜉 ∗¥A and

#‰
𝜉 ∗
C
have iden-

tical number of paths and each coupled path-pair satisfies the (SingleIO), (Safety), and

(Termination) structural requirements. With
#‰
𝜉 ∗¥A = ((A03 ↠ A31), (A31 ↠ A311), (A311 ↠

A312), (A312 ↠ A313), (A313 ↠ A51), (A51 ↠ A511), (A511 ↠ A513), (A513 ↠ A514), (A514 ↠ A10))
and

#‰
𝜉 ∗
C
= ((I03 ↠ I11), (I11 ↠ I12), (I12 ↠ I13), (I13 ↠ I14), (I14 ↠ I21), (I21 ↠

I22), (I22 ↠ 3), (I23 ↠ I24), (I24 ↠ I5)), the (Safety) and (Termination) requirements

hold trivially and it is easy to see that the I/O paths of same kind are coupled together

for the (SingleIO) requirement, e.g., the I/O path (A31 ↠ A311) that corresponds to the

wr(allocBegin()) instruction due to alloc𝑣 (see (AllocV)) is paired with the path

(I11 ↠ I12) that also corresponds to a wr(allocBegin()) instruction due to alloc

(see (Alloc)).

Adding X edges and updating DX

After validating the structural requirements, the identically-sized path sequences
#‰
𝜉 ∗¥A

and
#‰
𝜉 ∗
C
are deconstructed into path pairs that form an X edge and added to EX.

The addingEdgeWillCreateEmptyCCycle() check, performed for each path pair, holds

for each path pair in our example as none of the paths are empty. For the path

pairs, ((A311 ↠ A312), (I12 ↠ I13)) and ((A511 ↠ A513), (I22 ↠ I23)) that contain the

choose instruction (𝜃), the addDetMappings() procedure updates DX to include the

mappings for the choose instructions in (I12 ↠ I13) and (I22 ↠ I23). For the C

path (I12 ↠ I13), two mappings are added, one for the address and another for

memory, DX(((A311 ↠ A312), (I12 ↠ I13)), (I12 → I13
𝑎), 1) = (vI1) and DX(((A311 ↠

A312), (I12 ↠ I13)), (I12 → I13
𝑚), 1) = (𝑀 ¥A) where (I12 → I13

𝑎) is the edge for 𝜃 (i32)
instruction (in the abbreviated edge (I12 → I13)) and (I12 → I13

𝑚) is the edge

for 𝜃 (i32 → i8) instruction. Similarly, for (I22 ↠ I23), the following mappings are

added: DX(((A511 ↠ A513), (I22 ↠ I23)), (I22 → I23
𝑎), 1) = (sp.A5) and DX(((A511 ↠

A513), (I22 ↠ I23)), (I22 → I23
𝑚), 1) = (𝑀 ¥A).

Invariant inference and checking semantic requirements

Next, Dynamo performs invariant inference to update the invariant network ΦX.

Table 4.1 shows some of the inferred invariants for the fully-constructed X. We discuss

some of the key invariants below.

Automatic Construction of a Product-Program 137

nX 𝜙𝑛X

(A313, I14) 1 n = lb.n = sp.𝑒𝑛𝑡𝑟𝑦 + 4 2 sp.𝑒𝑛𝑡𝑟𝑦 = ebp + 4 3 sp.A3 = esp

4 m = lb.m = sp.𝑒𝑛𝑡𝑟𝑦 + 8 5 esp ∗ 228 = 0 6 sp.A3 = ebp − 24
7 i = lb.I1 = vI1 8 lstSz.I1 = 4 9 em.I1 = false

10 ΣI1
¥A |

𝑠 = ΣI2
C = ΣI9

C = ΣI10
C = ∅ 11 stk𝑒 = ebp + 15 12 esp ≤𝑢 stk𝑒

13 𝑀C =
Σ𝐵
¥A \(Σ

𝑍𝑙
¥A |

𝑣) 𝑀 ¥A 14 ∀𝑟∈𝐵 : Σ𝑟
C = Σ𝑟

¥A 15 Ω ¥A = ΩC

(A51, I21) 1 n = lb.n = sp.𝑒𝑛𝑡𝑟𝑦 + 4 2 (sp.𝑒𝑛𝑡𝑟𝑦 + 4) ∗ 228 = 0 3 eax = ∗n
4 m = lb.m = sp.𝑒𝑛𝑡𝑟𝑦 + 8 5 esp ∗ 228 = 0 6 ebx = ∗m
7 sp.𝑒𝑛𝑡𝑟𝑦 = ebp + 4 8 sp.A3 = ebp − 24 9 esp = sp.A5

10 ΣI1
¥A |

𝑠 = ΣI2
C = ΣI9

C = ΣI10
C = ∅ 11 sp.A5 ≤𝑢 sp.A3 − 4 ∗ (eax + 2)

12 𝑀C =
Σ𝐵
¥A \(Σ

𝑍𝑙
¥A |

𝑣) 𝑀 ¥A 13 ∀𝑟∈𝐵 : Σ𝑟
C = Σ𝑟

¥A 14 Ω ¥A = ΩC

(A10, I5) 1 v = lb.I2 = esi 2 v[∗i − 1] = edi 3 v[∗i − 2] = edx

4 m = lb.m 5 ebx = ∗m 6 eax = ∗i
7 ΣI1

¥A |
𝑠 = ΣI2

¥A |
𝑣 = ΣI9

C = ΣI10
C = ∅ 8 sp.𝑒𝑛𝑡𝑟𝑦 = ebp + 4 9 esp ∗ 228 = 0

10 𝑀C =
Σ𝐵
¥A \(Σ

𝑍𝑙
¥A |

𝑣) 𝑀 ¥A 11 ∀𝑟∈𝐵 : Σ𝑟
C = Σ𝑟

¥A 12 Ω ¥A = ΩC

(A1822, I151) 1 ΣI1
¥A |

𝑠 = ΣI2
¥A |

𝑣 = ΣI9
C = ΣI10

C = ∅ 2 sp.𝑒𝑛𝑡𝑟𝑦 = ebp + 4 3 v[∗m] = edi

4 𝑀C =
Σ𝐵
¥A \(Σ

𝑍𝑙
¥A |

𝑣) 𝑀 ¥A 5 ∀𝑟∈𝐵 : Σ𝑟
C = Σ𝑟

¥A 6 Ω ¥A = ΩC

Table 4.1: Some of the inferred inductive node invariants for the product graph X of the
two procedures shown in fig. 4.5. ∗𝑣 is short for sel4(𝑀C, 𝑣), e.g., ∗i = sel4(𝑀C, i), ∗m =

sel4(𝑀C, m) and so on.

• At node (A51, I21) (that corresponds to start of alloc and alloc𝑣 in unoptimized

IR and assembly respectively), the invariants, 9 esp = sp.𝐴5 , 11 sp.𝐴5 ≤𝑢
sp.𝐴3 − 4 ∗ (eax + 2), and 3 eax = ∗n are consequential in proof of the clause

[𝑣, 𝑣 +𝑤 − 1i32] ∈ Σ𝑠𝑡𝑘
¥A of intrvlInSet𝑎 (𝑣, 𝑣 +𝑤 − 1i32 , Σ𝑠𝑡𝑘

¥A) check due to (AllocS).
The proof of 𝜙 = intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i32 , Σ𝑠𝑡𝑘

¥A) makes the path (A511 ↠ 𝒰A)
with path condition ¬𝜙 infeasible.

• At node (A10, I5) (that corresponds to loop head in both unoptimized IR and

assembly), the invariant 9 esp ∗ 228 = 0, which implies that the stackpointer esp

is aligned by 16, helps in falsifying the check ¬aligned16(esp) due to procedure

call at A18 in fig. 4.4c (see (Call ¤A) in fig. 2.8), thereby making the 𝒰 ¥A-going path

(A18 ↠ 𝒰A) infeasible.

• At node (A1822, I151) (that corresponds to deallocation of first argument to printf),

the invariant 1 ΣI2
¥A |

𝑣 = ∅ helps in proving the infeasibility of the 𝒰 ¥A-going path

138 Automatic Construction of a Product-Program

due to (AllocS’).

After invariant inference, the non-coverage semantics requirements are checked through

checkSemanticReqsExceptCoverage(). The checks for (Equivalence) and (MemEq) involve

ensuring that the predicates corresponding to instantiations of WEq and MemEq are

present in the inferred invariants 𝜙𝑛X . For example, table 4.1 contains instantiations

of WEq and MemEq at each node; the presence of these invariant shapes is sufficient

to ensure (Equivalence) and (MemEq). For the (Memory Address Correspondence) or

(MAC) check, we take the example of the path pair ((A313 ↠ A51), (I14 ↠ I21),) that
has two memory accesses in ¥A (at A4 in fig. 4.4c): mem4(ebp + 8) and mem4(ebp + 12).
There are no memory accesses on the path (I14 ↠ I21), thus, for (MAC) it must be

established that these memory accesses belong to the address set Σ𝐺∪𝐹
¥A ∪ [esp, stk𝑒].

This is easily provable because [ebp + 8, ebp + 15] ⊆ Σ
{n,m}
¥A ⊆ [esp, stk𝑒] is provable

over the path (A313 ↠ A51) due to invariants esp = sp.A3 = ebp − 24, stk𝑒 = ebp + 15,
and esp ≤𝑢 stk𝑒 at (A313, I14).

Once the first phase has finished, Dynamo invokes the second phase where the error-

going paths that were added due to annotation are correlated. In fig. 4.5b, these are the

𝒰 ¥A and 𝒲 ¥A-going paths originating from nodes A311, A5
1
1, A5

1
2, A17

1, A172, A181, A182,

A191, and A192.

In the last step, Dynamo checks the (CoverageC) requirement for the added edges. We

take the example of the loop path correlation here. The ¥A loop path 𝜉 ¥A = A10→A14→
A10 is correlated with the paths 𝜉1

C
= I5→I6→I8→I5 and 𝜉2

C
= I5→I6→𝒰C

18, to

produce the two edges, 𝑒1
X
= ((A10, I5) A10→A14→A10; I5→I6→I8→I5−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(A10, I5)) and 𝑒2

X
=

((A10, I5) A10→A14→A10; I5→I6→𝒰C−−−−−−−−−−−−−−−−−−−−−−−−→(A10,𝒰C)). The (CoverageC) obligation involves

proving that the path cover {𝑒1
X
, 𝑒2

X
}⟨DX, 𝜉 ¥A⟩, which is equivalent to the Hoare triple

{𝜙(A10,I5)}(𝜉 ¥A; 𝜖){𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉1C]
𝑒1
X
DX
) ∨ 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉2

C
]𝑒

2
X
DX
)}, holds. The invariants, 5

ebx = ∗m and 6 eax = ∗i at (A10, I5) in table 4.1 are adequate to successfully discharge

this Hoare triple.

Table 4.2 shows the edges EX in the final product graph X for the graphs in fig. 4.5 —

alloc𝑠,𝑣 paths not shown in fig. 4.5b have been omitted and the ¥A and C paths have

been abbreviated for brevity as done in fig. 4.5b. Notice that certain paths to 𝒰 ¥A in
¥A are not in EX because they were proven infeasible, e.g. (A1 ↠ 𝒰A), (A511 ↠ 𝒰A),
(A18 ↠ 𝒰A), (A20 ↠ 𝒰A), (A22 ↠ 𝒰A) and so on.

18Representing all 𝒰C-going paths using a single I5→I6→𝒰Cpath.

Automatic Construction of a Product-Program 139

𝑛X 𝑛𝑡
X

𝜉 ¥A 𝜉C

(A0, I0) (A01, I01) A0→A01 I0→I01

(A01, I01) (A02, I02) A01→A02 I01→I02

(A01, I01) (𝒲A, I01) A01→𝒲A 𝜖

(A02, I02) (A03, I03) A02→A03 I02→I03

(A03, I03) (A31, I11)
A03→A1→A31

I03→I1→I11
(A31,𝒰C) I03→I1→𝒰C

(A03, I03) (𝒲A, I03) A03→𝒲A 𝜖
A03→A1→𝒲A

(A31, I11) (A311, I12) A31→A311 I11→I12

(A311, I12) (A312, I13) A311→A312 I12→I13

(A311, I12) (𝒲A, I12) A311→𝒲A 𝜖

(A312, I13) (A313, I14) A312→A313 I13→I14

(A313, I14)
(A51, I21)

A313→A4→A51
I14→I2→I21

(A51,𝒰C) I14→I2→𝒰C

(A313, I14)
(𝒲A, I21) A313→A4→𝒲A

I14→I2→I21
(𝒲A,𝒰C) I14→I2→𝒰C

(A313, I14) (𝒰A,𝒰C) A313→A4→𝒰A I14→I2→𝒰C

(A51, I21) (A511, I22) A51→A511 I21→I22

(A511, I22) (A513, I23) A511→A513 I22→I23

(A511, I22) (𝒲A, I22) A511→𝒲A 𝜖

(A513, I23) (A514, I24) A513→A514 I23→I24

(A514, I24)
(A10, I5)

A514→A6→A8→A10
I24→I3→I5

(A10,𝒰C) I24→I3→𝒰C

(A10, I5) (A10, I5)
A10→A14→A10

I5→I6→I8→I5

(A10,𝒰C) I5→I6→𝒰C

(A10, I5) (𝒰A,𝒰A) A10→𝒰A I5→I6→𝒰A

(A10, I5) (A171, I9)
A10→A14→A15→A171

I5→I6→I8→I5→I9

(A171,𝒰C) I5→I6→𝒰C

(A10, I5) (𝒲A, I9) A10→A14→A15→𝒲A
I5→I6→I8→I5→I9

(𝒲A,𝒰C) I5→I6→𝒰C

(A18, I11) (A181, I13)
A18→A181

I11→I13

(A181,𝒰C) I11→𝒰C

(A181, I13) (A182, I131) A181→A182 I13→I131

(A182, I131) (A183, I132) A182→A183 I131→I132

(A183, I132) (A184, I133) A183→A184 I132→I133

(A184, I133) (A1811, I14) A184→A1811 I133→I14

(A1811, I14) (A1812, I141) A1811→A1812 I14→I141

(A1812, I141) (A1821, I151) A1812→A1821 I141→I15

(A1821, I15) (A1822, I151) A1821→A1822 I15→I151

(A1822, I151)
(A1911, I17) A1822→A1911

I151→I17

(A1911,𝒰C) I151→𝒰C

(A1911, I17) (A1912, I171) A1911→A1912 I17→I171

(A1912, I171) (A1921, I18) A1912→A1921 I171→I18

(A1921, I18) (A1922, I181) A1921→A1922 I18→I181

(A1922, I181) (A221, I19) A1922→A20→A22→A221 I181→I19

(A1922, I181) (𝒲A, I19) A1922→A20→𝒲A I181→I19

(A221, I19) (A222, I191) A221→A222 I19→I191

(A222, I191) (AE, IE) A222→AE I191→IE

Table 4.2: EX of X for the procedures shown in fig. 4.5. Each row represents an X edge

𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡
X
) ∈ EX.

140 Automatic Construction of a Product-Program

Chapter 5

SMT Encoding

In the previous chapter, we described our algorithm Dynamo for simultaneous au-

tomatic construction of a product graph X and automatic inference of an annotation
¥A of procedure A. The Dynamo algorithm generates verification conditions or proof

obligations in the form of Hoare triples during its execution. These generated Hoare

triples are discharged using off-the-shelf SMT solvers. In this chapter, we describe our

encoding for translating a Hoare triple over X into an SMT format compatible with

solvers. Our primary contribution here is an efficient SMT representation of an address

set and encoding of various relations over an address set.

We organize the chapter as follows. In section 5.1, we discuss some preliminary steps

we take before the SMT encoding. In section 5.2, we present an allocation state array

representation of address sets and encoding of address set relations for this representation.

In section 5.3, we describe a faster interval encoding for address set relations and present

its proof of soundness. We conclude in section 5.4 with description of an alternate

semantics for ¥A that are amenable to a simpler SMT encoding.

5.1 Preliminary Steps

At an error-free node 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊
X

of X = (NX, EX,DX), Dynamo may

generate a proof obligation 𝑂 in the form of a Hoare triple {𝜙𝑛X}(𝜉 ¥A; [𝜉C]𝑒XDX
){𝑝𝑜𝑠𝑡}

— recall that both path cover (used in (CoverageC)) and path infeasibility (used in

(Coverage ¥A)) conditions are also represented as Hoare triples with 𝜉C = 𝜖 . A Hoare

triple 𝑂 is encoded as a first-order logic predicate in theories of bitvector, arrays,

141

142 SMT Encoding

Predicate First-order logic encoding using 𝛼 ∈ Σ𝑟
𝑃

𝛼 ∈ Σ #‰𝑟
𝑃

#‰𝑟 ⊆ 𝑅
∨
𝑟∈ #‰𝑟

𝛼 ∈ Σ𝑟
𝑃

∀𝑟∈𝐵 : Σ𝑟
C = Σ𝑟

¥A ∀𝛼 : (𝛼 ∈ Σ𝐵
C ⇔ 𝛼 ∈ Σ𝐵

¥A)
Σ𝑟
𝑃 = ∅ ∀𝛼 : ¬(𝛼 ∈ Σ𝑟

𝑃)
(lb.𝑧 = lb(Σ𝑧

C
) ∧ ub.𝑧 = ub(Σ𝑧

C
)) (∀𝛼 : 𝛼 ∈ Σ𝑧

C
⇒ (lb.𝑧 ≤𝑢 𝛼 ≤𝑢 ub.𝑧)) ∧ lb.𝑧 ∈

Σ𝑧
C
∧ ub.𝑧 ∈ Σ𝑧

C

ov([𝛼𝑏, 𝛼𝑒], Σ #‰𝑟
𝑃) #‰𝑟 ⊆ 𝑅 ∃𝛼 : (𝛼𝑏 ≤𝑢 𝛼 ≤𝑢 𝛼𝑒) ∧ 𝛼 ∈ Σ #‰𝑟

𝑃

[𝛼𝑏, 𝛼𝑒] ⊆ Σ
#‰𝑟
𝑃

#‰𝑟 ⊆ 𝑅 ∀𝛼 : (𝛼𝑏 ≤𝑢 𝛼 ≤𝑢 𝛼𝑒) ⇒ 𝛼 ∈ Σ #‰𝑟
𝑃

[𝛼𝑏, 𝛼𝑒] = Σ𝑟
𝑃 ∀𝛼 : (𝛼𝑏 ≤𝑢 𝛼 ≤𝑢 𝛼𝑒) ⇔ 𝛼 ∈ Σ𝑟

𝑃

Σ
{𝑠𝑡𝑘}∪𝑌
¥A ∪ (Σ𝑍

¥A \ (Σ𝑍𝑙

¥A |
𝑣)) =

[esp, stk𝑒]
∀𝛼 : (𝛼 ∈ Σ

{𝑠𝑡𝑘}∪𝑌
¥A ∨ (𝛼 ∈ Σ𝑍

¥A ∧ ¬(𝛼 ∈ Σ
𝑍𝑙

¥A |
𝑣))) ⇔

(esp ≤𝑢 𝛼 ≤𝑢 stk𝑒)
Σ
{𝑐𝑠,𝑐𝑙}
¥A = [stk𝑒 + 1, cs𝑒] ∀𝛼 : (𝛼 ∈ Σ{𝑐𝑠,𝑐𝑙}¥A) ⇔ (stk𝑒 + 1 ≤𝑢 𝛼 ≤𝑢 cs𝑒)

Table 5.1: Encodings of address set predicates using the address set membership
predicate. 𝑅 is the set of all region identifiers.

and uninterpreted functions over the state elements at 𝑛X and discharged using an

off-the-shelf SMT solver. The state elements of a procedure 𝑃 ∈ {C, ¥A} are represented

using bitvectors for a register/variable/ghost variable, arrays for memory 𝑀𝑃, and

uninterpreted functions for read #‰𝑣 (Ω𝑃) and io(Ω𝑃, rw,
#‰𝑣)1.

For address sets, we describe encoding for the set-membership predicate 𝛼 ∈ Σ𝑟
𝑃
for

an arbitrary address 𝛼 and region identifier 𝑟. All other address set predicates can be

expressed in terms of the set-membership predicate; see table 5.1 for a construction. To

simplify the encodings, we rely on the correct-by-construction global invariants 𝜙X ⊆
𝜙𝑛X (section 4.2.1) and assume that the partially-constructed X (and, therefore, node

𝑛X) satisfies the (Equivalence), (MAC), and (MemEq) requirements. The (Equivalence)

requirement implies the predicate AllocEq and (MemEq) implies the predicate MemEq

(both defined in section 4.2) so that AllocEq ∈ 𝜙𝑛X and MemEq ∈ 𝜙𝑛X .

Sets of stack-allocated and virtually-allocated locals at a node

Recall that for an allocation site 𝑧𝑙 ∈ 𝑍𝑙 due to a variable declaration (or procedure

parameter), at a node 𝑛X ∈ NX, we use Σ𝑧𝑙
¥A |

𝑠 and Σ𝑧𝑙
¥A |

𝑣 to represent the address sets

corresponding to the stack and virtual allocations performed in ¥A for 𝑧𝑙 (section 2.6).

1Recall that read and io are the uninterpreted functions used for representing interaction with the
outside world Ω𝑃 (section 2.2.7).

SMT Encoding 143

Let 𝑍𝑙𝑠 = {𝑧𝑙 | 𝑧𝑙 ∈ 𝑍𝑙 ∧ Σ𝑧𝑙
¥A |

𝑠 ≠ ∅} and 𝑍𝑙𝑣 = {𝑧𝑙 | 𝑧𝑙 ∈ 𝑍𝑙 ∧ Σ𝑧𝑙
¥A |

𝑣 ≠ ∅} represent the set

of non-empty stack-allocated and virtually-allocated locals at 𝑛X respectively. Recall

that we restrict ourselves to only those compiler transformations that ensure the validity

of 𝑍𝑙𝑠 ∩ 𝑍𝑙𝑣 = ∅ at each 𝑛X (section 2.6). This enables us to work with 𝑍𝑙𝑠 and 𝑍𝑙𝑣

instead of 𝑍𝑙 , which simplifies the encoding of 𝛼 ∈ Σ𝑧𝑙
¥A to either 𝛼 ∈ Σ𝑧𝑙

¥A |
𝑠 (for 𝑧𝑙 ∈ 𝑍𝑙𝑠)

or 𝛼 ∈ Σ𝑧𝑙
¥A |

𝑣 (for 𝑧𝑙 ∈ 𝑍𝑙𝑣) or false (if 𝑧𝑙 ∉ 𝑍𝑙𝑠 ∪ 𝑍𝑙𝑣). Further, because relations

Σ𝑧𝑙
¥A |

𝑠 {=,≠} ∅ and Σ𝑧𝑙
¥A |

𝑣 {=,≠} ∅ are tracked through invariant shape zEmpty (fig. 4.2),

𝑍𝑙𝑠 and 𝑍𝑙𝑣 can be identified through syntactic pattern matching over 𝜙𝑛X .

