
Automatic Generation of Debug Headers through
BlackBox Equivalence Checking

Vaibhav Kiran Kurhe, Pratik Karia, Shubhani Gupta, Abhishek Rose, Sorav Bansal
Indian Institute of Technology Delhi, India

Abstract—Modern compiler optimization pipelines are large
and complex, and it is rather cumbersome and error-prone for
compiler developers to preserve debugging information across
optimization passes. An optimization can add, remove, or reorder
code and variables, which makes it difficult to associate the
generated code statements and values with the source code
statements and values. Moreover recent proposals for automatic
generation of optimizations (e.g., through search algorithms)
have not previously considered the preservation of debugging
information.

We demonstrate the application of a blackbox equivalence
checker to automatically populate the debugging information in
the debug headers of the optimized executables compiled from
C programs. A blackbox equivalence checker can automatically
compute equivalence proofs between the original source code
and the optimized executable code without the knowledge of the
exact transformations performed by the compiler/optimizer. We
present an algorithm that uses these formal equivalence proofs
to improve the executable’s debugging headers. We evaluate this
approach on benchmarks derived from the Testsuite of Vectoriz-
ing Compilers (TSVC) compiled through three different compil-
ers: GCC, Clang/LLVM, and ICC. We demonstrate significant
improvements in the debuggability of the optimized executable
code in these experiments. The benefits of these improvements
can be transparently realized through any standard debugger,
such as GDB, to debug the updated executable.

I. INTRODUCTION

Debugging is a crucial part of the software development
lifecycle. There are many ways to debug a program, e.g., using
print statements within the code, log analysis, rubber duck
debugging, etc. One such important technique involves the use
of a debugging tool, that allows a programmer to pause the
program at any execution point and observe its state. Examples
of debugging tools, also called debuggers, are GDB, LLDB,
Visual Studio Debugger, etc.

While using a debugger, a programmer would typically
like to query the program state using “source code names”,
i.e., source line numbers, function names, variable names, file
names, etc. However, the state of the executable program (that
is generated by the compiler) involves “machine names”, i.e.,
registers, memory addresses, program counter value (which is
also a memory address), etc. Thus, for a smooth debugging
experience, it is important for the debugger to have access to
the mapping from source code names to their corresponding
machine names. For example, consider the C program shown in
fig. 1a and its unoptimized LLVM IR and optimized assembly
shown in figs. 1b and 1d. The relations between the unoptimized
IR program (which is trivially mapped to the source program)
and the assembly program variables at location (I2,A4)

d e f i n e N 32000
i n t X[N] , Y[N] , v a l ;
C0 : vo i d s000 () {
C1 : i n t i = 0 ;
C2 : f o r (; i < N; i ++)
C3 : X[i] = Y[i] + v a l ;
EC : }

(a) C program

I0 : s000 :
I1 : i . 0 = 0 ; b r I2
I2 : i = p h i [i . 0 , I1] , [i . 1 , I9]
I3 : cmp = (i < N)
I4 : b r cmp , I5 , EI
I5 : t 0 = Y + 4 * i
I6 : t 1 = mem[t 0] + v a l
I7 : t 2 = X + 4 * i
I8 : mem[t 2] = t 1
I9 : i . 1 = i + 1 ; b r I2
EI : r e t

(b) (Abstracted) LLVM IR

Affine Invariants at
(I2, A4)

(X+ 4 ∗ i) = r1

(Y+ 4 ∗ i) = r2

val = r3

(X+ 4 ∗ N) = r4

(c) Affine inductive invariants at node
(I2, A4) for product program in fig. 1e

A0 : s000 :
A1 : r1 = &X [0] ; r2 = &Y[0]
A2 : r3 = v a l
A3 : r4 = r1 + 4*N
A4 : mem[r1] = mem[r2] + r3
A5 : r1 += 4 ; r2 += 4
A6 : i f (r1 != r4) go to A4
EA: r e t

(d) (Abstracted) Assembly program generated
at -O2 optimization level

I0,A0 I2,A4 EI,EA
A0-A4

I0-I2

A4-A6-A4

I2-I9-I2

A4-A6-EA

I2-I4-EI

(e) Product program for IR and Assembly program shown in fig. 1b and fig. 1d
respectively.

Fig. 1: "s000" example taken from TSVC suite

(shown in fig. 1c) map the source code variable ‘i’ to the
expression (r1 - X1)/4. Thus, if the programmer pauses
the executable program at PC A4, and queries the value of
the variable ‘i’, the debugger should calculate the value of
expression (r1 - X)/4 using the value of register ‘r1’ and
display it as the value of ‘i’ to the user.

Traditionally, the onus of generating these mappings has
rested with the compiler. The compiler, during its operations
of translating source code to machine code and optimizing
it, populates the debugging headers (e.g., DWARF format) in
the executable code file (e.g., ELF format). Roughly speaking,
the debugging headers should contain (a) mappings from PC
values in the executable code to line numbers in the source
code; and (b) for each PC value, the mapping from the source
code variable name to an expression (in terms of the machine
state elements) that represents its value at that program point.