Using invariants for simplifying encoding

We use AllocEq (assumed to be in 𝜙𝑛X due to (Equivalence)) to replace 𝛼 ∈ Σ𝑟
¥A with

𝛼 ∈ Σ𝑟
C
for 𝑟 ∈ 𝐵. For example, the MemEq predicate 𝑀C =

Σ𝐵
¥A\(Σ

𝑍𝑙
¥A |

𝑣) 𝑀 ¥A is encoded as:

∀𝛼 : 𝛼 ∈ Σ𝐺∪𝑌∪𝑍𝑙𝑠∪𝑍𝑎∪{ℎ𝑝,𝑐𝑙}
C

⇒ sel1(𝑀C, 𝛼) = sel1(𝑀 ¥A, 𝛼)

5.2 Representing address sets using allocation state

array

Let L𝑃 : i32 → 𝑅 be an allocation state array that maps an address to a region

identifier in procedure 𝑃 ∈ { ¥A,C}. We add a state element L𝑃 to procedure 𝑃 for

tracking the allocation state, address sets Σ𝑟
𝑃
for all 𝑟 ∈ 𝑅 \ {free}, in procedure 𝑃.

The set-membership predicate 𝛼 ∈ Σ𝑟
𝑃
for 𝑟 ∈ 𝑅, which can be used for encoding all

other predicates over address set Σ𝑟
𝑃
, (table 5.1), is encoded using L𝑃 as follows.

• For 𝑟 ∉ 𝑍𝑙𝑣, 𝛼 ∈ Σ𝑟
𝑃
is encoded as sel1(L𝑃, 𝛼) = 𝑟.

• For 𝑟 ∈ 𝑍𝑙𝑣, both 𝛼 ∈ Σ𝑟
C
and 𝛼 ∈ Σ𝑟

¥A are encoded as sel1(LC, 𝛼) = 𝑟, i.e., the

encodings for both ¥A and C use LC for virtually-allocated locals (by relying on the

AllocEq invariant that is guaranteed to hold at 𝑛X).

Thus, L ¥A is not used to track the virtually-allocated locals; instead, an address belonging

to a virtually allocated-region maps to one of {free, 𝑠𝑡𝑘, 𝑐𝑠} ∪ 𝐹 regions in L ¥A.

An array-based encoding that maps a unique region to an address is possible in C

because of global invariant NoOverlapC that forbids any overlap among all regions in

144 SMT Encoding

Instruction SMT Encoding using L𝑃

1 Σ𝑟
𝑃
:= Σ𝑟

𝑃 ∪ [𝛼𝑏, 𝛼𝑒]; 𝑟 ∈ {𝑠𝑡𝑘} ∪ 𝑍 L𝑃
′ = cwrite(L𝑃, 𝜆𝑥.𝑥 ∈ [𝛼𝑏, 𝛼𝑒], 𝑟)

2 Σ𝑠𝑡𝑘
¥A := Σ𝑠𝑡𝑘

¥A \ [𝛼𝑏, 𝛼𝑒]; L ¥A′ = cwrite(L ¥A, 𝜆𝑥.𝑥 ∈ [𝛼𝑏, 𝛼𝑒], free)
3 Σ𝑧

𝑃
:= ∅; L𝑃

′ = cwrite(L𝑃, 𝜆𝑥.sel1(L𝑃, 𝑥) = 𝑧, free)
4 Σ𝑠𝑡𝑘

¥A := {[esp, stk𝑒]} \ Σ𝑌
¥A; L ¥A′ = cwrite(L ¥A, 𝜆𝑥.𝑥 ∈ [esp, stk𝑒] ∧∧

𝑦∈𝑌 𝑥 ∉ Σ
𝑦
¥A, 𝑠𝑡𝑘)

Table 5.2: SMT encoding of address set updating instructions using allocation state
array L𝑃. 𝑃 ∈ {C, ¥A}. L𝑃

′ is the allocation state array obtained after executing the
instruction.

C at an error-free node 𝑛C ∈ NHH𝑈𝑊
C

. In ¥A, NoOverlap ¥A permits overlap of Σ𝑍𝑙𝑣
¥A with

Σ
{𝑠𝑡𝑘,𝑐𝑠}∪𝐹
¥A and, consequently, L ¥A is only used for tracking regions other than 𝑍𝑙𝑣.

As L𝑃 is an array state element, similar to 𝑀𝑃, it is directly encode-able in SMT using

the theory of arrays.

5.2.1 Encoding of address set updating instructions

An address set updating instruction of the form ‘Σ𝑟
𝑃
:= 𝑒(. . .)’ updates the address set

of region 𝑟 ∈ 𝑅. In an allocation state array L𝑃 representation, an update ‘Σ𝑟
𝑃
:= 𝑒(. . .)’

produces a new allocation state array L𝑃
′. Table 5.2 shows L𝑃 based SMT encoding of

the graph instructions that update address sets. We list the encoding for the four kinds

of address set updating instructions that appear in our translations (figs. 2.5 to 2.8,

2.10 and 2.11).

Table 5.2 uses an auxiliary “conditional write” operator cwrite to encode the update

of L𝑃. If L𝑃
′ = cwrite(L𝑃, 𝜆𝑥.𝑐, 𝑣), then the following holds:

∀𝛼 : (𝜆𝑥.𝑐) (𝛼) ⇒ sel1(L𝑃
′, 𝛼) = 𝑣

∧ ¬(𝜆𝑥.𝑐) (𝛼) ⇒ sel1(L𝑃
′, 𝛼) = sel1(L𝑃, 𝛼)

Here, (𝜆𝑥.𝑐) represents a function that takes an address 𝑥 and returns a boolean evaluated

through expression 𝑐, and (𝜆𝑥.𝑐) (𝛼) represents the application of this function to address

𝛼. Thus, cwrite(L𝑃, 𝜆𝑥.𝑐, 𝑣) represents the modification of allocation state array L𝑃

to value 𝑣 for all addresses 𝛼 that satisfy the boolean condition 𝑐. In other words,

cwrite(L𝑃, 𝜆𝑥.𝑐, 𝑣) is equivalent to st1(. . . st1(. . . st1(L𝑃, 𝛼1, 𝑣), . . . , 𝛼𝑖, 𝑣), . . . , 𝛼𝑛, 𝑣)

SMT Encoding 145

for all 𝛼1, . . . , 𝛼𝑖, . . . , 𝛼𝑛 where the predicate 𝑐 holds 2.

We discuss the specific cases of allocation and deallocation below:

• Allocation of an interval [𝛼𝑏, 𝛼𝑒] to region 𝑟 through instruction ‘Σ𝑟
𝑃
:= Σ𝑟

𝑃
∪ [𝛼𝑏, 𝛼𝑒]’

is encoded as L𝑃
′ = cwrite(L𝑃, 𝜆𝑥.𝑥 ∈ [𝛼𝑏, 𝛼𝑒], 𝑟) which translates to “mark the

addresses in interval [𝛼𝑏, 𝛼𝑒] as belonging to region 𝑟 in L𝑃
′” (shown in row 1 of

table 5.2 with 𝑟 ∈ {𝑠𝑡𝑘} ∪ 𝑍).

• Similarly, deallocation of an interval [𝛼𝑏, 𝛼𝑒] from region 𝑟 through instruction

‘Σ𝑟
𝑃
:= Σ𝑟

𝑃
\ [𝛼𝑏, 𝛼𝑒]’ is encoded as L𝑃

′ = cwrite(L𝑃, 𝜆𝑥.𝑥 ∈ [𝛼𝑏, 𝛼𝑒], free) which
translates to “mark the addresses in interval [𝛼𝑏, 𝛼𝑒] as belonging to region free in

L𝑃
′” (shown in row 2 of table 5.2 with 𝑟 = 𝑠𝑡𝑘).

The deallocation of a region 𝑟 through instruction ‘Σ𝑟
𝑃
:= ∅’ is encoded as L𝑃

′ =
cwrite(L𝑃, 𝜆𝑥.sel1(L𝑃, 𝑥) = 𝑟, free) where the addresses to be set to free are

identified using the predicate sel1(L𝑃, 𝑥) (instead of a range check 𝑥 ∈ [𝛼𝑏, 𝛼𝑒] as
done in case of deallocation of an interval from 𝑟).

As L ¥A does not track virtually-allocated locals, the (de)allocation instructions Σ𝑧𝑙𝑣
¥A |

𝑣 :=

Σ𝑧𝑙𝑣
¥A |

𝑣 ∪ [𝑣]𝑤 and Σ𝑧𝑙𝑣
¥A |

𝑣 := ∅ ((AllocV) and (DeallocV) in fig. 2.10) for 𝑧𝑙𝑣 ∈ 𝑍𝑙𝑣

become vacuous in ¥A, i.e., they do not change any state element in ¥A.

5.2.2 Full-array encoding

We call this allocation state arrays LC and L ¥A based representation of address sets and

corresponding encoding of address set relations a full-array encoding. In a full-array

encoding, the address sets of C are tracked using LC and the address set of ¥A are tracked

using a combination of LC (for a region 𝑟 ∈ 𝑍𝑙𝑣) and L ¥A (otherwise). A predicate

𝛼 ∈ Σ𝑟
𝑃
for a region 𝑟 is encoded as an SMT array select operation select(L𝑃, 𝛼) over

the respective array L𝑃.

A proof obligation encoded using full-array encoding contains constructs with quantifiers

over SMT arrays (tables 5.1 and 5.2). Such a proof obligation, with quantifiers over

arrays, can be (relatively) slow to discharge using SMT solvers. In the subsequent

sections, we describe an interval encoding that makes use of the global invariants for a

more performant encoding attainable under certain conditions. We confirm the relative

better performance of our interval encoding in our experiments (section 6.2).

2Recall that st1 (L𝑃 , 𝛼1, 𝑣) is our size-associated store operation which is equivalent to SMT
expression store(L𝑃 , 𝛼1, 𝑣) in this particular case.

146 SMT Encoding

5.3 Interval Encoding

5.3.1 Interval encoding for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍𝑙 ∪ {𝑠𝑡𝑘}

Recall that the address set Σ𝑟
𝑃
of a region 𝑟 ∈ 𝐺 ∪ 𝐹 ∪𝑌 \ {vrdc} is an interval and the

address set Σ𝑟
𝑃
of a region 𝑟 ∈ 𝑍𝑙 ∪ {vrdc} is either empty or an interval (section 4.2.1)

— the global invariants gfyIntvl and zlIntvl encode this in 𝜙𝑛X . We use these

invariants (and AllocEq) for a more performant interval encoding. In the interval

encoding, we encode 𝛼 ∈ Σ𝑟
𝑃
for 𝑟 ∈ 𝐺 ∪ 𝐹 ∪ 𝑌 ∪ 𝑍𝑙 as

3

¬ em.𝑟 ∧ (lb.𝑟 ≤𝑢 𝛼 ≤𝑢 ub.𝑟)
Moreover, if there are no local variables allocated due to the alloca() operator

(i.e., Σ
𝑍𝑎

𝑃
= ∅), then all local variables are contiguous and thus amenable for an

interval encoding. In this case, due to StkBd , the 𝑠𝑡𝑘 region can be identified as

[esp, stk𝑒] \ Σ𝑌∪𝑍𝑙𝑠
¥A .

As the interval encoding utilizes ghost variables (em.𝑧 , lb.𝑧 , ub.𝑧), that are updated

during an (de)allocation, the SMT encoding of an address set mutating instruction

becomes vacuous.

5.3.2 Interval encoding for 𝑟 ∈ {ℎ𝑝, 𝑐𝑙, 𝑐𝑠}

Even though the regions ℎ𝑝 (heap), 𝑐𝑙 (callers’ locals), and 𝑐𝑙 (callers’ stack) can be

discontiguous in general, we over-approximate these regions to their contiguous covers

to be able to soundly encode them using intervals. Recall that our proof obligation 𝑂

is a Hoare triple of the form {𝜙𝑛X}(𝜉 ¥A; [𝜉C]𝑒XDX
){𝑝𝑜𝑠𝑡} such that 𝑛X = (𝑛 ¥A, 𝑛C) ∈ NHH𝑈𝑊

X
.

Here, if 𝜉 ¥A is an I/O path, its execution interacts with the outside world, and so an

over-approximation of an externally-visible address set is unsound. We thus restrict

ourselves to an I/O-free 𝜉 ¥A (consequently, I/O-free 𝜉C due to (SingleIO)) for our interval

encoding.

Let 𝑛1¥A, 𝑛
2
¥A, . . . , 𝑛

𝑚
¥A be the nodes on path 𝜉 ¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A), such that 𝑛1¥A = 𝑛 ¥A and 𝑛𝑚¥A = 𝑛𝑡¥A.

Let 𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥A) represent the minimum value of stackpointer esp observed at any node

𝑛
𝑗

¥A (1 ≤ 𝑗 ≤ 𝑚) visited during the execution of path 𝜉 ¥A. Similarly, let 𝑍𝑙𝑣𝑈 (𝜉 ¥A) be the

union of the values of address set Σ𝑍𝑙𝑣
¥A observed at any 𝑛

𝑗

¥A (1 ≤ 𝑗 ≤ 𝑚) visited during

3Recall that em.𝑟 , lb.𝑟 , and ub.𝑟 are ghost variables that capture the emptiness of region 𝑟, lower
bound of region 𝑟, and upper bound of region 𝑟 respectively.

SMT Encoding 147

𝜉 ¥A’s execution. Intuitively, 𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥A) is the lowest possible value of esp 4 and 𝑍𝑙𝑣𝑈 (𝜉 ¥A)
is the largest possible value of set Σ𝑍𝑙𝑣

¥A seen during 𝜉 ¥A’s execution starting at 𝑛X.

Let 𝐻𝑃(𝜉 ¥A), 𝐶𝐿 (𝜉 ¥A), and 𝐶𝑆(𝜉 ¥A) be defined as shown below.

𝐻𝑃(𝜉 ¥A) = comp(Σ𝐺∪𝐹
¥A ∪ 𝑍𝑙𝑣𝑈 (𝜉 ¥A) ∪ [𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥A), cs𝑒])

𝐶𝐿 (𝜉 ¥A) = [stk𝑒 + 1i32 , cs𝑒] \ 𝑍𝑙𝑣𝑈 (𝜉 ¥A)
𝐶𝑆(𝜉 ¥A) = [stk𝑒 + 1i32 , cs𝑒] ∩ 𝑍𝑙𝑣𝑈 (𝜉 ¥A)

Intuitively, 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A) are the largest possible values for Σ
ℎ𝑝

¥A and Σ𝑐𝑙
¥A respec-

tively such that 𝜙𝑛X is satisfied and 𝜉 ¥A is executed to completion; as 𝑐𝑠 and 𝑐𝑙 are

complementary (due to 𝑐𝑠Bd), this makes 𝐶𝑆(𝜉 ¥A) the smallest possible value under

the same conditions.

Theorem 5.3.1. Let 𝑂 = {𝑝𝑟𝑒}(𝜉 ¥A; [𝜉C]𝑒XDX
){𝑝𝑜𝑠𝑡} be a proof obligation generated by

Dynamo. Let 𝑂′ be obtained from 𝑂 by strengthening precondition 𝑝𝑟𝑒 to 𝑝𝑟𝑒′ =
𝑝𝑟𝑒 ∧ (Σℎ𝑝

¥A = 𝐻𝑃(𝜉 ¥A)) ∧ (Σ𝑐𝑙
¥A = 𝐶𝐿 (𝜉 ¥A)) ∧ (Σ𝑐𝑠

¥A = 𝐶𝑆(𝜉 ¥A)). If 𝜉 ¥A is I/O-free, 𝑂 ⇔ 𝑂′

holds.

Proof sketch. 𝑂 ⇒ 𝑂′ is trivial. The proof for 𝑂′⇒ 𝑂 relies on the limited shapes of

predicates that may appear in 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡, the enumeration of 𝒰-maximal pathsets

for C (section 4.1.2), and use of safety-relaxed semantics for ¥A (section 3.5). For I/O-free

𝜉 ¥A, 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 shapes are limited by our invariant grammar (fig. 4.2), and the edge

conditions appearing in our execution semantics (figs. 2.4 to 2.8, 2.10 and 2.11). The

full proof is available in section 5.3.3. □

Using theorem 5.3.1, we rewrite 𝛼 ∈ Σℎ𝑝

𝑃
to 𝛼 ∈ 𝐻𝑃(𝜉 ¥A), 𝛼 ∈ Σ𝑐𝑙

𝑃
to 𝛼 ∈ 𝐶𝐿 (𝜉 ¥A), and

𝛼 ∈ Σ𝑐𝑠
𝑃

to 𝛼 ∈ 𝐶𝑆(𝜉 ¥A) in proof obligation 𝑂. If Σ𝑍𝑎

𝑃
= ∅ holds at 𝑛X, we encode all

non-free regions using intervals — we call this a full-interval encoding ; else, we encode

regions in 𝑌∪𝑍𝑎∪𝑍𝑙𝑠∪{𝑠𝑡𝑘} using an allocation state array, and 𝐺∪𝐹∪𝑍𝑙𝑣∪{ℎ𝑝, 𝑐𝑙, 𝑐𝑠}
using intervals — we call this a partial-interval encoding.

Table 5.3 shows the SMT encoding of 𝛼 ∈ Σ𝑟
𝑃
in full-array, partial-interval, and full-

interval encoding. The column selects the encoding and the row selects the region.

We groups regions with common encoding into a single row, e.g., the third row gives

the encoding for a region 𝑟 ∈ 𝐺 ∪ 𝑍𝑙𝑣. We merge cells with common entries for

4Recall that stack is allocated by decrementing esp.

148 SMT Encoding

𝛼 ∈ Σ𝑟
𝑃

Full-array encoding Partial-interval encoding

(Σ𝑍𝑎

𝑃 ≠ ∅)
Full-interval encoding

(Σ𝑍𝑎

𝑃 = ∅)𝑃 = C 𝑃 = A

𝑟 = ℎ𝑝 𝛼 ∉ (Σ𝐺∪𝐹
¥A ∪ 𝑍𝑙𝑣𝑈 (𝜉 ¥A) ∪ [𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥A), cs𝑒])

𝑟 = 𝑐𝑙 𝛼 ∈ [stk𝑒 + 1, cs𝑒] ∧ 𝛼 ∉ 𝑍𝑙𝑣𝑈 (𝜉 ¥A)
𝑟 ∈ 𝐺 ∪
𝑍𝑙𝑣

sel1(LC, 𝛼) = 𝑟

𝑟 ∈ 𝑌 ∪
𝑍𝑎∪𝑍𝑙𝑠

¬ em.𝑟 ∧ (lb.𝑟 ≤𝑢 𝛼 ≤𝑢 ub.𝑟)

𝑟 ∈ 𝐹
𝑟 = 𝑐𝑠 false 𝛼 ∈ [stk𝑒 + 1, cs𝑒] ∧ 𝛼 ∈ 𝑍𝑙𝑣𝑈 (𝜉 ¥A)
𝑟 = 𝑠𝑡𝑘 sel1(L ¥A, 𝛼) = 𝑟 𝛼 ∈ [esp, stk𝑒] ∧∧

𝑟∈𝑌∪𝑍𝑙𝑠 (𝛼 ∉ Σ𝑟
¥A)

Table 5.3: SMT encoding of 𝛼 ∈ Σ𝑟
𝑃
for Dynamo’s proof obligation 𝑂 with outgoing

assembly path 𝜉 ¥A.

clearer presentation, e.g., instead of repeating sel1(LC, 𝛼) = 𝑟 for full-array encoding

of 𝑟 ∈ {ℎ𝑝, 𝑐𝑙} ∪𝐺 ∪ 𝑍𝑙𝑣 ∪𝑌 ∪ 𝑍𝑎 ∪ 𝑍𝑙𝑠, we merge the cells for each of these entries into

a single cell. As Σ𝑟
C
= ∅ for 𝑟 ∈ 𝐹 ∪ {𝑐𝑠, 𝑠𝑡𝑘}, 𝛼 ∈ Σ𝑟

C
is encoded as false.

5.3.3 Soundness of Interval Encoding

Let the Hoare triple representation of a proof obligation 𝑂 generated by Dynamo be

{𝑝𝑟𝑒}(𝜉 ¥A; [𝜉C]𝑒XDX
){𝑝𝑜𝑠𝑡}, where 𝜉 ¥A = (𝑛 ¥A ↠ 𝑛𝑡¥A) and either 𝜉C = 𝜖 or 𝜉C = (𝑛C ↠ 𝑛𝑡

C
);

both 𝜉 ¥A and 𝜉C are I/O-free execution paths in ¥A and C respectively; 𝑛X = (𝑛 ¥A, 𝑛C) ∈
NHH𝑈𝑊

X
is an error-free node; if 𝜉C = (𝑛C ↠ 𝑛𝑡

C
), then 𝑒X = (𝑛X 𝜉 ¥A; 𝜉C−−−−→𝑛𝑡

X
) ∈ EX and

𝑛𝑡
X
= (𝑛𝑡¥A, 𝑛

𝑡
C
) ∈ NX.

Let 𝐻𝑃(𝜉 ¥A), 𝐶𝐿 (𝜉 ¥A), and 𝐶𝑆(𝜉 ¥A) be defined as described in previous section.

Let 𝑂′ = {𝑝𝑟𝑒}(𝜉 ¥A; 𝜉C){𝑝𝑜𝑠𝑡} be obtained by strengthening precondition 𝑝𝑟𝑒 to 𝑝𝑟𝑒′ =
𝑝𝑟𝑒 ∧ (Σℎ𝑝

¥A = 𝐻𝑃(𝜉 ¥A)) ∧ (Σ𝑐𝑙
¥A = 𝐶𝐿 (𝜉 ¥A)) ∧ (Σ𝑐𝑠

¥A = 𝐶𝑆(𝜉 ¥A)) in 𝑂′. We need to show that

𝑂 ⇔ 𝑂′ holds.

(⇒) Proving 𝑂 ⇒ 𝑂′ is trivial, as 𝑂′ requires a stronger precondition than 𝑂 (with

everything else identical).

(⇐) Assume that 𝑂′ holds. We are interested in showing that 𝑂 holds. Assume a

machine state 𝜎 of product program X that satisfies the weaker precondition 𝑝𝑟𝑒, and

SMT Encoding 149

executes to completion over 𝜉 ¥A and 𝜉C. We are interested in showing that 𝜎 satisfies

the postcondition 𝑝𝑜𝑠𝑡 after completing the execution.

We define “error-free execution” to be the case where the execution on a state 𝜎 across

(𝜉 ¥A; 𝜉C) does not end at an error node in X.

Lemma 5.3.2 (𝐻𝑃(𝜉 ¥A),𝐶𝐿 (𝜉 ¥A) overapproximate ℎ𝑝,𝑐𝑙). (Σℎ𝑝

¥A ⊆ 𝐻𝑃(𝜉 ¥A)) ∧ (Σ𝑐𝑙
¥A ⊆

𝐶𝐿 (𝜉 ¥A)) holds on 𝜎 for an error-free execution.

Proof. Recall that 𝑝𝑟𝑒 ⇒ 𝜙𝑛X . If Σ
ℎ𝑝

¥A ⊃ 𝐻𝑃(𝜉 ¥A) or Σ𝑐𝑙
¥A ⊃ 𝐶𝐿 (𝜉 ¥A), then either at least

one of NoOverlapA or NoOverlapC will evaluate to false in 𝜙𝑛X (and 𝑝𝑟𝑒), or during

the execution of path 𝜉 ¥A; error 𝒲 will be triggered in ¥A because either the allocation

of stack space through stackpointer decrement will overstep Σ
{ℎ𝑝,𝑐𝑙}
¥A (Op-esp’), or the

virtual allocation of a local variable will overstep Σ
{ℎ𝑝,𝑐𝑙}
¥A (AllocV). However, by

assumption, 𝜎 satisfies 𝑝𝑟𝑒 (and 𝜙𝑛X) and executes 𝜉 ¥A and 𝜉C to completion to an

error-free node; thus proved by contradiction. □

Lemma 5.3.3 (𝐶𝑆(𝜉 ¥A) underapproximates 𝑐𝑠). (Σ𝑐𝑠
¥A ⊇ 𝐶𝑆(𝜉 ¥A)) holds on 𝜎 for an

error-free execution.

Proof. Follows from lemma 5.3.2 and 𝑐𝑠Bd (Σ𝑐𝑠
¥A = [stk𝑒 + 1i32 , cs𝑒] \ Σ𝑐𝑙

¥A). □

Lemma 5.3.4 (𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A) borrow from the free and 𝑐𝑠 regions). The

following hold on 𝜎 for an error-free execution.

1. (𝐻𝑃(𝜉 ¥A) \ Σℎ𝑝

¥A) ⊆ Σfree
¥A ⊆ Σfree

C

2. (𝐶𝐿 (𝜉 ¥A) \ Σ𝑐𝑙
¥A) ⊆ Σ𝑐𝑠

¥A ⊆ Σfree
C

Proof. The proof follows from the definition of 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A), as these sets are

not allowed to overlap with Σ𝐵∪𝐹∪𝑆
¥A or Σ𝐵∪𝐹∪𝑆

C
. □

Construct a state 𝜎′ that is identical to 𝜎 with the following modifications made in

sequence:

1. The region identified by addresses (that would belong to region free in C by

lemma 5.3.4) (𝐻𝑃(𝜉 ¥A) ∪ 𝐶𝐿 (𝜉 ¥A)) \ Σ{ℎ𝑝,𝑐𝑙}¥A in 𝜎′’s 𝑀C is updated through 𝑀C :=

upd(𝐻𝑃(𝜉 ¥A)∪𝐶𝐿 (𝜉 ¥A))\Σ{ℎ𝑝,𝑐𝑙}¥A
(𝑀C, 𝑀 ¥A).

150 SMT Encoding

2. The address sets Σ
ℎ𝑝

¥A , Σ𝑐𝑙
¥A , Σ

ℎ𝑝

C
, and Σ𝑐𝑙

C
are expanded and the address set Σ𝑐𝑠

¥A is

shrunk so that Σ
ℎ𝑝

¥A = Σ
ℎ𝑝

C
= 𝐻𝑃(𝜉 ¥A), Σ𝑐𝑙

¥A = Σ𝑐𝑙
C

= 𝐶𝐿 (𝜉 ¥A), and Σ𝑐𝑠
¥A = 𝐶𝑆(𝜉 ¥A) (this

involves the transfer of addresses from the free region to ℎ𝑝 and 𝑐𝑙 regions in C, and

from the free and 𝑐𝑠 regions to ℎ𝑝 and 𝑐𝑙 regions respectively in ¥A (lemma 5.3.4)).

The constructed state 𝜎′ thus satisfies the stronger precondition 𝑝𝑟𝑒′.

Let Σ
ℎ𝑝
𝜎 (Σ

ℎ𝑝

𝜎′), Σ
𝑐𝑙
𝜎 (Σ𝑐𝑙

𝜎′), Σ
𝑐𝑠
𝜎 (Σ𝑐𝑠

𝜎′), and Σfree
𝜎 (Σfree

𝜎′) denote the values of Σ
ℎ𝑝

¥A , Σ𝑐𝑙
¥A ,

Σ𝑐𝑠
¥A , and Σfree

¥A in state 𝜎 (𝜎′) respectively. Similarly, let 𝑀𝜎
¥A (𝑀𝜎

C
) and 𝑀𝜎′

¥A (𝑀𝜎′
C
)

represent the state of procedure ¥A’s (C’s) memory 𝑀 ¥A (𝑀C) in machine states 𝜎 and

𝜎′ respectively.

To relate 𝜎 and 𝜎′, we define relation 𝑠𝑖𝑚(𝜎, 𝜎′) as the conjunction of the following

conditions:

1. (ℎ𝑝 subset in 𝜎) Σ
ℎ𝑝
𝜎 ⊆ Σ

ℎ𝑝

𝜎′ .

2. (𝑐𝑙 subset in 𝜎) Σ𝑐𝑙
𝜎 ⊆ Σ𝑐𝑙

𝜎′ .

3. (𝑐𝑠 superset in 𝜎) Σ𝑐𝑠
𝜎 ⊇ Σ𝑐𝑠

𝜎′ .

4. (free superset in 𝜎) Σfree
𝜎 ⊇ Σfree

𝜎′ .

5. (¥A’s memory states are equal) 𝑀𝜎
¥A = 𝑀𝜎′

¥A
6. (C’s memory states are equal except at the updated regions) 𝑀𝜎

C
=
comp(Σ{ℎ𝑝,𝑐𝑙}

𝜎′ \Σ{ℎ𝑝,𝑐𝑙}𝜎)
𝑀𝜎′

C
.

7. The remaining state elements have equal values in 𝜎 and 𝜎′.

By construction, 𝑠𝑖𝑚(𝜎, 𝜎′) holds.

Lemma 5.3.5 (𝑠𝑖𝑚(𝜎, 𝜎′) is preserved for error-free execution across all non-I/O edges

in E ¥A). If a non-I/O edge 𝑒 ¥A ∈ E ¥A is executed on both machine states 𝜎 and 𝜎′, and if

𝑠𝑖𝑚(𝜎, 𝜎′) holds before the execution, and if the execution on 𝜎 completes without error,

then there exists a sequence of non-deterministic choices during the execution on 𝜎′

such that the execution is error-free and 𝑠𝑖𝑚(𝜎, 𝜎′) holds at the end of both error-free

executions.

Proof. For each non-I/O ¥A instruction that does not refer to the {ℎ𝑝, 𝑐𝑙, 𝑐𝑠, free}
regions ((Op-Nesp),(AllocS), (DeallocS), (Call ¤A), (RetA), (DeallocV)), the
execution will have identical behaviour on both 𝜎 and 𝜎′, as identical values will be
observed in 𝜎 and 𝜎′. Thus, if an execution on 𝜎′ makes the same non-deterministic

choice as the execution on 𝜎, the execution on 𝜎′ will complete without error and

SMT Encoding 151

𝑠𝑖𝑚(𝜎, 𝜎′) will hold at the end of both executions.

We consider each remaining non-I/O instruction in ¥A below:

• (Entry ¥A). Consider the overlap conditions Υ1 = ov(Σℎ𝑝

¥A , Σ𝑐𝑙
¥A , . . . , 𝑖

𝑔

¥A, . . . , Σ
𝑓

¥A, . . . ,
𝑖
𝑦

¥A, . . . , Σ
vrdc
¥A) (due to ¬addrSetsAreWF), Υ2 = ov([esp, esp + 3i32], Σ𝐵∪𝐹

¥A), Υ3 =

ov([stk𝑒 + 1i32 , cs𝑒], Σ{ℎ𝑝}∪𝐺∪𝐹¥A), and Υ4 = ov(Σ𝑐𝑙
¥A , comp([stk𝑒 + 1i32 , cs𝑒])) (due

to stkIsWF). During an execution on 𝜎, all four conditions must evaluate to false,

as we assume an error-free execution on 𝜎. For the same non-deterministic choices

made in both executions (over 𝜎 and 𝜎′), by the definitions of 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A),
Υ1, Υ2, Υ3, and Υ4 will also evaluate to false for an execution on 𝜎′ — recall that

𝐻𝑃(𝜉 ¥A) cannot overlap with [esp, cs𝑒] (which includes the arguments) and global

variable regions (due to lemma 5.3.4); and 𝐶𝐿 (𝜉 ¥A) is a subset of [stk𝑒 +1i32 , cs𝑒] (by
definition). Further, because all other state elements observed during the execution

of the non-I/O edges in (Entry ¥A) are identical in both 𝜎 and 𝜎′, 𝑠𝑖𝑚(𝜎, 𝜎′) will
hold at the end of error-free executions.

• (Op-esp). The negated subset check Υ = ¬([𝑡, esp − 1i32] ⊆ Σfree
¥A ∪ Σ

𝑍𝑙
¥A |

𝑣) (due
to ¬intrvlInSet(𝑡, esp − 1i32 , Σfree

¥A ∪ Σ
𝑍𝑙
¥A |

𝑣)) depends (indirectly) on the addresses

of the set Σ
{ℎ𝑝,𝑐𝑙}
¥A (as free is defined as complement of the allocated region). The

execution on 𝜎 must evaluate Υ to false as we assume an error-free execution. By

the definitions of 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A), for the same non-deterministic choices made

in both executions (over 𝜎 and 𝜎′), Υ will also evaluate to false for an execution

on 𝜎′ — recall that (𝐻𝑃(𝜉 ¥A) ∪𝐶𝐿 (𝜉 ¥A)) cannot overlap with [𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥A), stk𝑒], and
the latter includes [𝑡, esp − 1i32]. All other state elements observed in the other

instructions of (Op-esp) are identical in both 𝜎, 𝜎′ and 𝑠𝑖𝑚(𝜎, 𝜎′) will hold at the

end of error-free executions.

• (AllocV). Consider the negated subset check Υ = ¬([𝑣]𝑤 ⊆ Σ
comp(𝐵)
¥A) (due to

¬intrvlInSet𝑎 (𝑣, 𝑣 + 𝑤 − 1i32 , Σcomp(𝐵)
¥A)). The execution on 𝜎 must evaluate Υ to

false as we assume an error-free execution. By the definitions of 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A),
for the same non-deterministic choices made in both executions (over 𝜎 and 𝜎′), Υ
will also evaluate to false for an execution on 𝜎′ — recall that (𝐻𝑃(𝜉 ¥A) ∪𝐶𝐿 (𝜉 ¥A))
cannot overlap with 𝑍𝑙𝑣𝑈 (𝜉 ¥A), and the latter includes the interval [𝑣]𝑤. All other
state elements observed in the other instructions of (AllocV) are identical in both

𝜎, 𝜎′ and 𝑠𝑖𝑚(𝜎, 𝜎′) will hold at the end of error-free executions.

• (Load ¥A) and (Store ¥A). The overlap checks, ov([𝑝]𝑤, (Σ𝑍𝑙
¥A |

𝑣) \ (Σ𝐹
¥A ∪ [esp, cs𝑒]))

152 SMT Encoding

for (Load ¥A) and ov([𝑝]𝑤, (Σ𝑍𝑙
¥A |

𝑣)\(Σ𝐹𝑤
¥A ∪[esp, cs𝑒])) for (Store ¥A), in the modified

semantics of (Load ¥A) and (Store ¥A) will evaluate to false for 𝜎 due to the

assumption of error-free execution. As these checks do not refer to the potentially

modified regions {ℎ𝑝, 𝑐𝑙, 𝑐𝑠, free}, 𝜎′ must also evaluate the check to false (for the

same sequence of non-deterministic choices). Notice that this reasoning relies on the

safety-relaxed semantics, and would not hold on the original semantics. All other

state elements observed in the other instructions of (Load ¥A) and (Store ¥A) are
identical in both 𝜎, 𝜎′ and 𝑠𝑖𝑚(𝜎, 𝜎′) will hold at the end of error-free executions.

□

Recall that the Dynamo algorithm populates the deterministic choice map DX such

that the result of the choose instruction (𝜃 (i32)) for 𝛼𝑏 in an alloc instruction in 𝜉C

matches the address 𝑣 in an alloc𝑠,𝑣 instruction in 𝜉 ¥A and the result of the choose

instruction for memory contents (𝜃 (i32 → i8)) of the freshly allocated interval [𝛼𝑏, 𝛼𝑒]
matches the memory contents of the interval [𝑣]𝑤 (in the alloc and alloc𝑠,𝑣 instructions

respectively). We use this fact in the following theorem on the execution of [𝜉C]𝑒XDX
.

Lemma 5.3.6 (𝑠𝑖𝑚(𝜎, 𝜎′) is preserved for error-free execution across all non-I/O edges

in EC). If a non-I/O edge 𝑒C ∈ EC in the path [𝜉C]𝑒XDX
is executed on both machine

states 𝜎 and 𝜎′, and if 𝑠𝑖𝑚(𝜎, 𝜎′) holds before the execution, and if the execution on 𝜎,

with non-deterministic choices determinized by DX, completes without error, then, for

the same sequence of non-deterministic choices, the execution on 𝜎′ completes without

error and 𝑠𝑖𝑚(𝜎, 𝜎′) holds at the end of both error-free executions.

Proof. For a non-I/O C instruction that does not refer to the {ℎ𝑝, 𝑐𝑙, 𝑐𝑠, free} regions
((Op), (AssignConst), (Dealloc), (VaStartPtr), (CallV), (CallC), (RetC),
(RetV)), the execution will have identical behaviour on both 𝜎 and 𝜎′ as identical
values will be observed in both 𝜎 and 𝜎′. Thus, if an execution on 𝜎′ makes the

same non-deterministic choice as the execution on 𝜎, the execution on 𝜎′ will complete

without error and 𝑠𝑖𝑚(𝜎, 𝜎′) will hold at the end of both executions.

We consider each remaining non-I/O instruction in C below:

• (EntryC) Consider the overlap check Υ = ov(Σℎ𝑝

C
, Σ𝑐𝑙

C
, . . . , 𝑖

𝑔

C
, . . . , Σ

𝑓

C
, . . . , 𝑖

𝑦

C
, . . . ,

Σvrdc
C
) (due to ¬addrSetsAreWF). During an execution on 𝜎, this condition must

evaluate to false, as we assume an error-free execution on 𝜎. For the same non-

deterministic choices made in both executions (over 𝜎 and 𝜎′), by the definitions

SMT Encoding 153

of 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A), Υ will also evaluate to false for an execution on 𝜎′ —
recall that (𝐻𝑃(𝜉 ¥A) ∪ 𝐶𝐿 (𝜉 ¥A)) cannot overlap with other allocated regions (due to

lemma 5.3.4). Further, because all other state elements observed during the execution

of the non-I/O edges in (EntryC) are identical in both 𝜎 and 𝜎′, 𝑠𝑖𝑚(𝜎, 𝜎′) will
hold at the end of error-free executions.

• (Alloc) Consider the negated subset check Υ = ¬([𝛼𝑏, 𝛼𝑒] ⊆ Σfree
C
) (due to

¬intrvlInSet𝑎 (𝛼𝑏, 𝛼𝑒, Σ
free
C
)). The execution on 𝜎 must evaluate Υ to false

as we assume an error-free execution. By the definitions of 𝐻𝑃(𝜉 ¥A) and 𝐶𝐿 (𝜉 ¥A), for
the same non-deterministic choices made in both executions (over 𝜎 and 𝜎′), Υ will

also evaluate to false for an execution on 𝜎′— recall that during execution on 𝜎, the

deterministic choice map DX will be used for the non-deterministic choices of address

𝛼𝑏 and memory 𝜋[𝛼𝑏 ,𝛼𝑒] (𝑀C) such that the freshly allocated interval [𝛼𝑏, 𝛼𝑒] matches

(in both address and data) the allocated interval [𝑣]𝑤 in an alloc𝑠,𝑣 instruction in

𝜉 ¥A; because the same DX is used in both 𝜎 and 𝜎′ executions, Υ will also evaluate to

false in 𝜎′. All other state elements observed in the other instructions of (Alloc)
are identical in both 𝜎, 𝜎′.

• (LoadC) and (StoreC). An accessIsSafeC𝜏,𝑎 () check must evaluate to true for

𝜎 due to the assumption of error-free execution. Because the allocated space Σ𝐵
C
can

only be bigger in 𝜎′ (by lemma 5.3.2), the accessIsSafeC check will also evaluate

to true for 𝜎′ (for the same sequence of non-deterministic choices). Further, for

an execution on 𝜎, the contents of the memory region 𝜋
Σ
{ℎ𝑝,𝑐𝑙}
𝜎′ \Σ{ℎ𝑝,𝑐𝑙}𝜎

(𝑀𝜎
C
) cannot

be observed on an error-free path; and because all other state elements observed in

(LoadC) and (StoreC) are identical in both 𝜎 and 𝜎′, the contents of the memory

region 𝜋(Σ{ℎ𝑝,𝑐𝑙}
𝜎′ \Σ{ℎ𝑝,𝑐𝑙}𝜎

(𝑀𝜎′
C
) will also remain unobserved during an execution on 𝜎′

(that uses the same sequence of non-deterministic choices as an execution on 𝜎). All

other state elements observed in the other instructions of (LoadC) and (StoreC)
are identical in both 𝜎, 𝜎′.

□

Lemma 5.3.7 (𝑠𝑖𝑚(𝜎, 𝜎′) is preserved for error-free execution across 𝜉 ¥A; 𝜉C). Recall
that 𝜉 ¥A contains only non-I/O instructions (by assumption). Thus, due to the (SingleIO)

requirement, 𝜉C also contains only non-I/O instructions.

If 𝜉 ¥A is executed on machine states 𝜎 and 𝜎′, and if the execution of 𝜎 completes

without error, then there exists a sequence of non-deterministic choices during the

154 SMT Encoding

execution of 𝜎′ such that the execution is error-free and 𝑠𝑖𝑚(𝜎, 𝜎′) holds at the end of

both error-free executions.

Similarly, if 𝜉C is next executed on machine states 𝜎 and 𝜎′, and if the execution of

𝜎 completes without error, then there exists a sequence of non-deterministic choices

during the execution of 𝜎′ such that the execution is error-free and 𝑠𝑖𝑚(𝜎, 𝜎′) holds at

the end of both error-free executions.

Proof. To show this, we execute the sequence of paths (𝜉 ¥A; 𝜉C) in lockstep on both 𝜎

and 𝜎′, i.e., in a single step, one instruction is executed on both states modifying the

states in place. The proof proceeds by induction on the number of steps. The base case

holds by assumption. For the inductive step, we rely on lemmas 5.3.5 and 5.3.6. □

Lemma 5.3.8 (𝜎 and 𝜎′ execute the same path in ¥A). If 𝜉 ¥A executes to completion on

state 𝜎, it will also execute to completion on 𝜎′.

Proof. By case analysis on all edge conditions in figs. 2.6 to 2.8, 2.10 and 2.11. For

𝜉 ¥A = 𝑛 ¥A ↠ 𝒰 ¥A due to (Load ¥A) and (Store ¥A), the proof relies on the safety-relaxed

semantics, and would not hold on the original semantics. □

Lemma 5.3.9 (𝜎 and 𝜎′ execute the same non-𝒰 path in C). If 𝜉C does not terminate

in 𝒰C, and 𝜎 executes 𝜉C to completion, then 𝜎′ will also execute 𝜉C to completion.

Proof. By case analysis on all edge conditions in figs. 2.4 and 2.5 with same arguments

as used in lemma 5.3.6. □

Lemma 5.3.10 (𝑝𝑜𝑠𝑡 (𝜎′)∧𝑠𝑖𝑚(𝜎, 𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) holds for an error-free node (𝑛𝑡¥A, 𝑛
𝑡
C
)).

For two states 𝜎 and 𝜎′ at node (𝑛𝑡¥A, 𝑛
𝑡
C
), where 𝑛𝑡¥A and 𝑛𝑡

C
are error-free nodes,

𝑝𝑜𝑠𝑡 (𝜎′) ∧ 𝑠𝑖𝑚(𝜎, 𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) holds.

Proof. The 𝑝𝑜𝑠𝑡 condition that may appear in a Hoare triple proof obligation generated

by Dynamo can be one of the following:

• (CoverageC) where 𝑝𝑜𝑠𝑡 =
∨

1≤ 𝑗≤𝑚 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗

C
]𝑒

𝑗
X
DX
) for 𝑒 𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→(𝑛𝑡¥A, 𝑛

𝑡
C
)) ∈

EX (1 ≤ 𝑗 ≤ 𝑚).

• (Inductive) where 𝑝𝑜𝑠𝑡 is one of the predicate shapes listed in fig. 4.2. Note that the

MemEq shape in fig. 4.2 represents the proof obligation for the (MemEq) requirement.

SMT Encoding 155

• (Equivalence) where 𝑝𝑜𝑠𝑡 is either Ω ¥A = ΩC or 𝑇¥A =𝑠𝑡 𝑇C. I/O free paths do not

mutate world states so Ω ¥A = ΩC holds trivially for these cases. Further, the only I/O

free paths that may modify trace must contain halt instruction, appearing as the

last edge of the sequence. As the generated trace event for halt does not observe

any procedure state variable, we ignore this case.

• (MAC) where 𝑝𝑜𝑠𝑡 checks the address of each memory access in ¥A against the

addresses of a set of memory accesses in C for equality. Also, (MAC) checks if

a memory access overlaps with address regions Σ𝐺∪𝐹
¥A ∪ [esp, stk𝑒] or Σ

𝐺𝑤∪𝐹𝑤
¥A ∪

[esp, stk𝑒].