1Here, name of the array denotes its base address

978-1-6654-0584-3/22/$31.00 © 2022 IEEE 144

https://www.acm.org/publications/policies/artifact-review-and-badging-current

(gdb) b r e a k s000 : C3
B r e a k p o i n t 1 a t 0 x80483f6 : s000 : C3 . (2 l o c a t i o n s)
(gdb) run
S t a r t i n g program : s000
B r e a k p o i n t 1 , s000 () a t s000 : C3 X[i] = Y[i] + v a l ;
(gdb) p r i n t i
$1 = 0
(gdb) c o n t i n u e
C o n t i n u i n g .
B r e a k p o i n t 1 , s000 () a t s000 : C3 X[i] = Y[i] + v a l ;
(gdb) p r i n t i
$2 = 0

Fig. 2: GDB based debugging session for executable in fig. 1d generated at
optization level -O2

Long and complex optimization pipelines make it cumber-
some and error-prone for the compiler developers to identify
and update these mappings. The problem is exacerbated in
the face of constant churn and updates to the compiler code
— a typical production compiler has millions of lines of code
being maintained by hundreds of developers, with a churn
of hundreds of thousands of lines of code per annum. As
a result, it is common for production compilers to generate
incomplete or erroneous debugging headers. For example, fig. 2
shows a debugging session for the executable shown in fig. 1d
generated at optimization level -O2. The execution is paused
at the ‘C3’ line number in the source file (fig. 1a) using a
breakpoint and the value of variable ‘i’ is printed. GDB reads
the debugging headers present in the executable and prints i
= 0 throughout the loop. Thus, maintaining the source names
to machine names mappings by compilers during the long and
complex optimization pipeline may seem achievable in theory,
but we find that compilers typically generate buggy information
in the debugging headers even at optimization level -O2 for
small C programs.

Since compilers could produce relatively more accurate
debugging information when the optimization levels are lower,
optimization flags like -Og have been introduced that limit the
optimization support so that the generated executable remains
debuggable. While the -Og option is a reasonable compromise
for the typical edit-test-debug development cycle, production
code is usually compiled with aggressive optimizations. Thus in
the absence of the required debugging information, debugging
on-field failures of production code becomes challenging.
Moreover, some bugs, such as those related to the undefined
behavior semantics in the programming language, manifest only
at higher optimization levels. Unavailability of the required
debugging information at these higher optimization levels poses
a major challenge for the developers while debugging.

In addition to the current compiler development models,
researchers have also proposed automatic generation of opti-
mizations, e.g., through superoptimization techniques [1]–[7].
In these settings, an algorithm is also required for the automatic
generation (or updation) of debugging headers; we are not
aware of any previous work that tackles this problem.

We present an algorithm and a tool that takes the original
source code program and an existing equivalent executable

program (generated by a compiler), and automatically generates
and updates its debugging headers. Our updates ensure that the
new executable is more debuggable (because the programmer
would be able to observe more values during its runtime)
than the original executable. Our updates do not change the
execution behavior of the executable, e.g., the performance
of the executable remains identical — we only update the
mappings present in the debugging headers that are read by
a debugger during a debugging session. Thus, our tool brings
the debugging experience for an optimized executable closer
to the debugging experience for an unoptimized executable.

Our tool is based on a blackbox equivalence checker which is
a standalone tool that takes two input programs and determines
whether they produce equivalent observable behavior. Because
program equivalence is an undecidable problem, the blackbox
equivalence checker is best-effort: if it is able to determine
equivalence, we can be sure that the programs are equivalent;
however, if it is unable to determine equivalence, that does not
necessarily mean that the programs are inequivalent.

We apply the blackbox equivalence checker to identify
whether the optimized executable code is equivalent to the
original source code. If the tool is able to determine that the
two programs are equivalent, it generates a formal mathematical
proof of equivalence. The proof is represented as a bisimulation
relation that involves (a) correlations between the program text
segments across the two programs, and (b) relational invariants
across the variables of the two programs at the intermediate
correlated program points. We provide more background on
blackbox equivalence checking and the resulting proof format
in section II-A.

The primary contribution of this paper is an algorithm based
on linear algebra techniques that converts the relational predi-
cates in a bisimulation proof into a set of mappings between the
source code names and the machine names. These mappings are
added to the debugging headers of the executable file to improve
its debuggability. The proposed algorithm also involves dataflow
analyses on the executable code to improve the debugging
information further. We show significant improvements in the
debugging headers of executables generated by three different
compilers: GCC, Clang/LLVM, and ICC. We demonstrate
these improvements on programs taken from the Testsuite
for Vectorizing Compilers (TSVC) [8].

II. BACKGROUND

A. Blackbox Equivalence Checking

Determining if two Turing machines are equivalent is a
classical problem in theoretical computer science, which is
undecidable in general. However, best-effort solutions to this
problem have been proposed for applications such as translation
validation, regression verification, superoptimization, etc. In our
work, we use a blackbox equivalence checker to generate an
equivalence proof between the source code and the optimized
executable code. Here we provide a brief overview of the
blackbox equivalence checker’s input/output behavior – we
refer the reader to recent work in this area [9]–[11] for the
internal details.

145

Our equivalence checker takes a C program and an assembly
program as input. It converts the C program to an unoptimized
intermediate representation (IR) program and tries to identify a
proof of equivalence between the IR (referred to as I) and the
assembly program (referred to as A). The equivalence proof is
computed at function granularity, and so any inter-procedural
transformations, such as function inlining, are not supported
by the checker. If a proof is identified, it is output as a product

program. A product program encodes the lockstep execution of
I and A: at every step (of this lockstep execution), a segment of
program I is executed concurrently with a correlated segment
of program A. For example, Figure 1e shows the product
program for the IR shown in Figure 1b and the assembly
program shown in Figure 1d. One of the correlations shown in
this product program is across the program segment (I0-I2)
in I with segment (A0-A4) in A.

These correlations between the program segments are chosen
carefully so that the relationships between the program variables
can be easily expressed at the endpoints of each step (of
the lockstep execution). For example, prior work has shown
that affine, equality, and inequality relations between variables
of programs I and A are usually sufficient for determining
equivalence across an overwhelmingly large set of typical
compiler transformations. Thus, the equivalence checker em-
ploys a data-driven invariant inference procedure for inferring
affine, equality and inequality invariants at the endpoints of the
correlated program segments (a step in the product program).
For example, Figure 1c shows the affine invariants inferred at
the correlated endpoint (I2,A4) for the product program in
Figure 1e.