Case: When 𝑝𝑜𝑠𝑡 is one of the predicate shapes in fig. 4.2 or is a (MAC) proof obligation.

• The predicate shapes affine , ineqC , ineq , spOrd , zEmpty , spzBd , spzBd’ ,

and a (MAC) proof obligation do not involve operations over address sets {ℎ𝑝, 𝑐𝑙, 𝑐𝑠, free}
or memory operations in the updated region Σ

{ℎ𝑝,𝑐𝑙}
𝜎′ \ Σ{ℎ𝑝,𝑐𝑙}

𝜎′ . Thus, 𝑝𝑜𝑠𝑡 (𝜎′) ∧
𝑠𝑖𝑚(𝜎, 𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) holds in this case.

• Consider the case when 𝑝𝑜𝑠𝑡 is AllocEq . Due to (Equivalence), AllocEq is guar-

anteed to be in 𝑝𝑟𝑒 and therefore Σ
ℎ𝑝

¥A = Σ
ℎ𝑝

C
and Σ𝑐𝑙

¥A = Σ𝑐𝑙
C

hold for 𝜎′. Due to

𝑠𝑖𝑚(𝜎, 𝜎′), 𝜎 and 𝜎′ agree on the remaining state elements, including the address

sets for each region 𝑧 ∈ 𝑍. Thus, 𝑝𝑜𝑠𝑡 (𝜎′) ∧ 𝑠𝑖𝑚(𝜎, 𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) holds in this

case.

• Consider the case when 𝑝𝑜𝑠𝑡 is MemEq . 𝑠𝑖𝑚(𝜎, 𝜎′) ensures that the address sets of

regions {ℎ𝑝, 𝑐𝑙} in 𝜎 are a subset of respective address sets in 𝜎′. Further, due to

𝑠𝑖𝑚(𝜎, 𝜎′), the memory states of A in 𝜎 and 𝜎′ are identical, 𝑀𝜎
¥A = 𝑀𝜎′

¥A , and the

memory states of C in 𝜎 and 𝜎′ disagree only over the updated (expanded) address

sets, 𝑀𝜎
C
=
comp(Σ{ℎ𝑝,𝑐𝑙}

𝜎′ \Σ{ℎ𝑝,𝑐𝑙}𝜎) 𝑀
𝜎′
C
. Because the allocated regions in 𝜎 do not belong

to these (expanded) addresses, 𝑝𝑜𝑠𝑡 (𝜎) follows from 𝑝𝑜𝑠𝑡 (𝜎′).

Case: When 𝑝𝑜𝑠𝑡 is a proof obligation for (CoverageC). In this case, 𝑝𝑜𝑠𝑡 must be of

the form
∨

1≤ 𝑗≤𝑚 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗

C
]𝑒

𝑗
X
DX
) for 𝑒 𝑗

X
= ((𝑛 ¥A, 𝑛C)

𝜉 ¥A; 𝜉
𝑗
C−−−−→(𝑛𝑡¥A, 𝑛

𝑡
C
)) ∈ EX (1 ≤ 𝑗 ≤ 𝑚).

The edge conditions in C are independent of the regions {ℎ𝑝, 𝑐𝑙, 𝑐𝑠, free}, except for
(LoadC) and (StoreC). If the edge condition is independent of these address regions,

then 𝑝𝑜𝑠𝑡 (𝜎) follows trivially from 𝑝𝑜𝑠𝑡 (𝜎′). Consider the other case now: for an

error-free node, the 𝒰-maximal set of paths {𝜉1
C
, . . . , 𝜉𝑚

C
} includes both the paths that

evaluate accessIsSafeC𝜏,𝑎 to true and false respectively. Thus, even in this case,

156 SMT Encoding

𝑝𝑜𝑠𝑡 (𝜎) holds if 𝑝𝑜𝑠𝑡 (𝜎′) holds.

□

Lemma 5.3.11 (𝑝𝑜𝑠𝑡 (𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) for 𝑛𝑡¥A = 𝒲 ¥A). For two states 𝜎 and 𝜎′ at node
(𝒲 ¥A, 𝑛

𝑡
C
), 𝑝𝑜𝑠𝑡 (𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) holds.

Proof. The 𝑝𝑜𝑠𝑡 condition of this type may appear in a Hoare triple proof obligation

generated by Dynamo for one of the following:

• (CoverageC) where 𝑝𝑜𝑠𝑡 =
∨

1≤ 𝑗≤𝑚 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗

C
]𝑒

𝑗
X
DX
) for 𝑒 𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→(𝑛𝑡¥A, 𝑛

𝑡
C
)) ∈

EX (1 ≤ 𝑗 ≤ 𝑚).

• (MAC) where 𝑝𝑜𝑠𝑡 checks the address of each memory access in ¥A against the

addresses of a set of memory accesses in C for equality. Also, (MAC) checks if

a memory access overlaps with address regions Σ𝐺∪𝐹
¥A ∪ [esp, stk𝑒] or Σ

𝐺𝑤∪𝐹𝑤
¥A ∪

[esp, stk𝑒].

The proof arguments for both these cases are identical to the ones made in the proof

for lemma 5.3.10. □

Lemma 5.3.12 (𝑝𝑜𝑠𝑡 (𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) for 𝑛𝑡¥A = 𝒰 ¥A). For two states 𝜎 and 𝜎′ at node
(𝒰 ¥A, 𝑛𝑡C), 𝑝𝑜𝑠𝑡 (𝜎′) ⇒ 𝑝𝑜𝑠𝑡 (𝜎) holds.

Proof. The 𝑝𝑜𝑠𝑡 condition of this type may appear in only one type of proof obligation

generated by Dynamo:

• (CoverageC) where 𝑝𝑜𝑠𝑡 =
∨

1≤ 𝑗≤𝑚 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗

C
]𝑒

𝑗
X
DX
) for 𝑒 𝑗

X
= (𝑛X 𝜉 ¥A; 𝜉

𝑗
C−−−−→(𝒰 ¥A, 𝑛𝑡C)) ∈

EX (1 ≤ 𝑗 ≤ 𝑚).

Let the (CoverageC) proof obligation be {𝜙𝑛X}(𝜉 ¥A; 𝜖){
∨

1≤ 𝑗≤𝑚 𝑝𝑎𝑡ℎ𝑐𝑜𝑛𝑑 ([𝜉 𝑗

C
]𝑒

𝑗
X
DX
)}. Due

to (Safety), each path 𝜉
𝑗

C
must end at 𝒰C.

From the semantics in figs. 2.4 and 2.5, if the path condition for 𝜉
𝑗

C
evaluates to true

on 𝜎′ (for some 𝑗), it must also evaluate to true on 𝜎 — in other words, whenever

𝜎′ transitions to 𝒰C, 𝜎 is guaranteed to transition to 𝒰C. This is because the edge

conditions in C will evaluate either identically on 𝜎 and 𝜎′ (due to {𝜉1
C
, . . . , 𝜉𝑚

C
} being a

𝒰-maximal set), or in the case of ¬accessIsSafeC𝜏,𝑎 (), the edge condition will evaluate

to true on 𝜎 if it evaluates to true on 𝜎′.

SMT Encoding 157

Thus, if 𝑝𝑜𝑠𝑡 (𝜎′) evaluates to true, 𝑝𝑜𝑠𝑡 (𝜎) also evaluates to true. □

Proof for (⇐). Follows from lemmas 5.3.7 to 5.3.12. □

Proof of theorem 5.3.1. Follows from (⇒) and (⇐). □

5.4 Semantics with Simpler SMT Encoding for 𝑠𝑡𝑘

Region of ¥A
In our implementation, we use a slightly revised semantics for ¥A for a more efficient

SMT encoding. We define a new region 𝑠𝑡𝑘+ such that 𝑠𝑡𝑘+ is large enough to contain

the 𝑠𝑡𝑘 region at every point during ¥A’s execution. A key property that 𝑠𝑡𝑘+ satisfies is
that 𝛼 ∈ Σ𝑠𝑡𝑘

¥A can be rewritten in terms of 𝛼 ∈ Σ𝑠𝑡𝑘+
¥A while 𝛼 ∈ Σ𝑠𝑡𝑘+

¥A itself having simpler

SMT encoding than Σ𝑠𝑡𝑘
¥A .

(Entry ¥A’), (Op-esp”), (AllocS”), and (DeallocS”) in fig. 5.1 present the new

semantics for procedure-entry, a stackpointer updating instruction, and alloc𝑠 and

dealloc𝑠 instructions respectively. As with previous presentations, we only show the

changes (with respect to figs. 2.6 to 2.8 and 2.11) with appropriate context in fig. 5.1;

additions are highlighted and deletions are canceled.

(Entry ¥A’) initializes the address set Σ𝑠𝑡𝑘+
¥A such that Σ𝑠𝑡𝑘

¥A ⊆ Σ𝑠𝑡𝑘+
¥A holds and Σ𝑠𝑡𝑘+

¥A does

not overlap with other allocated regions in ¥A. The lower bound of Σ𝑠𝑡𝑘+
¥A is defined by

a ghost variable stk𝑏 which is required to be below esp at all times for an error-free

execution. Intuitively, stk𝑏 corresponds to the lowest stackpointer value seen during

the execution of ¥A5.

(Op-esp”) shows the updated semantics for a stackpointer (esp) updating instruc-

tion. Our modification is limited to the address set argument (third argument) of

the {𝒲,𝒰}-guarding ¬intrvlInSet(. . .) predicate in both stack allocation and deal-

location cases of the instruction. intrvlInSet(𝛼𝑏, 𝛼𝑒, 𝑖) returns false if the interval

[𝛼𝑏, 𝛼𝑒] does not completely lie within the address set 𝑖. In the stack allocation case

(under if (isPush(. . .))), the address set argument Σfree
¥A ∪ ((Σ𝑐𝑣

¥A ∪ (Σ
𝑍𝑙
¥A |

𝑣)) \ Σ𝐹
¥A) to

intrvlInSet(. . .) is replaced with Σ𝑠𝑡𝑘+
¥A . This ensures that the 𝑠𝑡𝑘+ region is always

big enough to accommodate a stack push and, consequently, imply that Σ𝑠𝑡𝑘
¥A ⊆ Σ𝑠𝑡𝑘+

¥A
5Note the similarity with 𝑆𝑃𝑚𝑖𝑛 (𝜉 ¥A) from section 5.3.2

158 SMT Encoding

(Entry ¥A’)
𝑝
𝑗
¥A : def ¥A(#‰𝜏)

. . .

Σ𝑠𝑡𝑘
¥A := [esp, stk𝑒] \ Σ𝑌

¥A;
. . .

stk𝑏 := 𝜃 (i32);
if (¬(stk𝑏 ≤𝑢 esp) ∨ ov([stk𝑏, stk𝑒], Σ𝐺∪𝐹∪{ℎ𝑝}

¥A))
halt(𝒲);

Σ𝑠𝑡𝑘+
¥A := [stk𝑏 , stk𝑒] \ Σ𝑌

¥A;

(Op-esp”)
𝑝
𝑗
¥A : esp := op(#‰𝑥)

. . .

if (isPush(𝑝 𝑗
¥A, esp, 𝑡)) {

if (¬intrvlInSet(𝑡, esp − 1i32 , Σ𝑠𝑡𝑘+
¥A Σfree

¥A ∪ ((Σ𝑐𝑣
¥A ∪ (Σ

𝑍𝑙

¥A |
𝑣)) \ Σ𝐹

¥A)))
halt(𝒲);

Σ𝑠𝑡𝑘
¥A := Σ𝑠𝑡𝑘

¥A ∪ [𝑡, esp − 1i32];
} else if (𝑡 ≠ esp) {
if (¬intrvlInSet(esp, 𝑡 − 1i32 , Σ𝑠𝑡𝑘+

¥A Σ𝑠𝑡𝑘
¥A))

halt(𝒰);

Σ𝑠𝑡𝑘
A := Σ𝑠𝑡𝑘

A \ [esp, 𝑡 − 1i32];
}
. . .

(AllocS”)
𝑝
𝑗
¥A : alloc𝑠 𝑒𝑣 , 𝑒𝑤 , 𝑎, 𝑧

. . .
Σ𝑧
¥A |
𝑠 ,

:=
Σ𝑧
¥A |
𝑠 ∪ [𝑣]𝑤

Σ𝑠𝑡𝑘
¥A , Σ𝑠𝑡𝑘

¥A \ [𝑣]𝑤 ,
Σ𝑠𝑡𝑘+
¥A Σ𝑠𝑡𝑘+

¥A \ [𝑣]𝑤 ;

. . .
Σ𝑧
¥A, :=

Σ𝑧
¥A ∪ [𝑣]𝑤 ,

Σ𝑠𝑡𝑘
¥A , Σ𝑠𝑡𝑘

¥A \ [𝑣]𝑤 ,
Σ𝑠𝑡𝑘+
¥A Σ𝑠𝑡𝑘+

¥A \ [𝑣]𝑤 ;

. . .

(DeallocS”)
𝑝
𝑗
¥A : dealloc𝑠 𝑧

. . .
Σ𝑧
¥A |
𝑠 ,

:=
∅,

Σ𝑠𝑡𝑘
¥A , Σ𝑠𝑡𝑘

¥A ∪ Σ𝑧
¥A |
𝑠 ,

Σ𝑠𝑡𝑘+
¥A Σ𝑠𝑡𝑘+

¥A ∪ Σ𝑧
¥A |
𝑠 ;

. . .
Σ𝑧
¥A, :=

∅,
Σ𝑠𝑡𝑘
¥A , Σ𝑠𝑡𝑘

¥A ∪ Σ𝑧
¥A,

Σ𝑠𝑡𝑘+
¥A Σ𝑠𝑡𝑘+

¥A ∪ Σ𝑧
¥A ;

. . .

Figure 5.1: Revised translation rules for the new 𝑠𝑡𝑘+-based semantics for ¥A.

continues to hold after a stack allocation. Similarly, in the stack deallocation case (under

elseif (𝑡 ≠ esp)), Σ𝑠𝑡𝑘
¥A is replaced with Σ𝑠𝑡𝑘+

¥A . Our modifications are carefully designed

so that this modified check (for stack deallocation case) will evaluate identically to the

original check in an execution of ¥A.

(AllocS”) and (DeallocS”) shows the updated semantics for alloc𝑠 and dealloc𝑠

instructions. In both cases, Σ𝑠𝑡𝑘+
¥A is updated identically to Σ𝑠𝑡𝑘

¥A for a local (de)allocation

from(to) stack.

SMT Encoding 159

Theorem 5.4.1. The following property holds at every error-free, non-entry node

𝑛 ¥A ∈ NHH𝑈𝑊
¥A in an execution of ¥A with the semantics presented in fig. 5.1 (and semantics

presented earlier in figs. 2.5, 2.6, 2.8, 2.10 and 2.11).

𝛼 ∈ Σ𝑠𝑡𝑘
¥A ⇔ 𝛼 ∈ Σ𝑠𝑡𝑘+

¥A ∧ (𝛼 ≥𝑢 esp)

Proof sketch: By induction on the number of transitions executed in ¥A with the base

case defined by the first transition out of (Entry ¥A’) in fig. 5.1. □

Using the above property, the SMT encoding of a verification condition over ¥A is

rewritten to replace references to Σ𝑠𝑡𝑘
¥A with references to Σ𝑠𝑡𝑘+

¥A . All assignments to Σ𝑠𝑡𝑘
¥A

are made vacuous and only Σ𝑠𝑡𝑘+
¥A is tracked in the allocation state of ¥A. Because Σ𝑠𝑡𝑘+

¥A is

not updated due to a stackpointer updating instruction, the resulting SMT expressions

are simpler.

160 SMT Encoding

Chapter 6

Evaluation

This chapter discusses the implementation specifics and evaluation of a prototype tool

based on the Dynamo algorithm described in the previous chapters.

6.1 Implementation of Dynamo

6.1.1 System components

Figure 6.1 shows the high-level component blocks and the flowchart of our tool, also

named Dynamo. The two programs, C source code and its (potentially optimized)

x86 assembly, are translated to their respective graph representations before they

are passed as input to the tool. The C source is first translated to LLVM𝑑 (which is

based on unoptimized LLVM IR; see section 2.1.1) using a modified Clang/LLVM [48].

The explicit dealloc instructions, present only in LLVM𝑑, are also added during this

translation using the stacksave and stackrestore intrinsics — these intrinsics are

generated for the purpose of stack related code generation, we use them for deriving

scope information of allocated locals. The generated LLVM𝑑 program is then lowered

to its graph representation C (described in section 2.3.1) and a may-point-to analysis

is performed (described in section 4.1). The x86 assembly is similarly translated to

its graph representation A (described in section 2.3.2); the translation uses the safety-

relaxed semantics (described in section 3.5). Both C and A use the callers’ virtual

smallest semantics (described in section 3.4).

The various components blocks of the tool are shown in fig. 6.1. The tool interfaces

161

162 Evaluation

DFA
WP

computation
Expr-

Simplifier
SMT2

encoding

Deterministic
choice map DX

Asm Annotations
Coverage VCs and

Hoare triple gen

Path
enumeration

Invariant
inference

Counterexample
parse & eval

Proof Query/
Counterexample

Z3Yices CVC4

SMT Solvers

Proof found Failure

Product-Graph X
and Annotated A

C graph

A graph

DYNAMO Best-First Search

May-Point-
To Analysis

LLVMd-to-graph

C-to-LLVMd

add dealloc

C source

Safety-Relaxed
rewrite

x86-to-graphx86
executable

TCB block

C-to-x86 compiler

Figure 6.1: High-level components of Dynamo implementation. Trusted Code Base
(TCB) blocks have double border and a red background.

with third-party SMT solvers (“SMT Solvers” in the diagram) for discharging its proof

obligations. The “SMT2 encoding” component encodes a Hoare triple into SMT-LIB2

format [7] that is used as a uniform input format for the SMT solvers. A model or

counterexample returned by a solver is parsed, evaluated, and translated for guiding

the correlation and invariant inference (“Counterexample parse & eval”). The other

prominent components of the system shown in the diagram are: a common data-flow

analysis (DFA) framework (“DFA”) a weakest-precondition computation module (“WP

computation”), a syntactic expression simplifier (“Expr-Simplifier”), and a verification

condition generator (“Coverage VCs and Hoare triple gen”). The modules for the

deterministic choice map (described in section 3.2) and assembly annotations are shown

separately as well (“Deterministic choice map DX” and “Asm Annotations”).

Trusted Code Base

The soundness of a verification effort is critically dependent on the correctness of the

trusted computing base (TCB) of the verifier — in fig. 6.1 the blocks belonging to the

TCB are marked with double borders and have a red background. An error in the TCB

may result in a soundness error.

Evaluation 163

Dynamo is around 400K Source Lines of Code (SLOC) in C/C++ that has been in

development for over a decade and used in prior work [4, 13, 42]. Out of the 400K,

the TCB is around 70K SLOC. Within the TCB, around 20K SLOC is due to the

expression handling and simplification logic, less than 10K for SMT encoding, less than

10K SLOC for the graph representation and the weakest-precondition logic and less than

1K SLOC for a common data-flow analysis framework. The x86-to-graph translation is

around 18K SLOC of C code (for disassembly) and 5K SLOC of OCaml code (for logic

encoding), and the IR-to-graph translation, including the addition of dealloc and the

may-point-to analysis (section 2.3), is around 6K SLOC of C++ code. We rely on the

Clang framework for the C-to-IR translation — one can imagine replacing this with a

verified frontend, such as CompCert’s [30]. The modeling of the deterministic choice

map, generation of Hoare triple and coverage verification conditions is relatively simple

(less than 1K SLOC total).

6.1.2 Discharging Proof Obligations

Recall that we use quantified logic over bitvectors, arrays, and uninterpreted func-

tions (AUFBV in SMT-LIB [7]) in our SMT encoding. For procedures without local

(de)allocations and procedure calls, it is possible to use a quantifier-free encoding by

modeling the stack as a separate memory array. Using a lightweight analysis on the

A graph, each memory access may be labeled as either to stack region or non-stack

(other than stack) regions. Utilizing the full-interval encoding (section 5.3), the various

address set relations can then be rewritten in quantifier-free logic. Prior work [39, 42]

has used similar approach for achieving quantifier-free encoding.

Use of multiple solvers: Dynamo uses four SMT solvers running in parallel for discharg-

ing proof obligations: Z3-4.8.7, Z3-4.8.14, Yices2-45e38fc, and CVC4-1.7. Though

Yices2 does not support quantified logic (and cannot be used in the general setting),

we use it fruitfully in the quantifier-free setting described in previous paragraph. For

instance, in our experiments, we observed that it was consistently faster than the others.

Because both our best-first search and invariant inference algorithm may potentially

converge faster with a larger set of counterexamples, we invoke two versions of the Z3

SMT solver: Z3-4.8.7 and Z3-4.8.14. This decision was guided by an empirical ob-

servation where we noted that the two solvers have different performance characteristics

and produce sufficiently different counterexamples that contribute to faster convergence

of the invariant inference algorithm [42].

164 Evaluation

Handling difficult queries: As an optimization, our implementation makes use of

the query-decomposition technique and simplification rewrites described in [18] for

discharging queries difficult for the SMT solvers. We invoke query-decomposition only

after the SMT solvers fail to discharge the proof query within a specified timeout period

(we provide the timeout period used in each experiment in section 6.2).

6.1.3 Pseudo-register allocation in LLVM𝑑

Before checking refinement, if the address of a local variable 𝑙 is never taken in C, we

transform C to register-allocate 𝑙 using LLVM’s mem2reg pass. This reduces the proof

effort, at the cost of having to trust the pseudo-register allocation logic. However,

mem2reg does not register-allocate local arrays and aggregates (structs) in LLVM𝑑,

even though an optimizing compiler may register-allocate them in assembly — virtual

allocations help validate such translations. Another case where virtual allocations

are helpful is described in section 6.2.4 where a va list variable (used in variadic

procedures) is not (pseudo-)register allocated in C by mem2reg but is register-allocated

in optimized assembly. Thus, after mem2reg, virtual allocations are only required for

validating register-allocation of arrays, aggregates, and va list variables.

6.1.4 Instrumentation of Clang/LLVM for generating annota-

tion hints

We instrumented the Clang/LLVM v12.0.0 compiler to generate annotation hints for the

whitebox setting. The instrumentation, which required only a couple of lines of code,

prints the constant offset (with respect to the stackpointer at entry of the procedure)

of the allocated stack slots for non-VLA allocations — for VLA allocations we still rely

on blackbox enumeration. These offsets do not map to a named local in C and are only

used as additional address options for an alloc𝑠 annotation (section 4.1.3).

6.2 Experiments

We design our experiments to validate the capabilities and explore the limitations of

the Dynamo algorithm in our prototype tool. In particular, the experiments explore

the following aspects of the tool (and the algorithm):

1. Handling of different constructs available for local allocation in the C language and

Evaluation 165

common extensions (section 6.2.1).

2. Performance of the full-interval and partial-interval SMT encoding in comparison to

the naive full-array SMT encoding (section 6.2.1).

3. Overhead of identifying the required annotation for modeling local (de)allocations

(section 6.2.2).

4. Performance of the tool on a real-world program (section 6.2.3).

6.2.1 Evaluating efficacy of Dynamo

We first evaluate the efficacy of Dynamo to handle the diverse programming patterns

seen with local allocations in C. Table 6.1 lists the programming patterns we test in

this experiment. Each programming pattern corresponds to one benchmark (i.e., a C

procedure) except vsl𝑁 and vil𝑁 where we substitute 𝑁 with 1, 2, 3 to obtain vsl1,

vsl2, vsl3 and vil1, vil2, vil3 respectively in each case. The programming patterns

we include in this experiment have:

• use of address-taken local variables and parameters in benchmarks ats, atss, atps,

atpss, and atc.

• use of constant- and variable-length arrays in benchmarks ata, atail, fib, vin, vcu,

vsl1, vsl2, and vsl3.

• variadic procedures in benchmarks vwl, vwc, mp, and ms.

• use of variable-length arrays (VLAs) allocated inside loops in benchmarks vil1,

vil2, vil3, vilcc, and vilce.

• unconditional and conditional use of alloca() in as, ac, and ams.

• use of alloca() to create a linked-list in all.

• mixed use of constant-sized and variable-length array in rod.

There are total 27 benchmarks and we use three compilers, Clang/LLVM v12.0.0, GCC

v8.4.0, and ICC v2021.8.0, to generate 32-bit x86 executables at O3 optimization level to

create 81 procedure-pairs. We manually disable interprocedural and unrolling/vectoriza-

tion optimizations in each invocation using the compiler’s source-level pragmas and/or

command-line flags1. A refinement check is performed for each of the 81 procedure-pairs.

We use an unroll-factor of one 𝜇 = 1 for all benchmarks except all for GCC and ICC,

and fib for Clang/LLVM where we use an unroll-factor of two 𝜇 = 2. Each refinement

1The full command-line used for generating the assembly in each case is provided in section B.1.

166 Evaluation

Name Programming pattern

1 ats Address-taken local scalar int ats() { int ret; foo(&ret); return ret; }
2 atss Address-taken local struct int atss() { struct Point p1, p2; foo(&p1, &p2); return ...; }
3 atps Address-taken scalar parameter int atps(int a) { char x; scanf("%c %d", &x, &a); return ...; }
4 atpss Address-taken struct parameter int atpss(struct Point p1, ...) { ...; scanf(..., &p1.x); ... }
5 atc Address taken conditionally int atc(int* p) { int x; if (!p) p = &x; foo(p); return *p }
6 ata Local array int ata() { char ret[8]; foo(ret); return bar(ret, 0, 16); }
7 atail Local array alloc. in loop int atail(..){..for(..){ char a[4096]; f(a..); b(a..);...}...}
8 fib Program from fig. 2.1

9 vin VLAs in nested scopes void vin(int n, int m){int v1[n]; { int v2[m]; foo(v2); } bar(v1); }
10 vcu VLA conditional use int vcu(int n,int k){ int a[n]; if (...) { /*rd/wr to a*/}...}

11 vsl𝑁 𝑁 VLA(s)
int vsl𝑁(..){ .. int v1[n], ... v𝑁[n]; for(i=0;i<n;++i) {

v1[i]=..a[i]..; v𝑁[i]=..a[i]..; } return foo𝑁(...); }

12 vil𝑁 𝑁 VLA(s) in a loop int vil𝑁(..){..for(i=1;i<n;++i) { int v1[4*i], ... v𝑁[4*i]; foo𝑁(..); ..}
13 vilcc VLA in loop with continue int vilcc(..){..while(i<n){ char v[i];...if(..) continue;..}..}
14 vilce VLA in loop with break int vilce(..){..while(i<n){ char v[i];...if(..) break;..}..}
15 vwl Variadic procedure int vwl(int n,...){ va list a; va start(a, n); for(..){/* va arg(a,int) */}..}

16 vwc
Variadic procedure

using va copy()

vwc(int n,...) { va list a, b; va start(a,n); va copy(b,a);

for(...){ /* va arg(b) */ } va copy(b,a); foo(b); ...}
17 mp minprintf procedure adapted from K&R [24]

18 ms minscanf procedure similar to minprintf

19 as alloca() int as(int n){...int* p=alloca(n*sizeof(n)); for(...){/*write to p*/}...}
20 ac alloca() conditional use int ac(char*a) {..if (!a) a=alloca(n); for(...)/*r/w to a*/}

21 all
alloca() in a loop

to form a linked list

all() { ...hd=NULL; for(...){ ...n=alloca(..); n->nxt=hd; hd=n; }
while(...){ /* traverse the list starting at hd */ }}

22 ams alloca() & malloc() int ams(..){..if(..){p=alloca(..);}else{p=malloc(..);}/* r/w to p ..*/...}
23 rod A local char array initialized using a string and a VLA and a for loop Available in ??.

Table 6.1: Benchmarks and their programming patterns. 𝑁 in vsl𝑁 and vil𝑁 is
substituted to obtain vsl1, vsl2, vsl3 and vil1, vil2, vil3 respectively. Full program
listings available in chapter C.

check is run with a refinement check timeout of two hours and a per SMT query timeout

of 120 seconds, i.e., the refinement check is terminated automatically after two hours,

resulting in a refinement failure, and, similarly, an SMT solver spawned for discharging

an SMT query is automatically terminated after 120 seconds, yielding a “timeout” result

which is interpreted as a failure in the discharge of the corresponding proof obligation —

a failed proof obligation may eventually result in refinement failure.

Figure 6.2 shows graph of the refinement check run times for the 81 procedure-pairs. The

X-axis lists the benchmarks and the Y-axis represents the total time taken in seconds

(using a log scale) for a refinement check. To study the performance implications, we

Evaluation 167

at
s

at
c

at
a

at
ss

vw
l
vc

u
m

p
at

ps
vs

l1
at

ai
l

am
ss
vw

c
m

s as vi
n al

l
fib

vi
lc
c
vi

lc
e
vi

l1 ac
vs

l2
vi

l2
vi

l3 ro
d
at

ps
s

100

101

102

103

104

R
efi

n
em

en
t

ch
ec

k
ti

m
e

in
se

co
n

d
s

Refinement check times by benchmark and compiler

CLANG

GCC

ICC

Figure 6.2: Comparison of running times of procedures in table 6.1 with full-interval
(filled bars), partial-interval (thick black lines), and full-array (empty bars) encoding.
Y-axis is logarithmically scaled.

run a check with all three encodings for these benchmarks:

• A filled bar () represents the time taken with, if it was possible to use, a full-interval

encoding.

• A thick black line centered on a bar () represents the time taken with a forced

partial-interval encoding, i.e., partial-interval encoding is forced even if a full-interval

encoding is possible.

• An empty bar () represents represents the time taken with a forced full-array

encoding, i.e., a full-array encoding is forced even if a full-interval or a partial-interval

encoding is possible.

• A missing bar or a missing thick line (for partial-interval encoding) represents a

failure in proof search with respective encoding.

Of the 81 procedure pairs, our tool is able to find a refinement proof for 66, 61, and

168 Evaluation

60 procedure-pairs while using full-interval, partial-interval, and full-array encodings

respectively. For benchmarks where a refinement check succeeds for all encodings, the

full-interval encoding performs 2.07 and 3.88 times faster on average (for each compiler)

than the partial-interval and full-array encodings respectively.

Encoding
of successful refinement checks

Clang/LLVM GCC ICC Total

Full-interval encoding 26 23 17 66
Partial-interval encoding 23 21 17 61
Full-array encoding 22 21 17 60

Figure 6.3: Summary of refinement check results for the programs in table 6.1.

Figure 6.3 summarizes the results of this experiment, showing the number of successful

refinement checks for each compiler and encoding pair. Dynamo is unable to find

refinement a proof in 15 cases for the full-interval encoding. We analyze these failures

in detail in section 6.2.4. A failure particular to partial-interval or full-array encoding

(i.e., the refinement check succeeded with a full-interval encoding) is either due to SMT

solver timeout causing failure of a crucial proof obligation or a refinement check timeout

in that invocation.

Two benchmarks, vilcc and vilce, require multiple dealloc𝑠 instructions to be added

to A for a single dealloc in C. An alloc𝑣 annotation is required for the ‘va list a’

variable in the GCC and ICC compilations of vwl and vwc (see table 6.1) — while

GCC and ICC register-allocate a, it is allocated in memory using alloc in LLVM𝑑 even

after mem2reg (section 6.1.3). The time spent in constructing the correct product graph

forms around 70-80% of the total search time.

6.2.2 Evaluating modeling cost of local allocations

Our next experiment evaluates the cost of modeling local allocations. Towards this, we

run Dynamo on the TSVC suite of vectorization benchmarks with arrays and loops

[33]. The benchmarks in this suite are used to evaluate the vectorization capabilities

of optimizing compilers and typically have C functions with (nested) loops and array

accesses. A variation of this suite, where the floating-point types are replaced with

integer types, was used in prior work on translation validation [8, 17] and we adopt the

same modified version for our use — we select 25 procedures (as used in [17]) for our

experiments.

Evaluation 169

int a[4000]; // global array -- ‘a’ is locally allocated in ‘locals’ version

int b[4000];

int s122(int n1, int n3) {

int j, k;

j = 1;

k = 0;

// int a[4000]; // this is uncommented in ‘locals’ version

init_local1(a); // this call initializes ‘a’ in ‘locals’ version

for (int i = n1-1; i < 4000; i += n3) {

k += j;

a[i] += b[4000 - k];

}

print_local1(a); // this call observes (outputs) ‘a’ in ‘locals’ version

return 0;

}

Figure 6.4: Procedure s122 from ‘globals’ version of (modified) TSVC suite.

We create two versions of this suite for our experiments:

1. ‘globals’ where global variables are used for storing the output array values.

2. ‘locals’ where local array variables are used for storing the output array values.

In both versions, a procedure call is added at the end of the procedure body to print the

contents of the modified output array variables. Further, if the output array variable is

being read before being assigned, we add a procedure call before the read to initialize

the variable. Figure 6.4 shows an example.

We use Clang/LLVM v12.0.0 at optimization level O3 with vectorization enabled using

-msse 4.2 flag for compiling the 25 C procedures in each version. The compiler

performs the same vectorizing transformations on both versions. Unlike globals,

the benchmarks in locals version additionally require the automatic identification

of required annotation. We use an unroll-factor of 64, a global timeout of two hours,

and a per SMT query timeout of one minute for each run of Dynamo on the 50

procedure-pairs.

Figure 6.5 shows the execution times of Dynamo for these two versions of the TSVC

benchmark. Dynamo is able to successfully validate these compilations. Similar

to fig. 6.2, we show execution times for both full-interval and forced partial-interval

encodings for the ‘locals’ benchmarks using filled bars and empty bars respectively

(we omit the forced full-array encoding numbers in this case). Compared to globals,

170 Evaluation

s1
22

s2
51

s1
22

1
s1

21
s1

12

s2
24

4
s2

43

s1
11

2
s0

00
s4

53
s1

27 vp
v

s1
25

1
vt

v

vp
vt

s

s1
35

1

s1
28

1

vp
vp

v

vp
vt

v
s1

73

vt
vt

v
s4

52

vd
ot

r
s1

62

su
m

1d
100

101

102

103

R
efi

n
em

en
t

ch
ec

k
ti

m
e

in
se

co
n

d
s

Refinement check times by benchmark and compiler

locals

globals

Figure 6.5: Comparison of running times of TSVC benchmarks with exactly same code
modulo allocation strategy. Y-axis is logarithmically scaled.

refinement checks are 2.5x slower for locals (on average) due to the extra overhead of

identifying the required annotations. The full-interval encoding is 1.9 times faster (on

average) than partial-interval encoding. This relative speed-up of full-interval encoding

over partial-interval encoding is similar to the number obtained in previous experiment

(section 6.2.1). With a forced partial-interval encoding, Dynamo fails to validate 3

(out of 25) benchmarks within the assigned time budget.

6.2.3 Evaluating Dynamo on a real-world program

Our last experiment is on SPEC CPU2000’s bzip2[20] program compiled using Clang/L-

LVM v12.0.0 at three optimization levels: O1, O2, and O1-. O1- is a custom optimization

level configured by us that enables all optimizations at O1 except the following.

(a) merging of multiple procedure calls on different paths into a single call,

(b) early-CSE (common subexpression elimination),

(c) loop-invariant code motion at both LLVM IR and Machine IR,

(d) dead-argument elimination,

Evaluation 171

(e) interprocedural sparse conditional constant propagation,

(f) dead-code elimination of procedure calls.

These passes were chosen based on our knowledge of the limitations of our invariant

inference algorithm. bzip2 runs 2% slower with O1- than with O1; this is still 5% faster

than the executable produced by CompCert, for example. Of all 72 procedures in bzip2,

Dynamo successfully validates the translations for 64, 63, and 57 procedures at O1-,

O1, and O2 respectively at unroll-factor 𝜇 = 2 and a per SMT query timeout of three

minutes. At O1-, Dynamo takes around 8.7 CPU hours to compute refinement proofs

for the 64 procedures. Dynamo times out for the remaining 8 procedures, all of which

are bigger than 142 ALOC.

Name SLOC ALOC #𝑎𝑙 #𝑐𝑎𝑙𝑙 T |NX | |EX | EXP BT #𝑞 Avg. qT

generateMTFValues 76 144 1 1 4k 14 30 60 16 3860 0.56
recvDecodingTables 70 199 2 10 3k 38 66 102 15 5611 0.21
undoReversible-

Transformation fast

116 221 1 6 2k 21 34 43 6 2998 0.23

Table 6.2: Statistics obtained by running Dynamo on procedures in the bzip2 program.

Three of bzip2’s procedures for which refinement proofs are successfully computed

at both O1- and O1 optimization levels contain at least one local array, and table 6.2

presents statistics for the O1- validation experiments for these procedures. For each

procedure, we show the number of source lines of code in C (SLOC), the number of

assembly instructions in A (ALOC), the number of local variables (#𝑎𝑙), and the number

of procedure calls (#𝑐𝑎𝑙𝑙). The T column shows the validation times (in seconds). The

|NX | and |EX | columns show the number of nodes and edges in the final product graph,

and BT and EXP is the number of best-first search backtrackings and the number of

(partial) candidate product graphs explored by best-first search in Dynamo respectively.

#𝑞 is the total number of SMT queries discharged, and Avg. qT is the average time

taken by an SMT query in seconds for the refinement check.

In the experiment with O2 optimization level some of the loops in these procedures are

vectorized. With an unroll-factor 𝜇 = 8, Dynamo is able to validate undoReversible-

Transformation fast’s assembly implementation within ≈ 38 minutes. However, the

BFS search diverges away from the correct solution for the other bzip2 functions,

eventually resulting in a timeout. These experiments indicate the need for more robust

search algorithms and/or faster logical models/solvers in the presence of aggressive

172 Evaluation

optimizations on large programs.

In a separate experiment, we manually split the large procedures in bzip2 into smaller

procedures, so that Dynamo successfully validates the O1- compilation of the full mod-

ified bzip2 program in ≈16 hours: the splitting disables some compiler transformations

and also reduces the correlation search space.

101 102

Refinement Time (minutes)

10−1

100

101

102

A
ss

e
m

b
ly

li
n

e
s

o
f

co
d

e
(A

L
O

C
)

Figure 6.6: Scatter plot of refinement time (in minutes) vs assembly lines of code
(ALOC). Both axes are logarithmically scaled.

Figure 6.6 shows the scatter plot of refinement time (in minutes) versus the assembly

lines of code (ALOC) of all procedure-pairs considered so far. While the relationship is

almost linear, the range of values is quite wide, especially at higher ALOC.

6.2.4 Analysis of Failures

Table 6.3 lists the 15 refinement check failures with full-interval encoding for the

refinement checks in fig. 6.2. We have grouped the reasons for these failures into three

categories: (1) limitation of blackbox annotation; (2) incompleteness due to affine

invariant inference grammar; and (3) incompleteness in affine invariant inference due

to chosen set of procedure variables. We discuss each reason in detail in following

subsections.

Evaluation 173

Benchmark Compiler Failure reason

1 vsl1 GCC Limitation of dealloc𝑠 annotation

2 vsl1

ICC Non-affine invariant required

3 vsl2

4 vil3

5 vilcc

6 vilce

7 fib

8 rod

9 vin

10 vcu

11 vsl3

12 vsl3 Clang
13 vsl3 GCC

14 mp
GCC

Incompleteness in affine invariant inference due to the
chosen set of procedure variables15 ms

Table 6.3: Failure reasons for the refinement checks shown in fig. 6.2.

Limitation of the alloc𝑠/dealloc𝑠 annotation algorithm in the blackbox

setting

Recall that in the blackbox setting of Dynamo, when hints from the compiler are not

available, the annotation algorithm (asmAnnotOpts()) limits the insertion of a dealloc𝑠

instruction to only those PCs that occur just before an instruction that updates the

stackpointer register esp. This limitation may cause a refinement check to fail in some

(not all) of the situations where a compiler implements merging of multiple allocations

(resp. deallocations) into a single stackpointer decrement (resp. increment) instruction.

This is the reason for the failure to validate GCC’s compilation of vsl1.

Figure 6.7 shows the vsl1 procedure (fig. 6.7a) and a sketch of the control-flow graph

(CFG) of the assembly procedure generated by GCC at O3 optimization level (fig. 6.7b).

The assembly path 𝑆→𝐵→ 𝐽→𝐸 represents the case when (n ≤ 0) and the procedure

exits early (without allocating any local variable). PC with label 𝐿 represents the loop

head in the CFG, and the allocation and deallocation of the VLA v is supposed to

happen before entering the loop and after exiting the loop respectively.

On the assembly CFG path 𝐿→ 𝐽 , the assembly instruction that reclaims stack space

(by incrementing the stackpointer) for deallocating v has been merged by the compiler

with an instruction that restores the stackpointer to its value at the beginning of

174 Evaluation

int vsl1(int *a, int n)

{

if (n <= 0)

return 0;

int v1[n];

for (int i = 0; i < n; ++i)

{

v1[i] = a[i]+a[i];

}

return foo1(v1);

}

(a) C source code

S
ebp← esp

B
esp← esp− . . .

allocs

L

deallocs

esp← esp + . . .

J
deallocs

esp← ebp

E

merged and sunk down

(b) Abbreviated CFG of GCC compiled assembly

Figure 6.7: vsl1 procedure from table 6.1 (appears as vsl𝑁) and the control-flow
graph (CFG) of its GCC compiled assembly.

the function (stored in register ebp). Thus, while the original stackpointer increment

instruction would have been at the end of the 𝐿→ 𝐽 path, the merged instruction is

sunk by the compiler to lie within the path 𝐽→𝐸 . As can be seen, this transformation

saves an extra instruction to update the stack pointer on the path 𝐿→ 𝐽→𝐸 .

In the absence of compiler hints (blackbox setting), our tool considers the annotation of a

dealloc𝑠 instruction in assembly only at a PC that immediately precedes an instruction

that updates the stackpointer. In this example, the only candidate PC for annotating

dealloc𝑠 (considered by our blackbox algorithm) is on the path 𝐽→𝐸 . However, the

required position of the dealloc𝑠 instruction was at the end of the path 𝐿→ 𝐽 (which is

not considered because there is no instruction that updates the stackpointer at the end

of the path 𝐿→ 𝐽). Thus, our blackbox algorithm cannot find a refinement proof. On

the other hand, providing a manual hint to the tool that it should consider annotating a

dealloc𝑠 instruction at the end of the 𝐿→ 𝐽 path causes the algorithm to successfully

return a refinement proof for GCC’s compilation of vsl1.

For completeness, let us consider what happens when the tool annotates a dealloc𝑠

instruction just before the instruction that updates the stackpointer to ebp on the

𝐽→𝐸 path. Such an annotation violates the (stuttering) trace equivalence condition

on the procedure path 𝑆→ 𝐵→ 𝐽→ 𝐸 : in the C procedure, there is no deallocation

(or allocation) on the early exit path (when n ≤ 0), but this annotation will cause a

dealloc𝑠 instruction to be executed on the correlated path (𝑆→ 𝐵→ 𝐽→ 𝐸) in the

Evaluation 175

assembly procedure. Because a dealloc𝑠 instruction generates a (non-silent) trace

event through the wr instruction, this candidate annotation therefore fails to show the

equivalence of traces on at least one pair of correlated paths. Thus, this candidate

annotation is discarded by our algorithm.

Requirement of a non-affine invariant in some ICC compiled benchmarks

The ICC compiler (and in two cases GCC and Clang as well) generates a certain

pattern of assembly code in some (not all) cases of VLA containing C source code that

necessitate need of a non-affine invariant shape for completing the refinement proof.

In some cases, ICC uses the following pattern of instruction sequence for the allocation

of a VLA of size 𝑣𝑙𝑎𝑆𝑧:

𝑟𝑒𝑔1 ← 𝑣𝑙𝑎𝑆𝑧

𝑟𝑒𝑔2 ← (𝑟𝑒𝑔1 + C) & ∼ C
esp← esp − 𝑟𝑒𝑔2

Here, 𝑟𝑒𝑔1 and 𝑟𝑒𝑔2 are assembly registers other than esp, esp is the stackpointer

register, C is a bitvector constant, and ∼ denotes the bitwise complement operator.

After execution of the instruction sequence, the value in 𝑟𝑒𝑔1 matches the allocation

size of the VLA in the C procedure. For example, for a VLA declaration int v[n],

𝑟𝑒𝑔1 would have value n*4 2. The value in 𝑟𝑒𝑔2 is the allocation amount after adjusting

for alignment requirements, e.g., v (declared as int v[n]) would have an alignment of

at least 4 in 32-bit x86. The last instruction shifts esp 𝑟𝑒𝑔2 bytes below its original

value, thus allocating the VLA3.