Finally, the proof of observational equivalence is attempted
based on the inferred invariants. To summarize: the goal of the
equivalence checker is to identify a product program that allows
the inference of observational equivalence through invariant
inference.

B. Debugging Headers

The debugging headers are produced by the compiler and
consumed by the debugger tool (e.g., GDB). To make these
independent software efforts interoperable, standard formats
are used for encoding the debugging information in the headers.
For the ELF executable file format, a popular debugging header
format is DWARF. Because our tool is based on ELF/DWARF,
we provide a brief introduction to the structure of DWARF
headers.

A DWARF debugging header consists of multiple sections:

• .debug_info: This section lists the program’s “nouns”
as DWARF Debugging Information Entities (DIEs) where
each DIE denotes an individual unit of a program, such as
a variable, function, data type, etc. These DIEs represent
the source names and are interlinked with each other
using parent-child (e.g., for nested scopes) and sibling
relationships (e.g., for variables listed in the same scope)
to form a graph.

• .debug_loc: This section presents the value and ad-
dress information about some of the DIEs listed in

/ / . d e b u g _ i n f o s e c t i o n ahead
<1><3f > (DW_TAG_base_type)

<40> DW_AT_byte_size : 4
<41> DW_AT_encoding : 5 (s i g n e d)
<42> DW_AT_name : i n t

.

.
<1><6e4 > (DW_TAG_subprogram)

<6e5 > DW_AT_name : s000
<6e9 > DW_AT_decl_fi le : 1
<6ea > DW_AT_decl_line : 33
<6eb > DW_AT_decl_column : 5
<6ec > DW_AT_type : <0 x3f >
<6 f0 > DW_AT_low_pc : 0x0
<6 f4 > DW_AT_high_pc : 0x3d

<2><6 fa > (DW_TAG_lexical_block)
<6 fb > DW_AT_low_pc : 0xd
<6 f f > DW_AT_high_pc : 0x28

<3><703> (DW_TAG_variable)
<704> DW_AT_name : i
<706> DW_AT_decl_fi le : 1
<707> DW_AT_decl_line : 39
<708> DW_AT_decl_column : 12
<709> DW_AT_type : <0 x3f >
<70d> DW_AT_location : 0x0 (l o c a t i o n l i s t)

/ / . debug_ loc s e c t i o n ahead
O f f s e t Begin End E x p r e s s i o n
00000000 0000000 d 00000025 (DW_OP_lit0 ; DW_OP_stack_value)
0000000 c <End of l i s t >

Fig. 3: Example of the .debug_info and .debug_loc sections of the
DWARF format

.debug_info through location lists. Each lo-
cation in the location list represents a program PC (or
a range of PCs) and a location list can thus represent
different values/addresses for a DIE for each different
location in a location list.

• .debug_ranges: This section lists the address ranges
for some of the DIEs listed in .debug_info.

A value in the debugging header relates a DIE to an
expression involving machine names, i.e., machine registers,
memory addresses, memory values, etc. The DWARF standard
specifies an expression language that includes standard arith-
metic, logical, and memory operators. DWARF uses a postfix
representation for these expressions.

We show an example of the .debug_info and
.debug_loc sections in fig. 3. In this example, there are four
DIEs in the .debug_info section: base_type, subprogram,
lexical_block, and variable.

• A base_type DIE specifies the details about a type in
a programming language e.g. a signed integer of size 4
bytes in C.

• The subprogram DIE is denoting a function named ‘s000’,
with its line number and column of its definition in the
source code file. It also contains a reference to the type
of the value it would return and a range of addresses for
the function.

• The lexical block DIE defines a static scope delineated
by the given range of addresses. Instead of a single
contiguous range of addresses, a lexical block can also
have a reference to a set of address ranges located in the
.debug_ranges section.

146

• Each variable DIE denotes a variable, with its exact
position of declaration, a reference to its type, and a
reference to the location list in the .debug_loc section.

The starting number e.g. <1> in the .debug_info section
denotes the level of the DIE – these levels are used to create
a parent-child relationship among DIEs, e.g., the variable DIE
is a child of the lexical_block DIE, which in turn is a child of
the subprogram DIE, and so on.

A location list inside the .debug_loc section provides
a DWARF expression denoting the value and/or location of
a variable. For instance, the location list for variable ‘i’
shown in fig. 3 provides a value denoted by postfix DWARF
expression (DW_OP_lit0; DW_OP_stack_value) from location
0xd to 0x25. The postfix DWARF expression can be read as
a sequence of DWARF operations operating on an evaluation
stack: DW_OP_lit0 denotes a literal ‘0’ (pushed on the top
of the evaluation stack); DW_OP_stack_value terminates the
expression by denoting that the current value at the top of
stack is also the value of the full current DWARF expression.
In this example, the value of ‘i’ is 0 for the PC locations
0xd-0x25 in the program.

III. PROBLEM STATEMENT

Given the product program and the inferred affine invariants
(as shown in fig. 1), we are interested in automatically
populating the incomplete DWARF headers, which take the
form shown in fig. 3. We need to solve multiple subproblems
to meet this objective, and we discuss each of them in this
section

A. Identifying Maps from Unoptimized IR PCs to Source Code

Line/Column Numbers

As noted in section II-A, the equivalence checker identifies
a bisimulation proof between the unoptimized IR program
and the optimized assembly code. Thus, the generated proof
relates IR PCs to assembly code PCs. Similarly, the inductive
invariants relate IR registers to assembly registers and memory
locations. In contrast, debugging headers must refer to source
code line and column numbers as the programmer cannot
understand IR PCs and registers.