At time of deallocation, the stackpointer register is simply incremented by the same

value as it was decremented by during the allocation:

𝑟𝑒𝑔1 ← 𝑣𝑙𝑎𝑆𝑧

𝑟𝑒𝑔2 ← (𝑟𝑒𝑔1 + C) & ∼ C
esp← esp + 𝑟𝑒𝑔2

2Recall that 4 is the size of an int in our 32-bit configuration
3esp must have been originally aligned by the required alignment for the resulting value to be

correctly aligned.

176 Evaluation

Notice that the two assembly sequences are identical except for the last instruction,

where in the deallocation sequence + is used in place of −.

Recall that the execution of a stackpointer increment instruction may trigger 𝒰 if

the deallocated interval does not belong to the stack region ((Op-esp) in fig. 2.6).

Thus, in order to prove that the assembly procedure does not trigger 𝒰 in the above

deallocation sequence, we must have an invariant stating that the original stackpointer

value (just before executing the above deallocation sequence), was at least 𝑟𝑒𝑔2 bytes

(where 𝑟𝑒𝑔2 is derived from 𝑣𝑙𝑎𝑆𝑧) below some address in the stack region and the

interval spanned by the two stackpointer values belongs entirely to the stack region.

The global invariants StkBd , zlIntvl , and zaBd (fig. 4.3) and, invariants affine

and ineq (fig. 4.2) over the ghost variables for stackpointer (sp.𝑝
𝑗

¥A) and local regions

(lb.𝑧 , ub.𝑧 , lstSz.𝑧) help in proving separation of intervals defined by stackpointer

ghost variables and stack-allocated local regions, and are usually sufficient to discharge

the latter check. Proving the former condition, that the gap between two stackpointer

values is larger than a value derived from 𝑣𝑙𝑎𝑆𝑧, however, requires an invariant that

cannot be inferred by our predicate grammar.

Let us look at the allocation and deallocation instruction sequences again. At the end

of the allocation sequence, the new stackpointer value is related to the old stackpointer

value by (esp𝑎 = esp𝑏 − 𝑟𝑒𝑔2) where esp𝑏 and esp𝑎 are the stackpointer values just

before and after executing the stackpointer decrement instruction respectively. Due to

translation rule (Op-esp) in fig. 2.6, both esp𝑏 and esp𝑎 will have ghost variables, say,

sp.𝑝
𝑗1
¥A and sp.𝑝

𝑗2
¥A , holding value equal to them. Thus, the relation between the two

stackpointer values can be expressed as sp.𝑝
𝑗2
¥A = sp.𝑝

𝑗1
¥A − 𝑟𝑒𝑔2, an affine shape that is

a member of affine . On the other hand, the relation 𝑟𝑒𝑔2 = (𝑣𝑙𝑎𝑆𝑧 + C) & ∼ C is not

an affine shape and cannot be captured by any other shape in our predicate grammar.

Further, the alignment adjustment computation is not performed in C so there is no C

variable that can be related to 𝑟𝑒𝑔2 through an affine relation. Consequently, instead

of a precise affine invariant relating 𝑟𝑒𝑔2 and 𝑣𝑙𝑎𝑆𝑧, an imprecise inequality invariant

of the form sp.𝑝
𝑗2
¥A ≤𝑢 sp.𝑝

𝑗1
¥A − vlaSz, is inferred (spOrd in fig. 4.2). This inferred

invariant is sufficient for proving the well-formedness of the alloc instruction (so that

C does not go to 𝒲C) and proving that ¥A does not go to 𝒰 ¥A in (AllocS).

In the deallocation sequence, instead of reusing 𝑟𝑒𝑔2 or resetting the stackpointer to older

value (as happens in some compilations of GCC), the required value for stackpointer

increment is recomputed again using 𝑣𝑙𝑎𝑆𝑧. At this point, the product graph invariants

Evaluation 177

do not imply a precise relationship between 𝑣𝑙𝑎𝑆𝑧 and the 𝑟𝑒𝑔2. Thus, the stackpointer

is incremented by a value which, according to the inferred invariants, is completely

unrelated to the value by which stackpointer was decremented. Consequently, the

attempt to prove that the deallocated interval belongs to the stack region fails and we

are unable to prove that ¥A does not go to 𝒰 ¥A in the stackpointer increment instruction.

It can be observed that the necessary invariant required for the proof to go through is

(𝑟𝑒𝑔2 = (𝑣𝑙𝑎𝑆𝑧 + C) & ∼C), where 𝑣𝑙𝑎𝑆𝑧 can be substituted with the ghost variable for

the size of the VLA (lstSz.𝑧 for allocation site 𝑧 of the VLA). This invariant shape,

though required in this case, is rather specific and may not be useful otherwise. On the

other hand, choosing to include it in the predicate grammar is highly likely to cause

an increase in the runtime of the tool. We make the choice of omitting it, choosing to

sacrifice completeness in favor of (relatively better) runtimes — our choice is informed

by casual observations on scalability bottlenecks due to inference of non-affine invariant

shapes.

Failure due to choice of program variables for invariant inference

In the affine
∑

𝑖 𝑐𝑖𝑣𝑖 = 𝑐 invariant shape of the predicate grammar (fig. 4.2), the

program variables 𝑣𝑖 are drawn from a set 𝑉 that includes the pseudo-registers in C and

registers and stack slots in A (section 4.1.5). The candidate variables for correlation in

𝑉 do not include “memory slots” of shape selsz(𝑀C, 𝛼) (little-endian concatenation

of sz bytes starting at 𝛼 in the array 𝑀C) to avoid an explosion in the number of

candidate invariants and, consequently, the running time of the algorithm.

This causes a failure while validating the GCC compilations (at O3) of the variadic mp

and ms benchmarks in table 6.1. GCC register-allocates the va list variable (that

maintains the current position in the variadic argument). On the other hand, the LLVM𝑑

IR maintains this pointer value in a local variable (allocated using an alloc instruction)

— the loads and stores to this local variable ⟨|𝑎𝑝 ⟨| can be seen in fig. 2.3. Thus, for a

refinement proof to succeed, a validator must relate the assembly register’s value with

the value stored inside the local variable’s memory region (sel4(𝑀C, ⟨|𝑎𝑝 ⟨|)). Because
our invariant inference algorithm does not consider memory slots in C, this required

relation is not identified, resulting in a proof failure.

It may be worth asking the question: why does our choice of program variables work for

the other benchmarks? Due to the mem2reg pass used in C before computing equivalence,

178 Evaluation

the only memory slots that remain in procedure C pertain to potentially address-taken

variables. Our requirements on the product graph X ensure that the memory regions

corresponding to address-taken local variables (and global variables) of C and A are

equated in X. Thus, relating the addresses of potential memory accesses in C and A

using affine invariants and considering only the memory slots from A largely suffices for

invariant inference to validate most compilations (but not for GCC’s compilation of mp

and ms).

6.3 Other Applications

A translation validator has applications beyond compiler validation. This section

explores some applications of our tool to domains other than translation validation.

Applicability in a Superoptimizer

An end-to-end translation validation is a crucial ingredient in a synthesis-driven super-

optimizer [5, 9, 38] which attempts to generate “optimal” code for a particular program

(or specification). In a superoptimizer, a synthesis tool proposes candidate solutions

and a translation validation tool validates them against a high-level input specification.

The efficacy of superoptimization depends both on the synthesis tool, through its ability

to generate effective solutions, and the translation validation tool, through its ability

to validate the proposed solutions. With advances in synthesis, e.g. through Large

Language Models (LLMs), the burden of effective superoptimization will inevitably

shift towards translation validation where Dynamo-like tools will find application.

Checking enforcement of calling conventions

Consider the case of alignment used for certain types. Compilers often use higher

alignment factors than those necessitated by the C standard, e.g., the “long long” type

is often aligned at eight-byte boundaries to reduce cache misses. Our tool can easily check

use of such higher than required alignments by changing the well-formedness condition

for alignment (section 2.1.3) to reflect the higher alignment value. By using long long

type in our first set of benchmarks (containing different programming patterns) in

section 6.2.1, we validated that all the three production compilers (Clang/LLVM, GCC,

ICC) ensure that long long variables are eight-byte aligned for these benchmarks. In

contrast, we found that the ACK compiler [47] only ensures the mandated four-byte

Evaluation 179

alignment.

Use in fuzzing

A translation validator can also be used as a part of compiler-fuzzing tools such as

CSmith [52] and EMI [27]. Validation usually takes much longer than testing, yet

provides greater (maximum) coverage. It remains to be seen if validation can be used

in conjunction with fuzzing to uncover more compiler bugs. We confirmed that our

validator is able to detect the previous bugs (involving local memory variables) reported

by these compiler fuzzing tools. These bugs were hitherto not possible to uncover

through validation due to the lack of support for local variable modeling in prior work.

Detecting performance anomaly

The validator also helped us identify a small performance anomaly in the code generated

by a recent version of GCC. It turns out that in the presence of VLAs, GCC emits

assembly code to redundantly align an already aligned pointer. This is easily checked

by a lightweight static checker on the final product graph that checks if an alignment

operation (characterized by the and opcode) occurs at an assembly PC where the

product graph invariants already ensure that alignment.

Bug in SMT solver

Through our experiments, we uncovered and reported a bug in recent versions of z3,

including z3-4.8.14 and z3-4.12.5, where for an input satisfiability query Q, the
SMT solver returns an unsound model (counterexample) that evaluates Q to false [53].

When a modern SMT solver is used to validate compilations produced by a mature

compiler, a bug may be found on either side.

180 Evaluation

Chapter 7

Conclusion

The overarching goal of this work is to investigate the applicability of translation

validation as an alternative to verified compilation. Toward this, we identify the

modeling of dynamic allocation and deallocation of local memory as an important

unaddressed sub-problem and make multiple contributions within this space.

7.1 Summary

We formalize the refinement from an unoptimized representation (IR) of a C procedure

to a 32-bit x86 assembly procedure as a relation over the observable events (termination,

procedure-call invocation, (de)allocation, etc.) produced by the execution of the

respective procedures (section 2.4). A key aspect of this formalization is the observation

of a (de)allocation in the IR procedure as a distinct (observable) event. This enables

the identification of a similar (de)allocation event in the assembly procedure through

a verifiable annotation instruction (sections 2.5.1 and 2.6.1). The identification of

correlated events provides a basis for a lockstep correlation-based proof method, such

as product program construction, where the execution of both procedures matches

step-by-step, ensuring event correspondence. We demonstrate that, unlike prior work,

this annotation-based modeling is not tied to a particular local (de)allocation strategy

and is applicable in different settings, including validation of programs with dynamic

variable-sized or constant-sized allocations, e.g., through C99 VLAs or the alloca()

operator (sections 2.5.4 and 2.6.3).

We generalize the product program-based proof method, used in prior work for estab-

181

182 Conclusion

lishing equivalence, to a determinized product program that is applicable for correlating

two programs in the presence of non-determinism and, thus, can cater to a generalized

refinement setting (section 3.2). We identify the key requirements for witnessing refine-

ment through a determinized product program and present an automatic algorithm for

constructing the same (section 3.3).

Our automatic algorithm is based on prior heuristic-guided best-first search that

constructs the required product program incrementally (section 4.1). The automatic

algorithm supports external untrusted hints for guiding the construction and thus can

make use of information from sources such as compiler instrumentation (sections 4.1.3

and 6.1.4). We provide an efficient SMT encoding that is up to 4 times faster than

a naive encoding for discharging the generated proof obligations (section 5.3). We

show that our prototype implementation is able to validate compilations by production

optimizing compilers, Clang/LLVM, GCC, and ICC (section 6.2.1). We also evaluate

our prototype on SPEC2000’s bzip2 program, where we are able to successfully validate

an optimized compilation of procedures with up to 142 assembly lines of code, failing

to validate just 8 procedures out of 72 (section 6.2.3).

7.2 Limitations and Directions for Future Work

While our work represents a significant step toward realizing a practical translation

validator, it has several limitations. Although our execution model and refinement

definition admit a broad range of transformations and allocation strategies, our (de-

terminized) product program construction and SMT encoding operate under specific

constraints. In particular, we assume:

• In allocations and procedure calls that reuse stack space, their relative order is

preserved in both the original and compiled programs (section 2.5.4).

• An alloca() is always stack-allocated (section 2.6.1).

• The compiler does not specialize allocation-containing paths such that one special-

ization uses stack allocation and another uses register allocation (section 2.6.1).

While the generalized execution model and refinement definition presented in section 2.7

lift these constraints, they leave the challenge of efficient product program construction

and SMT encoding to future work.

Conclusion 183

Additionally, our over-approximate modeling of procedure calls, which treats them as

arbitrary mutations of callee-observable state, lacks the precision necessary for validating

interprocedural transformations (section 2.5.4).

Our experiments on the bzip2 benchmark highlight the need for a more robust and

scalable search algorithm and/or SMT encoding. Addressing these scalability challenges

presents a promising direction for future work toward a fully realized translation

validator.

184 Conclusion

Appendices

185

Appendix A

Soundness and Completeness

Implications of isPush() Choice

An update to the stackpointer esp in the assembly procedure A can be through any

arbitrary instruction, such as esp := Y. If the previous esp value, just before this

instruction was executed, was X, then the stackpointer update distance is D = X − Y.
In general, it is impossible to tell whether this instruction intends a stack growth by D

bytes (push) or a shrink by (232 − D) bytes (pop). The modeling for the two cases is

different: for stack push, an overlap of the interval representing the push with non-stack

region causes a 𝒲 error, while for stack pop, the stackpointer going outside stack

region causes 𝒰 error. Refinement is trivially proven if A terminates with 𝒲 error.

Unfortunately, this seems impossible to disambiguate just by looking at the assembly

code – to tackle this dilemma, we assume an oracle function, isPush(𝑝 𝑗

A
,X,Y), that

returns true iff the assembly instruction at PC 𝑝
𝑗

A
represents a stack push.

In section 2.3.2, we define an isPush(𝑝 𝑗

A
,X,Y) operator for an assembly instruction

at 𝑝
𝑗

A
based on thresholding of the update distance D = X − Y by a threshold value

K = 231 − 1:
isPush(𝑝 𝑗

A
,X,Y) ⇔ X − Y ≤𝑢 K

Here, K represents the threshold value for the stack update distance X−Y, below which

we consider the update to be a push.

If K is smaller than required, then we risk misclassifying stack pushes (stack growth)

as stack pops (stack shrink). On the other hand, if K is bigger than required, then we

187

188 Soundness and Completeness Implications of isPush() Choice

risk misclassifying stack pops (stack shrink) as stack pushes (stack growth). In the

latter case (when K is bigger than required), we would incorrectly trigger 𝒲, instead

of 𝒰, and that would cause the refinement proof to complete incorrectly (soundness

problem). In the extreme case, if K = 2𝑑 − 1 (where the address space has size 2𝑑), then

even 4-byte stack pops (e.g., through the x86 pop instruction) would be considered as

stack pushes (growth), and we would incorrectly trigger in every situation where 𝒰 was

expected, and the refinement proof would complete trivially (and unsoundly).

On the other hand, if K is smaller than required, we may incorrectly count some stack

growth operations as stack pops. In these cases, we will have show to absence of 𝒰 (as

part of (Safety)) for a stack pop for which a stack push never happened. This would

result in an refinement failure (completeness problem).

A.1 K needs to be at least 2𝑑−1 in the presence of

VLAs

Consider a VLA declaration, “char v[n]” in C. In this case, n could be any positive

integer ≤𝑢INT MAX; this upper bound of INT MAX comes from the variable size limits

imposed by the C language. The corresponding allocation statement in assembly code

would be something like “𝑝
𝑗

A
: esp := esp − n”. The resulting condition for not

triggering 𝒰 is (from (Op-esp) of fig. 2.6):

¬(¬isPush(𝑝 𝑗

A
, esp, esp − n)

∧ esp ≠ esp − n
∧¬intrvlInSet(esp, esp − n, Σ𝑠𝑡𝑘

A))

or equivalently,

(n >𝑢 K) ⇒ (n = 0i32

∨ (esp ≠ 0i32

∧ (esp ≤𝑢 esp − n)
∧ [esp, esp − n] ⊆ Σ𝑠𝑡𝑘

A))

(A.1)

Now, if K is smaller than the biggest possible value of n, then there exist values of n

where the left clause (left of ⇒) of eq. (A.1) would evaluate to true. Consequently,

there exist values of n for which the right clause has to be proven true, i.e., prove that

Soundness and Completeness Implications of isPush() Choice 189

the stack region is at least 2𝑑 − n bytes large. It may not be possible to prove such

strong conditions in all cases and thus we get false refinement check failures. Because

the C language constrains n to be ≤𝑢 INT MAX(= 2𝑑−1−1), K ≥𝑢 2𝑑−1−1 seems sufficient

to be able to validate such translations.

However, K = 2𝑑−1 − 1 is also insufficient, because typically the code generated by

a compiler for “char v[n]” also aligns n using a rounding factor 𝑟 = 2𝑖: “esp :=

esp− (⌈n
𝑟
⌉ ·𝑟)”. In this scenario, even though n ≤𝑢 (2𝑑−1−1), it is possible for D = ⌈n

𝑟
⌉ ·𝑟

to be greater than (2𝑑−1 − 1). Thus, if K = 2𝑑−1 − 1, there exist legal values of n for

which stack region is at least 2𝑑 −n bytes large has to be proven to demonstrate absence

of 𝒰. The choice K = 2𝑑−1 allows for such alignment padding, and thus allows the

refinement proof to be completed in these situations.

A.2 K = 2𝑑−1 can still lead to completeness problems

If a single stack update allocates two VLAs at once, we can incorrectly classify a stack

growth as a stack shrink.

Consider two C statements in sequence, “char v1[m]; char v2[n];”. In this case

both m and n can individually be as large as 2𝑑−1 − 1. If the compiler decides to use

a single assembly instruction to allocate both these variables, then it is possible for

a single stack update distance D to be greater than K = 2𝑑−1. Thus, in these cases,

the refinement proof may fail if we are not able to prove that stack is large enough to

contain 2𝑑 − D bytes (for the classified stack pop). This is a completeness problem.

A.3 K = 2𝑑−1 can also lead to soundness problems

If a single stack update deallocates two VLAs at once, we can incorrectly classify a stack

shrink as a stack growth.

Consider two C statements in sequence, “char v1[2𝑑−1 − 1]; char v2[2];”. If during

deallocation, the compiler decides to use a single instruction to deallocate both the

arrays, e.g., “esp := esp + (2𝑑−1-1) + 2” for a total update distance of:

D = −((2𝑑−1 − 1) + 2) = 2𝑑−1 − 1 (mod 2𝑑)

Here, because 2𝑑−1 − 1 ≤𝑢 K we will classify this “deallocation” as a stack push

190 Soundness and Completeness Implications of isPush() Choice

(allocation) of (2𝑑−1 − 1) bytes and trigger 𝒲 if allocation of (2𝑑−1 − 1) bytes is not
possible. This is a soundness problem because triggering 𝒲 under such a weaker

condition may lead the refinement proof to succeed incorrectly.

A.4 Solution

Thus, it seems impossible in general to be able to distinguish a push from a pop in

a sound manner. This problem is unavoidable in the presence of VLAs. CompCert

side-stepped this problem by disabling VLA support and thus being able to statically

bound the overall stack size. For a bounded stack, it becomes possible to distinguish

pushes from pops. But it is not possible to bound the stack in the presence of a VLA.

Thus we propose that the compiler must explicitly emit trustworthy information that

distinguishes a push from a pop. Hence, isPush() can simply leverage this information

emitted by the compiler.

As explained in section 2.3.2, in our work, we use a threshold of 231 − 1 on the update

distance to disambiguate stack pushes from pops. We rely on manual verification for

soundness.