The equivalence checker’s IR is almost identical to the
LLVM IR except that it does not include non-deterministic
LLVM values like undef and poison. Thus we leverage
LLVM’s existing infrastructure to generate these correspon-
dences between the IR PCs and registers and the source code
line/column numbers and variable names. We represent this
information as two maps: (1) a map Pis from IR PCs to the
corresponding source line/column numbers and (2) a map Ris

from IR registers to their source variable names or expressions.
Figure 1b shows the unoptimized LLVM IR representation of
the C program shown in fig. 1a and the corresponding Pis and
Ris maps are shown in fig. 4.

To simplify the discussion, we will henceforth omit the
discussion on IR PCs/registers because it is straightforward
to translate IR PCs and registers to source code line/column
numbers and variables. Instead, we will directly relate assembly

IR PC Source L/C

I0 C0/8

I1 C1/9

I3 C2/12

I4 C2/12

I6-I8 C3/7

I9 C2/19

EI EC/2

(a) Pis map (L/C denotes the
source line and column number)

IR
register

Source
variable

i.0 i

i.1 i

t0 Y + 4*i

t2 X + 4*i

(b) Ris map

Fig. 4: Pis and Ris maps for C progarm and IR shown in figs. 1a and 1b
respectively

PCs with source “PCs” (internally characterized by source code
line and column numbers) and assembly registers/memory
locations with source variable values.

B. Identifying Maps from Assembly PCs to Source Code Line

Numbers

The .debug_line section in DWARF headers encodes
the mapping to the Source code line numbers from Assem-
bly Instructions (PCs). From the perspective of a compiler
developer, it is easier to maintain these mappings between
the source code line numbers and assembly PCs even across
complex transformations. Thus we have found these mappings
to be near-precise in all our experiments with all the three
compilers we tested, namely GCC, Clang/LLVM, and ICC. In
this paper, we do not further improve upon these mappings.

C. Identifying Maps from Source Variables to Assembly Regis-

ters and Stack Slots at Every PC

The mappings from source variables to assembly locations
form the bulk of the debugging header data. As discussed in
section II-B, this information is specified through the variable
DIEs (DW_TAG_variable) in the .debug_info section
and they may further be associated with locations lists (specified
in .debug_loc). Each entry in the location list contains a
begin PC, an end PC, and a postfix expression which refers
to the assembly registers and stack slots. The begin/end PCs
are assembly PCs, and their corresponding source PCs can be
derived from the other sections of the debug headers.

We find that this part of the debugging information is

often missing or inaccurate in the executables generated by

modern optimizing compilers. Thus, we focus our attention on

repairing this correlation of source variables with assembly

locations at all the assembly PCs.

IV. ALGORITHM

The problem of identifying a map from source variables
to assembly locations for each assembly PC can be further
broken down into two high-level subproblems, described next
in sections IV-A and IV-B.

A. Identifying the Assembly Expression for Each Source

Variable

At any pair of source and assembly PCs, the relational
invariants that relate the variables across the source and

147

d e f i n e N 4096
i n t a [N] , b [N] ;
i n t aa [N] [N] ;
C0 : vo i d foo () {
C1 : i n t * i d x = a ;
C2 : f o r (i n t i =0 ; i <N; i ++){
C3 : i n t sum = * i d x ;
C4 : f o r (i n t j =0 ; j <N; j ++)
C5 : sum += aa [i] [j]* b [i] ;
C6 : * i d x ++ = sum ;
C7 : }
C8 : }

(a) C Program

Freestyle Affine Expressions

r1− 4096 ∗ i− 4 ∗ j− aa = 0

r2− idx− b+ a = 0

4 ∗ i− idx + a = 0

(b) Affine inductive invariants at one of the
correlated nodes in the product program
across unoptimized IR and optimized as-
sembly for C program in fig. 5a

Fig. 5: Motivating Example for section IV-A

assembly programs can be arbitrary affine predicates of the
form

∑
i ci ∗ xi + c0 = 0. Here xis represent variables in

both source and assembly programs and cis represent constant
coefficients. We restrict our attention to affine invariants because
an overwhelmingly large category of compiler transformations
can be modeled through affine relational invariants [9], [11],
[12]. We call affine expressions of this form, freestyle affine

expressions. Some examples of freestyle affine expressions
(appearing as inductive invariants) can be seen in fig. 5b.

However, we are interested in representing source variable
values as expressions over assembly variables, e.g., si =∑

j cj ∗ aj + c0 where si represents a source variable, aj
represents an assembly register or memory location, and
cjs represent constant coefficients. This form of an affine
expression where a source variable is represented as a linear
combination of assembly values is called a source-to-assembly

affine expression. For example, the source-to-assembly affine ex-
pressions for the freestyle expressions in fig. 5b would include
(i = (r2−b)/4)) and (j = (r1−1024∗ (r2−b)−aa)/4).

Thus, we need to convert freestyle affine expressions to
source-to-assembly affine expressions. The problem becomes
slightly more complex because of the fact that these affine
expressions are over bitvectors of a finite bitwidth (e.g., 32 or
64). Analysis of a system of affine equations over bitvectors
have been studied in mathematical depth in prior work [13].
In our work, we model these affine expressions using integer
arithmetic: even though models based on bitvector arithmetic
would be theoretically more precise, in practice, compiler
transformations that would expose this relative imprecision
of integer arithmetic are rare.

Obtaining source-to-assembly affine expressions from
freestyle affine expressions involves the application of standard
linear algebra techniques on a carefully-chosen order of
variables of the two programs, as described through the
following algorithm steps.