Appendix B

More details of the experiments

B.1 Command-line used for compiling benchmarks

in experiments

1. Programs in table 6.1

• Clang/LLVM v12.0.0

clang -m32 -S -no-integrated-as -g -Wl,--emit-relocs -fdata-sections -g

-fno-builtin -fno-strict-aliasing -fno-optimize-sibling-calls -

fwrapv -fno-strict-overflow -ffreestanding -fno-jump-tables -fcf-

protection=none -fno-stack-protector -fno-inline -fno-inline-

functions -D_FORTIFY_SOURCE=0 -D__noreturn__=__no_reorder__ -I/usr/

include/x86_64-linux-gnu/c++/9/32 -I/usr/include/x86_64-linux-gnu/c

++/9 -mllvm -enable-tail-merge=false -mllvm -nomerge-calls -std=c11

-O3 <file.c> -o <file.s>

• GCC v8.4.0

gcc-8 -m32 -S -g -Wl,--emit-relocs -fdata-sections -g -no-pie -fno-pie -

fno-strict-overflow -fno-unit-at-a-time -fno-strict-aliasing -fno-

optimize-sibling-calls -fkeep-inline-functions -fwrapv -fno-reorder-

blocks -fno-jump-tables -fno-caller-saves -fno-inline -fno-inline-

functions -fno-inline-small-functions -fno-indirect-inlining -fno-

partial-inlining -fno-inline-functions-called-once -fno-early-

inlining -fno-whole-program -fno-ipa-sra -fno-ipa-cp -fcf-protection

191

192 More details of the experiments

=none -fno-stack-protector -fno-stack-clash-protection -

D_FORTIFY_SOURCE=0 -D__noreturn__=__no_reorder__ -fno-builtin-printf

-fno-builtin-malloc -fno-builtin-abort -fno-builtin-exit -fno-

builtin-fscanf -fno-builtin-abs -fno-builtin-acos -fno-builtin-asin

-fno-builtin-atan2 -fno-builtin-atan -fno-builtin-calloc -fno-

builtin-ceil -fno-builtin-cosh -fno-builtin-cos -fno-builtin-exp -

fno-builtin-fabs -fno-builtin-floor -fno-builtin-fmod -fno-builtin-

fprintf -fno-builtin-fputs -fno-builtin-frexp -fno-builtin-isalnum -

fno-builtin-isalpha -fno-builtin-iscntrl -fno-builtin-isdigit -fno-

builtin-isgraph -fno-builtin-islower -fno-builtin-isprint -fno-

builtin-ispunct -fno-builtin-isspace -fno-builtin-isupper -fno-

builtin-isxdigit -fno-builtin-tolower -fno-builtin-toupper -fno-

builtin-labs -fno-builtin-ldexp -fno-builtin-log10 -fno-builtin-log

-fno-builtin-memchr -fno-builtin-memcmp -fno-builtin-memcpy -fno-

builtin-memset -fno-builtin-modf -fno-builtin-pow -fno-builtin-

putchar -fno-builtin-puts -fno-builtin-scanf -fno-builtin-sinh -fno-

builtin-sin -fno-builtin-snprintf -fno-builtin-sprintf -fno-builtin-

sqrt -fno-builtin-sscanf -fno-builtin-strcat -fno-builtin-strchr -

fno-builtin-strcmp -fno-builtin-strcpy -fno-builtin-strcspn -fno-

builtin-strlen -fno-builtin-strncat -fno-builtin-strncmp -fno-

builtin-strncpy -fno-builtin-strpbrk -fno-builtin-strrchr -fno-

builtin-strspn -fno-builtin-strstr -fno-builtin-tanh -fno-builtin-

tan -fno-builtin-vfprintf -fno-builtin-vsprintf -fno-builtin -I/usr/

include/x86_64-linux-gnu/c++/9/32 -I/usr/include/x86_64-linux-gnu/c

++/9 -fno-tree-tail-merge --param max -tail-merge-comparisons=0 --

param max-tail-merge-iterations=0 -std=c11 -O3 <file.c> -o <file.s>

• ICC v2021.8.0

icc -m32 -D_Float32=__Float32 -D_Float64=__Float64 -D_Float32x=

__Float32x -D_Float64x=__Float64x -S -g -Wl,--emit-relocs -fdata-

sections -g -no-ip -fno-optimize-sibling-calls -fargument-alias -no-

ansi-alias -falias -fno-jump-tables -fno-omit-frame-pointer -fno-

strict-aliasing -fno-strict-overflow -fwrapv -fabi-version=1 -nolib-

inline -inline-level=0 -fno-inline-functions -finline-limit=0 -no-

inline-calloc -no-inline-factor=0 -fno-builtin-printf -fno-builtin-

malloc -fno-builtin-abort -fno-builtin-exit -fno-builtin-fscanf -fno

-builtin-abs -fno-builtin-acos -fno-builtin-asin -fno-builtin-atan2

More details of the experiments 193

-fno-builtin-atan -fno-builtin-calloc -fno-builtin-ceil -fno-builtin

-cosh -fno-builtin-cos -fno-builtin-exp -fno-builtin-fabs -fno-

builtin-floor -fno-builtin-fmod -fno-builtin-fprintf -fno-builtin-

fputs -fno-builtin-frexp -fno-builtin-isalnum -fno-builtin-isalpha -

fno-builtin-iscntrl -fno-builtin-isdigit -fno-builtin-isgraph -fno-

builtin-islower -fno-builtin-isprint -fno-builtin-ispunct -fno-

builtin-isspace -fno-builtin-isupper -fno-builtin-isxdigit -fno-

builtin-tolower -fno-builtin-toupper -fno-builtin-labs -fno-builtin-

ldexp -fno-builtin-log10 -fno-builtin-log -fno-builtin-memchr -fno-

builtin-memcmp -fno-builtin-memcpy -fno-builtin-memset -fno-builtin-

modf -fno-builtin-pow -fno-builtin-putchar -fno-builtin-puts -fno-

builtin-scanf -fno-builtin-sinh -fno-builtin-sin -fno-builtin-

snprintf -fno-builtin-sprintf -fno-builtin-sqrt -fno-builtin-sscanf

-fno-builtin-strcat -fno-builtin-strchr -fno-builtin-strcmp -fno-

builtin-strcpy -fno-builtin-strcspn -fno-builtin-strlen -fno-builtin

-strncat -fno-builtin-strncmp -fno-builtin-strncpy -fno-builtin-

strpbrk -fno-builtin-strrchr -fno-builtin-strspn -fno-builtin-strstr

-fno-builtin-tanh -fno-builtin-tan -fno-builtin-vfprintf -fno-

builtin-vsprintf -fno-builtin -D_FORTIFY_SOURCE=0 -D__noreturn__=

__no_reorder__ -qno-opt-multi-version-aggressive -ffreestanding -

unroll0 -no-vec -I/usr/include/x86_64-linux-gnu/c++/9/32 -I/usr/

include/x86_64-linux-gnu/c++/9 -std=c11 -O3 <file.c> -o <file.s>

2. TSVC

clang -m32 -S -no-integrated-as -g -Wl,--emit-relocs -fdata-sections -g -

fno-builtin -fno-strict-aliasing -fno-optimize-sibling-calls -fwrapv -

fno-strict-overflow -ffreestanding -fno-jump-tables -fcf-protection=

none -fno-stack-protector -fno-inline -fno-inline-functions -

D_FORTIFY_SOURCE=0 -D__noreturn__=__no_reorder__ -I/usr/include/x86_64-

linux-gnu/c++/9/32 -I/usr/include/x86_64-linux-gnu/c++/9 -msse4.2 -

mllvm -enable-tail-merge=false -mllvm -nomerge-calls -std=c11 -O3

<file.c> -o <file.s>

3. bzip2 O1-

clang -m32 -S -g Wl,--emit-relocs -fno-unroll-loops -fdata-sections -fno-

inline -fno-inline-functions -fcf-protection=none -fno-stack-protector

194 More details of the experiments

-mllvm -enable-tail-merge=false -O1 -mllvm -nomerge-calls -mllvm -no-

early-cse -mllvm -no-licm -mllvm -no-machine-licm -mllvm -no-dead-arg-

elim -mllvm -no-ip-sparse-conditional-constant-prop -mllvm -no-dce-

fcalls -mllvm -replexitval=never -std=c11 -fno-builtin -fno-strict-

aliasing -fno-optimize-sibling-calls -fwrapv -fno-strict-overflow -

ffreestanding -fno-jump-tables -D_FORTIFY_SOURCE=0 -D__noreturn__=

__no_reorder__ -fno-builtin-printf -fno-builtin-malloc -fno-builtin-

abort -fno-builtin-exit -fno-builtin-fscanf -fno-builtin-abs -fno-

builtin-acos -fno-builtin-asin -fno-builtin-atan2 -fno-builtin-atan -

fno-builtin-calloc -fno-builtin-ceil -fno-builtin-cosh -fno-builtin-

cos -fno-builtin-exp -fno-builtin-fabs -fno-builtin-floor -fno-builtin-

fmod -fno-builtin-fprintf -fno-builtin-fputs -fno-builtin-frexp -fno-

builtin-isalnum -fno-builtin-isalpha -fno-builtin-iscntrl -fno-builtin-

isdigit -fno-builtin-isgraph -fno-builtin-islower -fno-builtin-isprint

-fno-builtin-ispunct -fno-builtin-isspace -fno-builtin-isupper -fno-

builtin-isxdigit -fno-builtin-tolower -fno-builtin-toupper -fno-

builtin-labs -fno-builtin-ldexp -fno-builtin-log10 -fno-builtin-log -

fno-builtin-memchr -fno-builtin-memcmp -fno-builtin-memcpy -fno-

builtin-memset -fno-builtin-modf -fno-builtin-pow -fno-builtin-putchar

-fno-builtin-puts -fno-builtin-scanf -fno-builtin-sinh -fno-builtin-

sin -fno-builtin-snprintf -fno-builtin-sprintf -fno-builtin-sqrt -fno-

builtin-sscanf -fno-builtin-strcat -fno-builtin-strchr -fno-builtin-

strcmp -fno-builtin-strcpy -fno-builtin-strcspn -fno-builtin-strlen -

fno-builtin-strncat -fno-builtin-strncmp -fno-builtin-strncpy -fno-

builtin-strpbrk -fno-builtin-strrchr -fno-builtin-strspn -fno-builtin-

strstr -fno-builtin-tanh -fno-builtin-tan -fno-builtin-vfprintf -fno-

builtin-vsprintf -fno-builtin -I/usr/include/x86_64-linux-gnu/c++/9/32

-I/usr/include/x86_64-linux-gnu/c++/9 bzip2.c -o bzip2.s

4. bzip2 O1

clang -m32 -S -no-integrated-as -g -Wl,--emit-relocs -fdata-sections -g -

fno-builtin -fno-strict-aliasing -fno-optimize-sibling-calls -fwrapv -

fno-strict-overflow -ffreestanding -fno-jump-tables -fcf-protection=

none -fno-stack-protector -fno-inline -fno-inline-functions -

D_FORTIFY_SOURCE=0 -D__noreturn__=__no_reorder__ -I/usr/include/x86_64-

linux-gnu/c++/9/32 -I/usr/include/x86_64-linux-gnu/c++/9 -fno-unroll-

loops -mllvm -enable-tail-merge=false -mllvm -nomerge-calls -std=c11 -

More details of the experiments 195

O1 bzip2.c -o bzip2.s

5. bzip2 O2

clang -m32 -S -no-integrated-as -g -Wl,--emit-relocs -fdata-sections -g -

fno-builtin -fno-strict-aliasing -fno-optimize-sibling-calls -fwrapv -

fno-strict-overflow -ffreestanding -fno-jump-tables -fcf-protection=

none -fno-stack-protector -fno-inline -fno-inline-functions -

D_FORTIFY_SOURCE=0 -D__noreturn__=__no_reorder__ -I/usr/include/x86_64-

linux-gnu/c++/9/32 -I/usr/include/x86_64-linux-gnu/c++/9 -fno-unroll-

loops -mllvm -enable-tail-merge=false -mllvm -nomerge-calls -std=c11 -

O2 bzip2.c -o bzip2.s

B.2 Full results for the bzip2 experiment

Table B.1 shows the full list of bzip2 procedures with their assembly lines of code (ALOC)

and validation times (in seconds) for the three Clang/LLVM compiler configurations

(O1-, O1, O2).

Name ALOC Validation time (seconds)

O1- O1 O2 O1- O1 O2

allocateCompressStructures 47 47 51 43.2 47.2 50.6

badBGLengths 13 13 13 23.2 25.3 28.5

badBlockHeader 13 13 13 21.9 23.0 27.3

bitStreamEOF 13 13 13 22.7 21.2 26.1

blockOverrun 13 13 13 23.5 25.3 27.2

bsFinishedWithStream 22 22 25 24.0 23.2 26.0

bsGetInt32 4 4 4 6.0 6.0 7.2

bsGetIntVS 6 6 6 7.3 8.1 9.8

bsGetUChar 5 5 5 6.0 7.4 7.1

bsGetUInt32 24 24 24 13.3 16.9 20.6

bsPutInt32 6 6 6 6.6 7.6 9.0

bsPutIntVS 6 6 6 9.6 9.8 11.1

bsPutUChar 8 8 8 7.8 8.4 10.9

bsPutUInt32 32 32 32 30.8 30.7 36.4

bsR 46 46 46 42.8 42.8 51.0

bsSetStream 9 9 9 3.7 3.7 4.7

196 More details of the experiments

bsW 31 32 36 34.4 33.8 40.0

cadvise 6 6 6 20.3 20.2 26.9

cleanUpAndFail 48 46 46 187.9 179.0 227.8

compressOutOfMemory 14 14 14 33.6 33.0 42.6

compressStream 124 124 124 342.0 369.2 402.6

compressedStreamEOF 16 16 16 21.5 24.0 27.6

crcError 15 15 15 31.4 30.9 36.6

debug time 2 2 2 1.6 1.8 2.0

doReversibleTransformation 48 49 47 93.3 102.9 129.2

fullGtU 120 113 113 363.0 375.4 404.4

generateMTFValues 144 144 166 1909.3 10441.4 ✗

getAndMoveToFrontDecode 299 296 305 ✗ ✗ ✗

getFinalCRC 3 3 3 1.9 2.2 2.3

getGlobalCRC 2 2 2 2.1 1.8 2.2

getRLEpair 72 73 73 144.6 ✗ ✗

hbAssignCodes 37 37 37 296.4 325.4 330.7

hbCreateDecodeTables 94 94 107 1610.3 1622.3 ✗

hbMakeCodeLengths 261 249 292 ✗ ✗ ✗

indexIntoF 23 23 23 30.6 32.0 41.2

initialiseCRC 2 2 2 2.3 1.9 2.3

ioError 15 15 15 17.9 18.3 23.1

loadAndRLEsource 96 96 96 336.2 366.7 ✗

main 190 132 183 ✗ ✗ ✗

makeMaps 16 16 16 14.5 15.8 17.9

med3 14 14 14 3.8 4.1 4.2

moveToFrontCodeAndSend 9 9 9 15.1 16.0 15.5

mySIGSEGVorSIGBUScatcher 35 23 23 178.3 ✗ ✗

mySignalCatcher 10 10 10 16.9 18.9 25.2

panic 13 13 13 32.3 36.1 30.3

qSort3 297 297 363 ✗ ✗ ✗

randomiseBlock 35 37 38 155.1 177.9 ✗

recvDecodingTables 199 193 295 2539.8 2690.8 ✗

sendMTFValues 691 692 832 ✗ ✗ ✗

setDecompressStructureSizes 79 79 81 426.1 351.8 345.0

setGlobalCRC 3 3 3 2.8 3.0 3.1

showFileNames 8 8 8 15.6 18.4 17.0

simpleSort 194 185 215 ✗ ✗ ✗

sortIt 409 406 421 ✗ ✗ ✗

spec compress 11 11 11 16.0 16.0 16.0

spec getc 29 29 29 40.6 43.7 46.6

spec init 48 49 49 120.4 134.1 123.7

spec initbufs 9 9 9 11.0 9.6 11.0

spec load 110 105 105 512.4 499.8 524.1

More details of the experiments 197

spec putc 29 29 29 52.5 51.2 57.3

spec read 44 46 46 133.5 131.2 166.7

spec reset 16 16 16 21.8 20.1 23.4

spec rewind 5 5 5 3.4 3.3 3.5

spec uncompress 10 10 10 15.0 16.4 14.3

spec ungetc 45 48 48 176.1 188.2 183.7

spec write 34 34 34 73.3 77.0 73.8

testStream 195 194 196 1619.5 ✗ ✗

uncompressOutOfMemory 14 14 14 48.6 50.5 45.8

uncompressStream 169 174 176 1010.5 ✗ ✗

undoReversibleTransformation fast 221 223 248 1794.0 1836.8 ✗

undoReversibleTransformation small 273 271 281 ✗ ✗ ✗

vswap 27 27 27 63.3 61.1 54.0

Table B.1: List of bzip2 procedures with their assembly lines of code (ALOC) and
validation times (in seconds) for the three Clang/LLVM compiler configurations (O1-,
O1, O2).✗ denotes validation failure for that procedure-compiler pair.

198 More details of the experiments

Appendix C

Full source code of the benchmarks

We provide the full source code of the benchmarks from table 6.1 in figs. C.1 to C.4

below (the source code for fib is already listed in fig. 2.1a).

The loops of validated bzip2 benchmarks are shown in fig. C.5.

199

200 Full source code of the benchmarks

// substitute 𝒩 with 1, 2, 3

// to obtain vsl1, vsl2, vsl3

int vsl𝒩(int n)

{

if (n <= 0)

return 0;

int v1[n], ..., v𝒩[n];

for (int i = 0; i < n; ++i) {

v1[i] = F1(a[i]);

...

v𝒩[i] = F𝒩(a[i]);

}

return foo𝒩(v1, ...,v𝒩);

}

// substitute 𝒩 with 1, 2, 3

// to obtain vil1, vil2, vil3

int vil𝒩(unsigned n)

{

int r = 0;

for (unsigned i = 1; i < n; ++i) {

int v1[4*i], ... v𝒩[4*i];

r += foo𝒩(v1, ...,v𝒩, i);

}

return r;

}

int vcu(int n, int k)

{

int a[n];

if (k > 0 && k <= n) {

a[0] = 0;

a[k-1] = 10;

return a[0];

}

return 0;

}

int vilcc(int n)

{

int ret = 0;

int i = 1;

while (i < n) {

char t[i];

if (init(t, i) < 0)

continue;

ret += t[i-1];

++i;

}

return ret;

}

int vilce(int n)

{

int ret = 0;

int i = 1;

while (i < n) {

char t[i];

if (init(t, i) < 0)

break;

ret += t[i-1];

++i;

}

return ret;

}

Figure C.1: Benchmarks with VLAs.

Full source code of the benchmarks 201

#include <alloca.h>

int as(int n)

{

if (n < 1) {

return 0;

}

int* p = alloca(n*sizeof(n));

for (int i = 0; i<n; ++i) {

p[i] = i*i;

}

return p[0]*p[n-1];

}

int ac(char* s, int fd, int* a)

{

int n;

if (!s || (n = strlen(s)) <= 0)

return 0;

if (!a) {

a = alloca(sizeof(int)*n);

}

for (int i = 0; i < n; ++i) {

a[i] = s[i] + 32;

}

return write(fd, a, n);

}

int ams(int n)

{

if (n <= 0)

return -1;

int* p;

if (n < 4096) {

p = alloca(sizeof(int)*n);

} else {

p = malloc(sizeof(int)*n);

if (!p) return -1;

}

foo(p);

int ret = p[0]+p[n/2]+p[n-1];

if (!(n < 4096))

free(p);

return ret;

}

#include <alloca.h>

int n;

int all()

{

typedef struct lln {

int data;

struct lln* next;

} Node;

if (n > 4096)

return 0;

Node* hd = 0;

for (int i = 0; i < n; ++i) {

Node* t = alloca(sizeof(Node));

t->data = next_data();

t->next = hd; hd = t;

}

Node* t = hd;

int ret = 0;

while (t != 0) {

ret += t->data;

t = t->next;

}

return ret;

}

Figure C.2: Benchmarks with use of alloca

202 Full source code of the benchmarks

const int cts[] = { 0x66, 0x65, 0x67, 0x60 };

int rod(int n)

{

char zz[] = "0123456789";

printf("Scanning␣%d␣chars", n);

char t[n];

scanf("%s",t);

int ret = 0;

for (int i = 0, j = 0; i < n; ++i) {

printf("Round␣#...\n", i);

zz[j] ^= t[i];

if (++j >= sizeof zz) j = 0;

}

ret += zz[0] + cts[n%((sizeof cts)/sizeof(cts[0]))];

printf("Returning␣%d", ret);

return ret;

}

Figure C.3: Benchmark rod with mixed use of VLA and address-taken variable.

Full source code of the benchmarks 203

#include <stdarg.h>

void mp(char *fmt, ...)

{

va_list ap;

char *p, *sval;

int ival;

va_start(ap, fmt);

for (p = fmt; *p; p++) {

check(p);

if (*p != ’%’) {

putchar(*p);

continue;

}

switch (*++p) {

case ’d’:

ival = va_arg(ap, int);

print_int(ival);

break;

case ’s’:

for (sval = va_arg(ap, char*);

*sval; sval++)

putchar(*sval);

break;

default:

break;

}

}

va_end(ap);

}

#include <stdarg.h>

int ms(char* fmt, ...)

{

va_list ap;

char *p;

int ret = 0;

va_start(ap, fmt);

for (p = fmt; *p; ++p) {

DBG();

if (*p != ’%’) {

if (!is_blank(*p)) {

if (!match_char(*p))

break;

}

continue;

}

switch (*++p) {

case ’d’ :

va_arg(ap, int) = read_int();

++ret;

break;

case ’s’ :

read_string(va_arg(ap, char*));

++ret;

break;

case ’%’:

if (!match_char(’%’))

goto end;

break;

default:

goto end;

}

}

end:

va_end(ap);

return ret;

}

Figure C.4: Benchmarks mp and ms with variable argument list. mp is adapted from
minprintf of K&R[24]

204 Full source code of the benchmarks

void recvDecodingTables() {

unsigned char inUse16[16];

for (. . .) { /* write:inUse16 . . . */ }

for (. . .) { /* . . . */ }

for (. . .) { /* read:inUse16 . . .*/

for (. . .) { /* . . . */ }

}

for (. . .) { while (. . .) {/* . . . */ } }

{ unsigned char pos[6];

for (. . .) { /* write:pos . . . */ }

for (. . .) { /* read,write:pos . . . */

while (. . .) {/* . . . */ }

}

}

for (. . .) {

for (. . .) {

while (. . .) {/* . . . */ }

}

}

for (. . .) { for (. . .) { /* . . . */ } }

}

(a) Loops in recvDecodingTables()

void generateMTFValues() {

unsigned char yy[256];

for (. . .) { /* . . . */ }

for (. . .) { /* write:yy . . . */ }

for (. . .) { /* read,write:yy . . . */

while (. . .) {/* . . . */ }

while (. . .) {/* . . . */ }

}

while (. . .) {/* . . . */ }

}

(b) Loops in generateMTFValues()

void undoReversibleTransformation_fast() {

int cftab[257];

for (. . .) { /* write:cftab . . . */ }

for (. . .) { /* read,write:cftab . . . */ }

for (. . .) { /* read,write:cftab . . . */ }

if (. . .) { while (. . .) for (. . .) { /* . . . */ } }

else { while (. . .) for (. . .) { /* . . . */ } }

}

(c) Loops in undoReversibleTransformation fast()

Figure C.5: Structure of bzip2’s functions

List of Publications

[1] Shubhani Gupta, Abhishek Rose, and Sorav Bansal. “Counterexample-Guided

Correlation Algorithm for Translation Validation”. In: Proc. ACM Program. Lang.

4.OOPSLA (Nov. 2020). doi: 10.1145/3428289. url: https://doi.org/10.

1145/3428289.

[2] Vaibhav Kiran Kurhe, Pratik Karia, Shubhani Gupta, Abhishek Rose, and Sorav

Bansal. “Automatic Generation of Debug Headers through BlackBox Equivalence

Checking”. In: 2022 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 2022, pp. 144–154. doi: 10.1109/CGO53902.2022.

9741273.

[3] Abhishek Rose and Sorav Bansal. “Modeling Dynamic (De)Allocations of Local

Memory for Translation Validation”. In: Proc. ACM Program. Lang. 8.OOPSLA1

(Apr. 2024). doi: 10.1145/3649863. url: https://doi.org/10.1145/3649863.

205

https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
https://doi.org/10.1109/CGO53902.2022.9741273
https://doi.org/10.1109/CGO53902.2022.9741273
https://doi.org/10.1145/3649863
https://doi.org/10.1145/3649863

206

Biography

Abhishek Rose is a PhD student in the Department of Computer Science and Engineering

at IIT Delhi. He obtained his B. Tech. from MSIT, GGSIPU and his M. Tech. from

IIT Kanpur.

207

208

Bibliography

[1] ‘alloca’ Instruction. LLVM Language Reference Manual. url: https://llvm.

org/docs/LangRef.html#alloca-instruction.

[2] alloca(3) Linux Programmer’s Manual. url: https://man7.org/linux/man-

pages/man3/alloca.3.html.

[3] Lars Ole Andersen. Program Analysis and Specialization for the C Programming

Language. Tech. rep. 1994.