• First, the freestyle affine expressions (at a given correlated
PC pair) are represented using a matrix of the form: AX =
0, where X is a vector of m + n + 1 variables (for m
source variables, n assembly registers/memory locations
and a constant 1), and A represents a coefficient matrix
with m+n+1 columns formed by the cis in the freestyle
affine expressions. The last row in the vector X (constant

1) is meant to represent the constant coefficient c0 in the
freestyle affine expression. The number of rows in A is
equal to the number of freestyle affine expressions (at the
given pair of correlated PCs). The matrix representation
of the freestyle affine equations in fig. 5b is:







1 −4096 −4 0 0 −aa

0 0 0 1 −1 −b+ a

0 4 0 0 −1 a

























r1

i

j

r2

idx

1



















=







0

0

0







• The next step is to rearrange the rows of variable matrix X
such that the first m rows in X represent source variables
and the next n rows in X represent assembly registers
and memory locations (and the last row in X represents
the constant 1). The columns of the coefficient matrix A
are accordingly ordered. This ordering of variables is an
important component of our algorithm. In our running
example of fig. 5b, the resulting matrix equations after
variable reordering are:







−4096 −4 0 1 0 −aa

0 0 −1 0 1 −b+ a

4 0 −1 0 0 a

























i

j

idx

r1

r2

1



















=







0

0

0







• Finally, standard linear algebra techniques are then used
to convert the ordered matrix A into the canonical row-

reduced echelon form (RREF) [14], Arref . The RREF
of a matrix is a unique representation with the following
properties:
a) the leading coefficient (pivot) of a non-zero row is 1,
b) the column containing a leading 1 (pivot) has zeros in
all its other entries,
c) the pivot of a nonzero row is always strictly to the
right of the pivot of the row above it,
d) all rows consisting of only zeroes are at the bottom.
The Arref matrix for the example in fig. 5b is:







1 0 0 1 −1/4 b/4

0 1 0 −1/4 256 −256 ∗ b+ aa/4

0 0 1 0 −1 b− a







Among all the non-zero rows in the RREF matrix Arref , we
pick those rows that have one of the source variables as the
pivot element. Based on this, the resulting Source-to-assembly
affine expressions for the example in fig. 5b are:

i = (r2− b)/4
j = (r1− aa− 1024 ∗ (r2− b))/4

idx = r2 + a− b

We claim that this set of equations represents a maximal set
of linearly-independent source-to-assembly affine expressions
— this property follows directly from the properties of the
row-reduced echelon form. The proof for this claim involves
showing that if there exists a source-to-assembly affine expres-
sion that is derivable from the original matrix A, then that affine
expression would be always available as a row in the Arref

(when the columns of A have been carefully ordered such that
the source variables appear before the assembly variables). We

148

TABLE I
FORWARD AND BACKWARD DFAS FOR SPREADING THE PREDICATES.

WHEREVER THE TWO DFAS DIFFER, THE VALUES ABOVE THE HORIZONTAL

LINE SHOW THE FORWARD DFA VALUES AND THE VALUES BELOW SHOW

THE BACKWARD DFA VALUES.

Domain Sets of Affine Predicates

Direction
Forward

Backward

Transfer function fa(x) = (x− KILLa) ∪ GENa

Meet operator ∧ Set Intersection (also, x ∧ ⊤ = x)

Boundary condition
out[nentry] = {} (empty)

in[nexit] = {} (empty)

Initialization for non-entry
nodes n

in[n] = ⊤

out[n] = ⊤

refer the reader to existing literature on row-reduced echelon
form [14] for a proof.

B. Identifying the Maximal Set of Assembly PC Locations

where the Variable Correlations Hold

We have now obtained source-to-assembly affine expressions
at those PC locations in the assembly program that have
been correlated with PC locations in the source program. The
equivalence checker typically minimizes the number of PC
locations that it needs to correlate as it makes the proof effort
simpler and smaller – for example, our equivalence checker
only correlates the program entry, program exits, loop heads
and function calls. To improve the coverage of the inferred
debugging information, we next spread the information in both
forward and backward directions of the assembly program. In
other words, for any given source-to-assembly affine relation at
a given pair of PCs, we are interested in finding the maximal
range of PCs in both programs (in both forward and backward
directions) where this affine relation (or its modified form)
would continue to hold.

We use three subprocedures to implement this spreading of
an affine relation:

• We use a forward DataFlow Analysis (DFA) to transfer
the information encoded in the affine invariants in the
forward direction (section IV-B1).

• We use the reversibility of computation to extend the
coverage of the forward DFA (section IV-B2).

• We use a backward DFA to transfer the information
encoded in the affine invariants in the backward direction
(section IV-B3).

1) Forward DFA: The forward DFA is specified in table I.
The domain of DFA values is a set of predicates that relate
source variables to assembly expressions, i.e., source-to-
assembly affine predicates.

At an assembly PC that is already correlated with a source
PC, this set of predicates is exactly equal to the relational
invariants present in the bisimulation proof at the corresponding
PC pair. For other assembly PCs (that are not correlated
through the bisimulation proof with a source PC), we try

s000 :
/ / move 32− b i t v a l t o xmm2[0−31]
0 : movd va l , %xmm2
/ / a s s i g n 0 t o %eax
8 : x o r l %eax , %eax
/ / copy xmm2[0−31] b i t s t o f o u r p o s i t i o n s i n xmm1
/ /−− [0−31] , [32−63] , [64−95] and [96−127]
a : p sh u f d $0x0 , %xmm2, %xmm1
f : nop
/ / copy 4 e l e m e n t s from Y t o xmm0
1 0 : movdqa Y(%eax) , %xmm0
1 8 : add $0x10 , %eax
/ / add f o u r e l e m e n t s from Y i n xmm0 t o v a l i n xmm1
1b : paddd %xmm1, %xmm0
/ / s t o r e t h e f o u r e l e m e n t s i n xmm0 t o X
1 f : movaps %xmm0, X(%eax−0x10)
/ / compare eax wi th N*4
2 6 : cmp $0x1f400 , %eax
/ / l oop back
2b : j n e 10 <s000 +0x10 >
2d : x o r l %eax ,% eax
2 f : r e t

Fig. 6: Vectorized assembly code generated at -O3 optimization level for C
program shown in fig. 1a

and infer predicates by transferring the predicates from a
previous correlated assembly PC. The DFA’s meet operator is
set intersection, indicating that a predicate should be true on
all incoming paths for it to be added to the debugging headers.
All nodes except the start node are initialized with a special
value denoted by ⊤ such that x ∧ ⊤ evaluates to x.

The transfer function is expressed using the GENa and
KILLa sets for an assembly instruction a. We define GENa

as:

GENa =











Invs,a for a correlated with s in product program,

and a is mapped to s in debug headers

empty otherwise











Invs,a represents the source-to-assembly affine predicates
inferred at the correlated PC pair (s, a). GENa represents the
set of predicates that are generated at an assembly instruction
a: if a is correlated with some source instruction s in the
proof, and a also maps to s in the debugging headers, then we
use Invs,a to populate the predicates at a. Otherwise, GENa

evaluates to the empty set. KILLa represents those predicates
that become invalid because of the modification of an assembly
register/memory-location by the instruction a.

KILLa = {p | p refers to a reg/memloc modified by a}

We point out here that this definition of KILLa is imprecise
because we do not kill those predicates whose source variables
have been modified. In our experience, designing a DFA
that takes into account the modifications on both source and
assembly programs is challenging, and so our DFA only takes
into account the assembly instruction’s modifications. This
imprecision in our analysis could have the following ramifica-
tion: during debugging, the programmer may observe slightly
stale values in the short interval of assembly instructions that
are uncorrelated (but whose endpoints are correlated) in the
bisimulation proof. This will become clearer in our discussion
through an example below.

149

We use the vectorized assembly code as shown in fig. 6
as the running example for our subprocedures for Spreading

the predicates. One of the affine invariants generated by the
equivalence checker in the bisimulation proof across the IR
shown in fig. 1b and this vectorized assembly at the correlated
end point (I2, 0x10) is : ‘i=%eax/4’. When we perform the
forward DFA, the predicate gets spread across the other PCs
inside the loop – from 0x10 to 0x18. Since the instruction
at PC 0x18 is modifying the register %eax, the predicate is
killed and hence not spread further to the succeeding PCs.
While debugging the executable updated with this resulting
predicate after the forward DFA, the debugger will print a
constant value of i = 0 in the first loop iteration of the
assembly code, i = 4 in the second assembly loop iteration,
i = 8 in the third, and so on. Notice that one assembly loop
iteration is equivalent to four source loop iterations (as correctly
captured in '.debug_line'). Thus, our updated debugging
information is slightly imprecise — a more precise debugging
header would allow the debugger to print incremental values
of i = {0,1,2,3} in the first assembly loop iteration
(depending on the assembly PC value), i = {4,5,6,7} in
the second assembly loop iteration, i = {8,9,10,11} in
the third assembly loop iteration, and so on. This imprecision
occurs because when we spread the predicates across assembly
PCs, we do not account for changes in the source variables on
the correlated paths (as discussed above). These imprecisions
are local and confined to small code regions limited by the
length of the correlated paths in the product-CFG. Even with
these imprecisions, our tool provides significant improvements
over the existing debugging headers, as we show in our
experiments: we find that the existing debugging headers either
have missing information or grossly incorrect information (e.g.,
i = 0 for the entire duration of the loop). It is worth noting
here that fully precise debugging information is sometimes
impossible to realize, e.g., if multiple source statements are
collapsed into a single assembly instruction. Even so, we think
it is possible to improve the precision of our algorithm and
we leave this for future work.

2) Exploiting Reversibility of Computation: In the forward
DFA discussed in section IV-B1, a predicate of the form
x=expression(r1) gets killed across an assembly in-
struction a: r1 = r1+c, where c is a constant, because
a modifies r1. However, it is possible to exploit the re-
versibility of the addition operator to modify the predicate
to x=expression(r1-c) (instead of killing it).

Thus we improve our forward DFA’s transfer function to
take into consideration the reversibility of the bitvector addition
and subtraction operations: we do not kill the predicates
across these reversible operations but instead modify them
appropriately. Because addition and subtraction are common
program operations, we find that this improvement to the
transfer function often results in noticeable improvements
(detailed in section V-B).

For the running example, the instruction at PC 0x18 in fig. 6,
adds 16 to register %eax. The improved transfer function

results in an expanded range of PCs for the modified predicate
‘i=(%eax−16)/4’, from 0x1b to 0x2d.

3) Backward DFA: We also propagate the source-to-
assembly affine relations (obtained from the bisimulation proof)
in the backward direction, just like we propagate them in the
forward direction. The backward DFA specified in table I is
almost identical to the forward DFA: the transfer function is
based on identical GENa and KILLa set values, and the meet
operator is set intersection. The primary difference is in the
DFA’s boundary condition: for the backward DFA, the boundary
conditions initialize the in values for exit nodes: in[nexit] =
{ } (empty). Further, instead of initializing the in values for
non-entry nodes, backward DFA involves the initialization of
the out values for the non-exit nodes(n): out[n] = ⊤.

For the running example (fig. 6), backward DFA spreads the
predicate ‘i=%eax/4’ (which was valid over 0x10 to 0x18
earlier) over an expanded PC range of 0xa to 0x18. It doesn’t
spread to PC 0x8 as the instruction at PC 0x8 modifies the
register %eax (with a non-reversible computation).