[4] Sorav Bansal. “Peephole Superoptimization”. PhD thesis. Stanford University,

2008. url: https://sorav.compiler.ai/pubs/thesis.pdf.

[5] Sorav Bansal and Alex Aiken. “Automatic Generation of Peephole Superoptimiz-

ers”. In: Proceedings of the 12th International Conference on Architectural Support

for Programming Languages and Operating Systems. ASPLOS XII. San Jose, Cal-

ifornia, USA: ACM, 2006, pp. 394–403. isbn: 1-59593-451-0. doi: 10.1145/

1168857.1168906. url: http://doi.acm.org/10.1145/1168857.1168906.

[6] Clark Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli, and Lenore

Zuck. “TVOC: A Translation Validator for Optimizing Compilers”. In: Computer

Aided Verification. Ed. by Kousha Etessami and Sriram K. Rajamani. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 291–295. isbn: 978-3-540-31686-

2.

209

https://llvm.org/docs/LangRef.html#alloca-instruction
https://llvm.org/docs/LangRef.html#alloca-instruction
https://man7.org/linux/man-pages/man3/alloca.3.html
https://man7.org/linux/man-pages/man3/alloca.3.html
https://sorav.compiler.ai/pubs/thesis.pdf
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/1168857.1168906
http://doi.acm.org/10.1145/1168857.1168906

[7] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo

Theories Library (SMT-LIB). https://www.smt-lib.org. 2016.

[8] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. “Semantic

Program Alignment for Equivalence Checking”. In: Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation.

PLDI 2019. Phoenix, AZ, USA: ACM, 2019, pp. 1027–1040. isbn: 978-1-4503-

6712-7. doi: 10.1145/3314221.3314596. url: http://doi.acm.org/10.1145/

3314221.3314596.

[9] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. “Sound Loop

Superoptimization for Google Native Client”. In: Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages

and Operating Systems. ASPLOS ’17. Xi’an, China: ACM, 2017, pp. 313–326.

isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.3037754.

[10] Clang C Language Family Frontend for LLVM. url: https://clang.llvm.org/.

[11] Keith Cooper. “Live Range Splitting in a Graph Coloring Register Allocator”. In:

(Jan. 1998). doi: 10.1007/BFb0026430.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. “Efficiently computing static single assignment form and the control

dependence graph”. In: ACM Trans. Program. Lang. Syst. 13.4 (Oct. 1991),

pp. 451–490. issn: 0164-0925. doi: 10 . 1145 / 115372 . 115320. url: https :

//doi.org/10.1145/115372.115320.

[13] Manjeet Dahiya. “Black-box Equivalence Checking across Compiler Transfor-

mations”. PhD thesis. Indian Institute of Technology Delhi, 2018. url: https:

//sorav.compiler.ai/pubs/manjeet_thesis.pdf.

[14] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. isbn:

013215871X.

210

https://www.smt-lib.org
https://doi.org/10.1145/3314221.3314596
http://doi.acm.org/10.1145/3314221.3314596
http://doi.acm.org/10.1145/3314221.3314596
https://doi.org/10.1145/3037697.3037754
https://clang.llvm.org/
https://doi.org/10.1007/BFb0026430
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://sorav.compiler.ai/pubs/manjeet_thesis.pdf
https://sorav.compiler.ai/pubs/manjeet_thesis.pdf

[15] GCC, the GNU Compiler Collection. url: %5Curl%7Bhttps://gcc.gnu.org/%7D.

[16] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs, and Koen

Langendoen. Modern Compiler Design. 2nd. Springer Publishing Company, Incor-

porated, 2012. isbn: 1461446988.

[17] Shubhani Gupta, Abhishek Rose, and Sorav Bansal. “Counterexample-Guided

Correlation Algorithm for Translation Validation”. In: Proc. ACM Program. Lang.

4.OOPSLA (Nov. 2020). doi: 10.1145/3428289. url: https://doi.org/10.

1145/3428289.

[18] Shubhani Gupta, Aseem Saxena, Anmol Mahajan, and Sorav Bansal. “Effec-

tive Use of SMT Solvers for Program Equivalence Checking Through Invariant-

Sketching and Query-Decomposition”. In: Theory and Applications of Satisfiability

Testing – SAT 2018. Ed. by Olaf Beyersdorff and Christoph M. Wintersteiger.

Cham: Springer International Publishing, 2018, pp. 365–382. isbn: 978-3-319-

94144-8.

[19] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. “Defining the undefinedness

of C”. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation. PLDI ’15. Portland, OR, USA: Association

for Computing Machinery, 2015, pp. 336–345. isbn: 9781450334686. doi: 10.

1145/2737924.2737979. url: https://doi.org/10.1145/2737924.2737979.

[20] John L. Henning. “SPEC CPU2000: Measuring CPU performance in the new

millenium”. In: IEEE Computer 33.7 (July 2000), pp. 28–35.

[21] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C.

Geneva, Switzerland: International Organization for Standardization, Dec. 2011,

683 (est.) url: http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=57853.

211

%5Curl%7Bhttps://gcc.gnu.org/%7D
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853

[22] Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park,

Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-Kil

Hur, and Kwangkeun Yi. “Crellvm: Verified Credible Compilation for LLVM”. In:

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018,

pp. 631–645. isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192377. url:

http://doi.acm.org/10.1145/3192366.3192377.

[23] Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore

Roşu. “Language-Parametric Compiler Validation with Application to LLVM”. In:

Proceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems. ASPLOS 2021. Virtual, USA:

Association for Computing Machinery, 2021, pp. 1004–1019. isbn: 9781450383172.

[24] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. 2nd.

Prentice Hall Professional Technical Reference, 1988. isbn: 0131103709.

[25] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. “CakeML:

A Verified Implementation of ML”. In: Principles of Programming Languages

(POPL). ACM Press, Jan. 2014, pp. 179–191. doi: 10.1145/2535838.2535841.

url: https://cakeml.org/popl14.pdf.

[26] Vaibhav Kiran Kurhe, Pratik Karia, Shubhani Gupta, Abhishek Rose, and Sorav

Bansal. “Automatic Generation of Debug Headers through BlackBox Equivalence

Checking”. In: 2022 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 2022, pp. 144–154. doi: 10.1109/CGO53902.2022.

9741273.

[27] Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler Validation via Equivalence

Modulo Inputs”. In: Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’14. Edinburgh, United

212

https://doi.org/10.1145/3192366.3192377
http://doi.acm.org/10.1145/3192366.3192377
https://doi.org/10.1145/2535838.2535841
https://cakeml.org/popl14.pdf
https://doi.org/10.1109/CGO53902.2022.9741273
https://doi.org/10.1109/CGO53902.2022.9741273

Kingdom: ACM, 2014, pp. 216–226. isbn: 978-1-4503-2784-8. doi: 10.1145/

2594291.2594334. url: http://doi.acm.org/10.1145/2594291.2594334.

[28] Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes. “An SMT

Encoding of LLVM’s Memory Model for Bounded Translation Validation”. In:

Computer Aided Verification. Ed. by Alexandra Silva and K. Rustan M. Leino.

Cham: Springer International Publishing, 2021, pp. 752–776. isbn: 978-3-030-

81688-9.

[29] Xavier Leroy. “Formal certification of a compiler back-end, or: programming

a compiler with a proof assistant”. In: 33rd ACM symposium on Principles of

Programming Languages. ACM Press, 2006, pp. 42–54. url: http://gallium.

inria.fr/~xleroy/publi/compiler-certif.pdf.

[30] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus

Pister, and Christian Ferdinand. “CompCert – A Formally Verified Optimizing

Compiler”. In: ERTS 2016: Embedded Real Time Software and Systems. SEE,

2016. url: http://xavierleroy.org/publi/erts2016_compcert.pdf.

[31] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.

“Alive2: Bounded Translation Validation for LLVM”. In: Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language Design

and Implementation. PLDI 2021. Virtual, Canada: Association for Computing

Machinery, 2021, pp. 65–79. isbn: 9781450383912. doi: 10 . 1145 / 3453483 .

3454030. url: https://doi.org/10.1145/3453483.3454030.

[32] H.J. Lu, David L Krietzer, Milind Girkar, and Zia Ansari. System V Application

Binary Interface. Intel386 Architecture Processor Supplement. Version 1.0. https:

//uclibc.org/docs/psABI-i386.pdf. Feb. 2015.

[33] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A.

Padua. “An Evaluation of Vectorizing Compilers”. In: Proceedings of the 2011

213

https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
http://doi.acm.org/10.1145/2594291.2594334
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://xavierleroy.org/publi/erts2016_compcert.pdf
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://uclibc.org/docs/psABI-i386.pdf
https://uclibc.org/docs/psABI-i386.pdf

International Conference on Parallel Architectures and Compilation Techniques.

PACT ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 372–382.

isbn: 978-0-7695-4566-0. doi: 10.1109/PACT.2011.68. url: https://doi.org/

10.1109/PACT.2011.68.

[34] David Menendez, Santosh Nagarakatte, and Aarti Gupta. “Alive-FP: Automated

Verification of Floating Point Based Peephole Optimizations in LLVM”. In: Sept.

2016, pp. 317–337. isbn: 978-3-662-53412-0. doi: 10.1007/978-3-662-53413-

7_16.

[35] KedarS. Namjoshi and LenoreD. Zuck. “Witnessing Program Transformations”.

English. In: Static Analysis. Ed. by Francesco Logozzo and Manuel Fähndrich.

Vol. 7935. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,

pp. 304–323. isbn: 978-3-642-38855-2. doi: 10.1007/978-3-642-38856-9_17.

url: http://dx.doi.org/10.1007/978-3-642-38856-9_17.

[36] George C. Necula. “Translation Validation for an Optimizing Compiler”. In:

Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation. PLDI ’00. Vancouver, British Columbia, Canada:

ACM, 2000, pp. 83–94. isbn: 1-58113-199-2. doi: 10.1145/349299.349314. url:

http://doi.acm.org/10.1145/349299.349314.

[37] Amir Pnueli, Michael Siegel, and Eli Singerman. “Translation Validation”. In:

Proceedings of the 4th International Conference on Tools and Algorithms for

Construction and Analysis of Systems. TACAS ’98. London, UK, UK: Springer-

Verlag, 1998, pp. 151–166. isbn: 3-540-64356-7. url: http://dl.acm.org/

citation.cfm?id=646482.691453.

[38] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi

Taneja, and John Regehr. “Souper: A Synthesizing Superoptimizer”. In: CoRR

214

https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-642-38856-9_17
http://dx.doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1145/349299.349314
http://doi.acm.org/10.1145/349299.349314
http://dl.acm.org/citation.cfm?id=646482.691453
http://dl.acm.org/citation.cfm?id=646482.691453

abs/1711.04422 (2017). arXiv: 1711.04422. url: http://arxiv.org/abs/1711.

04422.

[39] Thomas Sewell. “Translation Validation for Verified, Efficient and Timely Oper-

ating Systems”. PhD thesis. Sydney, Australia: UNSW, July 2017. url: https:

//trustworthy.systems/publications/papers/Sewell%3Aphd.pdf.

[40] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. “Translation

Validation for a Verified OS Kernel”. In: Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’13.

Seattle, Washington, USA: Association for Computing Machinery, 2013, pp. 471–

482. isbn: 9781450320146. doi: 10.1145/2491956.2462183. url: https://doi.

org/10.1145/2491956.2462183.

[41] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. “Data-driven

Equivalence Checking”. In: Proceedings of the 2013 ACM SIGPLAN Interna-

tional Conference on Object Oriented Programming Systems Languages &

Applications. OOPSLA ’13. Indianapolis, Indiana, USA: ACM, 2013, pp. 391–

406. isbn: 978-1-4503-2374-1. doi: 10.1145/2509136.2509509. url: http:

//doi.acm.org/10.1145/2509136.2509509.

[42] Shubhani. “Counterexample-Guided Equivalence Checking”. PhD thesis. Indian

Institute of Technology Delhi, 2023. url: https://sorav.compiler.ai/pubs/

shubhani_thesis.pdf.

[43] Bjarne Steensgaard. “Points-to analysis in almost linear time”. In: Proceedings

of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. 1996, pp. 32–41.

[44] Michael Stepp, Ross Tate, and Sorin Lerner. “Equality-based Translation Validator

for LLVM”. In: Proceedings of the 23rd International Conference on Computer

Aided Verification. CAV’11. Snowbird, UT: Springer-Verlag, 2011, pp. 737–742.

215

https://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://trustworthy.systems/publications/papers/Sewell%3Aphd.pdf
https://trustworthy.systems/publications/papers/Sewell%3Aphd.pdf
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2509136.2509509
http://doi.acm.org/10.1145/2509136.2509509
http://doi.acm.org/10.1145/2509136.2509509
https://sorav.compiler.ai/pubs/shubhani_thesis.pdf
https://sorav.compiler.ai/pubs/shubhani_thesis.pdf

isbn: 978-3-642-22109-5. url: http://dl.acm.org/citation.cfm?id=2032305.

2032364.

[45] Chengnian Sun, Vu Le, and Zhendong Su. “Finding Compiler Bugs via Live Code

Mutation”. In: Proceedings of the 2016 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA

2016. Amsterdam, Netherlands: Association for Computing Machinery, 2016,

pp. 849–863. isbn: 9781450344449. doi: 10.1145/2983990.2984038. url: https:

//doi.org/10.1145/2983990.2984038.

[46] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. “Toward understanding

compiler bugs in GCC and LLVM”. In: Proceedings of the 25th International

Symposium on Software Testing and Analysis. ISSTA 2016. Saarbrücken, Germany:

Association for Computing Machinery, 2016, pp. 294–305. isbn: 9781450343909.

doi: 10.1145/2931037.2931074. url: https://doi.org/10.1145/2931037.

2931074.

[47] Andrew S. Tanenbaum, Hans van Staveren, E. G. Keizer, and Johan W. Stevenson.

“A Practical Tool Kit for Making Portable Compilers”. In: Commun. ACM 26.9

(Sept. 1983), pp. 654–660. issn: 0001-0782. doi: 10.1145/358172.358182. url:

https://doi.org/10.1145/358172.358182.

[48] The LLVM developers. The LLVM Compiler Infrastructure. url: https://llvm.

org/.

[49] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. “Evaluating Value-

graph Translation Validation for LLVM”. In: Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implementation.

PLDI ’11. San Jose, California, USA: ACM, 2011, pp. 295–305. isbn: 978-1-4503-

0663-8. doi: 10.1145/1993498.1993533. url: http://doi.acm.org/10.1145/

1993498.1993533.

216

http://dl.acm.org/citation.cfm?id=2032305.2032364
http://dl.acm.org/citation.cfm?id=2032305.2032364
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/358172.358182
https://doi.org/10.1145/358172.358182
https://llvm.org/
https://llvm.org/
https://doi.org/10.1145/1993498.1993533
http://doi.acm.org/10.1145/1993498.1993533
http://doi.acm.org/10.1145/1993498.1993533

[50] Jean-Baptiste Tristan and Xavier Leroy. “Formal verification of translation valida-

tors: A case study on instruction scheduling optimizations”. In: Proceedings of the

35th ACM Symposium on Principles of Programming Languages (POPL’08). ACM

Press, Jan. 2008, pp. 17–27. url: http://xavierleroy.org/publi/validation-

scheduling.pdf.

[51] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and

M. Frans Kaashoek. “Undefined behavior: what happened to my code?” In:

Proceedings of the Asia-Pacific Workshop on Systems. APSYS ’12. Seoul, Republic

of Korea: Association for Computing Machinery, 2012. isbn: 9781450316699. doi:

10 . 1145 / 2349896 . 2349905. url: https : / / doi . org / 10 . 1145 / 2349896 .

2349905.

[52] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and Under-

standing Bugs in C Compilers”. In: Proceedings of the 32Nd ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’11. San

Jose, California, USA: ACM, 2011, pp. 283–294. isbn: 978-1-4503-0663-8. doi:

10.1145/1993498.1993532. url: http://doi.acm.org/10.1145/1993498.

1993532.

[53] Z3 bug report for an unsound model. https://github.com/Z3Prover/z3/

issues/7132. 2024.

[54] Anna Zaks and Amir Pnueli. “CoVaC: Compiler Validation by Program Analysis

of the Cross-Product”. In: Proceedings of the 15th International Symposium

on Formal Methods. FM ’08. Turku, Finland: Springer-Verlag, 2008, pp. 35–51.

isbn: 978-3-540-68235-6. doi: 10.1007/978-3-540-68237-0_5. url: http:

//dx.doi.org/10.1007/978-3-540-68237-0_5.

[55] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.

“Formal Verification of SSA-based Optimizations for LLVM”. In: Proceedings

217

http://xavierleroy.org/publi/validation-scheduling.pdf
http://xavierleroy.org/publi/validation-scheduling.pdf
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/1993498.1993532
https://github.com/Z3Prover/z3/issues/7132
https://github.com/Z3Prover/z3/issues/7132
https://doi.org/10.1007/978-3-540-68237-0_5
http://dx.doi.org/10.1007/978-3-540-68237-0_5
http://dx.doi.org/10.1007/978-3-540-68237-0_5

of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013, pp. 175–

186. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.2462164. url: http:

//doi.acm.org/10.1145/2491956.2462164.

[56] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic.

“Formalizing the LLVM Intermediate Representation for Verified Program Trans-

formations”. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages. POPL ’12. Philadelphia, PA,

USA: ACM, 2012, pp. 427–440. isbn: 978-1-4503-1083-3. doi: 10.1145/2103656.

2103709. url: http://doi.acm.org/10.1145/2103656.2103709.

[57] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. “VOC: A Method-

ology for the Translation Validation of Optimizing Compilers”. In: 9.3 (Mar. 28,

2003), pp. 223–247.

218

https://doi.org/10.1145/2491956.2462164
http://doi.acm.org/10.1145/2491956.2462164
http://doi.acm.org/10.1145/2491956.2462164
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709
http://doi.acm.org/10.1145/2103656.2103709

	Acknowledgements
	Abstract
	List of Figures
	1 Introduction
	1.1 Problem Statement and Motivating Example
	1.1.1 An address-taken local example
	1.1.2 Establishing Correct Translation
	1.1.3 Subtleties
	1.1.4 A sketch of proposed solution

	1.2 Prior Work
	1.2.1 IR-to-IR Translation Validation
	1.2.2 IR-to-Assembly and Assembly-to-Assembly Translation Validation
	1.2.3 Verified Compilation

	1.3 Contributions
	1.4 Outline

	2 Execution Semantics and Notion of Correct Translation
	2.1 Intermediate Source and Assembly Representations
	2.1.1 Unoptimized IR
	2.1.2 Assembly
	2.1.3 Allocation and Deallocation

	2.2 Transition Graph Representation
	2.2.1 Address Set
	2.2.2 Memory Regions
	2.2.3 Ghost Variables
	2.2.4 Error Codes
	2.2.5 Outside world and observable trace
	2.2.6 Expressions
	2.2.7 Graph Instructions

	2.3 Translations of scolC and tcolA to their Graph Representations
	2.3.1 Translation of scolC
	2.3.2 Translation of tcolA

	2.4 Observable traces and Refinement Definition
	2.5 Refinement Definition in the presence of local variables and procedure calls when all local variables are allocated on the stack in tcolA
	2.5.1 (De)Allocation indicating allocs and deallocs instructions
	2.5.2 Annotated procedure-call instruction
	2.5.3 Refinement Definition with only stack-allocated locals and procedure calls
	2.5.4 Capabilities and Limitations of scolC tcolA

	2.6 Refinement in the presence of potentially register-allocated or eliminated local variables in tcolA
	2.6.1 Virtual (de)allocations through allocv and deallocv instructions
	2.6.2 Revised semantics for assembly procedure instructions
	2.6.3 Refinement Definition with both stack-allocated and register-allocated or eliminated locals

	2.7 Towards A More General Refinement Definition and Execution Semantics
	2.7.1 Comparison with scolCtcolA

	3 Witnessing Refinement through a Determinized Cross-Product
	3.1 Program Paths
	3.2 Determinized Product Graph as a Transition Graph
	3.3 Analysis of the determinized product graph
	3.3.1 X requirements
	3.3.2 Soundness of X requirements
	3.3.3 Global Invariants in scolC, tcol, and X

	3.4 Callers' Virtual Smallest Semantics
	3.4.1 Soundness of Callers' Virtual Smallest semantics

	3.5 Safety-Relaxed Semantics
	3.5.1 Soundness of Safety-Relaxed Semantics

	4 Automatic Construction of a Product-Program
	4.1 The Dynamo algorithm
	4.1.1 Enumerating tcolA paths
	4.1.2 Correlating scolC paths
	4.1.3 Identifying tcolA annotation
	4.1.4 Validating structure of identified paths
	4.1.5 Incremental construction of (tcol,X)
	4.1.6 Checking requirements on partial X
	4.1.7 Correlating paths to error nodes due to annotated instructions
	4.1.8 Soundness of Dynamo algorithm
	4.1.9 Counterexample Guided Best-First Search

	4.2 Invariant Inference
	4.2.1 Global Invariants

	4.3 Running Example of the Algorithm

	5 SMT Encoding
	5.1 Preliminary Steps
	5.2 Representing address sets using allocation state array
	5.2.1 Encoding of address set updating instructions
	5.2.2 Full-array encoding

	5.3 Interval Encoding
	5.3.1 Interval encoding for rGFYZl{stk}
	5.3.2 Interval encoding for r{hp,cl,cs}
	5.3.3 Soundness of Interval Encoding

	5.4 Semantics with Simpler SMT Encoding for stk Region of tcol

	6 Evaluation
	6.1 Implementation of Dynamo
	6.1.1 System components
	6.1.2 Discharging Proof Obligations
	6.1.3 Pseudo-register allocation in LLVMd
	6.1.4 Instrumentation of Clang/LLVM for generating annotation hints

	6.2 Experiments
	6.2.1 Evaluating efficacy of Dynamo
	6.2.2 Evaluating modeling cost of local allocations
	6.2.3 Evaluating Dynamo on a real-world program
	6.2.4 Analysis of Failures

	6.3 Other Applications

	7 Conclusion
	7.1 Summary
	7.2 Limitations and Directions for Future Work

	Appendices
	A Soundness and Completeness Implications of isPush() Choice
	A.1 K needs to be at least 2d-1 in the presence of VLAs
	A.2 K = 2d-1 can still lead to completeness problems
	A.3 K = 2d-1 can also lead to soundness problems
	A.4 Solution

	B More details of the experiments
	B.1 Command-line used for compiling benchmarks in experiments
	B.2 Full results for the bzip2 experiment

	C Full source code of the benchmarks
	List of Publications
	Biography
	Bibliography