Notice that we do not allow a predicate to spread backwards
across a non-reversible instruction, even though this is possible
to do through the weakest-precondition predicate transformer.
For example, the predicate ‘i=%eax/4’ would change to ‘i=
0’ (weakest-precondition) while passing backwards through
the non-reversible instruction at 0x8 (to spread to PCs 0x8 and
0x0). However notice that i is not even defined at PC 0x0,
and so the addition of the predicate ‘i= 0’ at PC 0x0 would
be superfluous. To avoid this, we restrict the backward DFA
to spread predicates only across reversible instructions.

V. EVALUATION

For the experimental evaluation, we use optimized ELF
object files generated using recent versions of production com-
pilers, namely, GCC-8.4, Clang/LLVM-12, and ICC-2021.2.0
with the optimization flags -O3 -msse4.2. The set of
functions for evaluation are taken from the TSVC benchmark,
as these functions represent programs which involve a large
set of compiler transformations, including Loop invariant code
motion, loop peeling, instruction selection, loop inversion, loop
unswitching, strength reduction, and many more. Moreover,
these programs also involve the most complex vectorizing
transformations — thus it is harder for compiler developers
to preserve debugging information for these programs. The
equivalence proofs between the C program and the optimized
x86 assembly are generated using the Counter [11] equivalence
checker.

The original source file, the corresponding optimized ELF
object file and the bisimulation proof across the original and
optimized programs are given as inputs to the proposed tool.
The output of the tool is an updated object file where the
debugging headers have been improved using the algorithm
discussed in section IV. We use the gimli library in Rust to
update the debugging headers in the object files.

We find that the existing debugging information is often
buggy across the types of transformations produced on the
TSVC benchmarks. In some cases, the debugging information

150

for a variable is missing. In other cases, the debugging
information for a variable is incorrect – i.e., GDB displays
the wrong value when that variable is queried at a program
point. Whenever our tool is able to find a new expression
for a variable at a program point, we simply remove the old
expression (for that variable) from the debugging header and
replace it with the new expression.

For evaluation, we count the number of instances where:

• The debugging information was not present in the original
object file and was present in the updated object file. We
call this the case of Missing debugging information.

• In the original object file, the debugging information
for a variable at a program point indicated that it has
a constant value (i.e., a value that is independent of the
assembly registers/memory locations) and in the updated
object file, that the same variable is associated with a
non-constant expression (i.e., an expression that depends
on the current state of the assembly registers/memory
locations). We call this the case of IncorrectlyConstant

debugging information.

In both cases, we can be certain that there is an improvement in
the debugging headers. We find that it is a common occurrence
that a variable is incorrectly associated with a constant value in
the debugging headers (where an expression was required) and
so we count such improvements in our evaluator. However, this
method of evaluation is conservative, i.e., there may have been
more improvements that we are not counting, e.g., if both the
original and the updated object files associated an expression
with a variable, but the expression in the original object file
was incorrect. Such improvements can only be counted through
manual examination — instead, we chose to use an automatic
evaluator.

A. Results

We show the improvement metrics in the debugging headers
for object files generated by GCC, Clang/LLVM (table II) and
by ICC (table III). The total number of TSVC functions we
tested are 75. Some function-compiler pairs are excluded in
the results because our best-effort equivalence checker could
not generate an equivalence proof for them. For each function-
compiler pair, we show

• the total number of PCs in the optimized assembly
program (T),

• the number of PCs for which at least one variable’s
debugging information was updated (U).

• the number of variables for which the debugging infor-
mation was improved for at least one PC (V).

• the cumulative count of the number of PC-variable pairs
for which the debugging information was already available
in the original object file (but some of these mappings
could be potentially incorrect before updation) (O)

• the cumulative number of PC-variable pairs for which the
debugging information was not present (Missing cases)
in the original object file and is present in the updated
object file (M)

TABLE II
TSVC BENCHMARK RESULTS FOR (A) CLANG AND (B) GCC.

Table (2a) Table (2b)

Fn T /U V O/M / I Fn T /U V O/M /I

s000 19/14 1 17/0/14 s000 11/ 7 1 3/ 6/ 1

s1111 20 / 19 1 0 / 19 / 0

s1112 27/22 1 25/0/22 s1112 12/ 8 1 3/ 7/ 1

s1119 17/8 1 20/0/ 8

s111 28 / 28 1 0 / 28 / 0

s112 13/10 1 0/10/ 0 s112 22/ 22 1 0/ 22/ 0

s113 20 / 7 1 9 / 7 / 0

s116 17/14 1 1/13/ 1

s119 37/12 1 52/0/12 s119 27/ 26 2 12/ 32/ 1

s121 40/17 1 60/0/17 s121 18/ 18 1 11/ 18/ 0

s1221 16/12 1 12/0/12 s1221 9/ 5 1 1/ 5/ 0

s122 16/14 2 63/12/ 3 s122 16/ 16 2 55/ 21/ 6

s1251 20/17 1 17/0/17 s1251 13/ 12 1 0/ 12/ 0

s125 24/ 20 3 6/ 43/ 0

s127 17/ 16 2 1/ 31/ 0

s1281 17/ 16 1 0/ 16/ 0

s128 20/ 19 2 2/ 36/ 1

s131 37/17 1 70/0/17 s131 15/ 15 1 15/ 15/ 0

s132 53/21 1 210/0/21 s132 28/ 28 1 84/ 28/ 0

s1351 17/15 4 14/45/14 s1351 9/ 8 4 0/ 29/ 0

s162 52/41 1 54/41/ 0 s162 43/ 9 1 62/ 8/ 1

s171 40/25 1 66/7/18

s173 17/14 1 30/0/14 s173 9/ 8 1 9/ 8/ 0

s174 64/ 48 1 64/ 48/ 0

s2233 39/ 37 1 13/ 35/ 2

s2244 47/15 1 44/0/15 s2244 24/ 24 1 0/ 24/ 0

s243 51/16 1 48/0/16 s243 21/ 19 1 0/ 19/ 0

s251 15/12 1 12/0/12

s252 18/14 1 30/0/14

s311 15/ 5 1 3/ 5/ 0

s319 32/26 1 53/0/26 s319 22/ 15 1 2/ 15/ 0

s3251 44/ 44 1 0/ 44/ 0

s351 25/19 1 26/19/ 0

s352 34/28 2 31/28/ 0

s452 31/26 1 29/0/26 s452 14/ 10 1 3/ 9/ 1

s453 19/14 1 17/0/14 s453 11/ 7 1 3/ 6/ 1

sum1d 15/ 10 1 3/ 10/ 0

va 8/ 7 1 0/ 7/ 0

vdotr 25/19 1 39/0/19 vdotr 17/ 10 1 2/ 10/ 0

vpv 9/ 8 1 0/ 8/ 0

vpvpv 21/18 1 18/0/18 vpvpv 10/ 9 1 0/ 9/ 0

vpvts 23/18 1 21/0/18 vpvts 12/ 8 1 3/ 7/ 1

vpvtv 21/18 1 18/0/18 vpvtv 10/ 9 1 0/ 9/ 0

vtv 17/14 1 14/0/14 vtv 9/ 8 1 0/ 8/ 0

vtvtv 21/18 1 18/0/18 vtvtv 10/ 9 1 0/ 9/ 0

Avg. 27/18 1.2 36/6/13.5 19/16 1.2 10/18/0.4

• the cumulative number of PC-variable pairs which had an
IncorrectlyConstant debugging information was present
in the original object file and are replaced with a non-
constant expression in the updated object file (I)

On average, the percentage of PCs where at least one vari-
able’s Missing information is added is: 18% for Clang/LLVM,
73% for GCC, and 12% for ICC. Similarly, the percentage
of PCs where at least one variable’s IncorrectlyConstant

151

TABLE III
(A) TSVC BENCHMARK RESULTS FOR ICC. (B) TSVC BENCHMARKS

WITH NO IMPROVEMENT IN ICC.

Table (3a) Table (3b)

Fn T /U V O/M /I Functions with no improvement

for icc

s114 46/46 2 0 /79/0 s000 s132 s272 s441

s124 50/44 1 50/44/0 s111 s1421 s274 s452

s125 37/36 1 74/36/0 s112 s173 s293 s453

s127 63/57 1 63/57/0 s119 s2244 s311 sum1d

s252 19/9 1 19/9 /0 s122 s251 s317 va

s1279 s254 s319 vdotr

s1281 s2711 s4115 vif

vpv vpvpv vpvts vpvtv

Avg. 43/38 1.2 41/45/0

information is corrected is: 55% for Clang/LLVM, 2% for
GCC, and 0% for ICC. It is interesting to see how Clang/LLVM
has more number of IncorrectlyConstant debug information,
while GCC and ICC have a larger fraction of Missing debug
information. Moreover, in our experiments, we find that ICC
preserves the most amount of correct debugging information,
because our modifications produced only a 12% overall
improvement for ICC-compiled object files.

Recall that because our forward DFA does not take into
account the source program’s updates, the results of our analysis
could potentially be slightly imprecise (section IV-B1). We
have manually checked several executables to confirm that this
imprecision is bounded by the amount of unrolling performed
by the compiler, e.g., if the compiler unrolls the loop by a factor
of eight, then the maximum deviation between GDB’s reported
value and the actual value of a variable is upper-bounded by
seven. Even with this imprecision, our tool makes a significant
improvement over the existing debugging headers, where the
values were either missing or incorrectly constant (e.g., zero)
for the entire loop duration.

All the TSVC programs involve at most two (potentially
nested) loops. We have also tested our tool on larger programs
involving three or more loops, and potentially function calls
and other complex control flow. Although the larger programs
trigger complex compiler transformations where debugging
information is typically lost, the improvement results remain
similar. We are sometimes limited by the scale of the programs
that the equivalence checker can handle in a reasonable amount
of time — our goal in this work is not to evaluate the
capabilities of the equivalence checker, but to evaluate our
algorithms to update the debugging headers based on an
obtained equivalence proof. As such, we find that our updation
algorithms are scalable and we don’t see any difficulties posed
by the size of the programs on which the tool is applied.

The average change in the size of the updated executable
ranges from -2% to 21%, with a mean increase in the executable
size of 3.4%. This change in executable size has no effect on the
size of the memory consumption and runtime of the executable
code; the updated headers only take more disk space and are
accessed only during a debugging session.

B. Ablation Studies

Our proposed technique for improving the debugging headers
involves three algorithms (1) a forward DFA (section IV-B1),
(2) a modification to the forward DFA to exploit reversibility
of computation (section IV-B2), and (3) a backward DFA
(section IV-B3). To study the individual contributions of each
of these three algorithms, we list the improvement results
for four different variants of our tool: (a) where all three
algorithms (forward DFA with reversibility and backward DFA)
are enabled, (b) where only the first two algorithms (forward
DFA with reversibility), (c) where only the first algorithm is
enabled (forward DFA without reversibility), and (d) where
none of these algorithms are used (only the proof file is used
to populate the debugging headers).

Based on our evaluation of all these four variants, we make
the following observations:

1) Just using the proof file without any spreading through
DFAs results in only 1-2 PCs to be updated in the whole
program. This is unsurprising because the bisimulation
proof generated by the equivalence checker only correlates
one PC in each loop, and hence that is the only PC for
which we are able to update the debugging headers.

2) The percentage improvements shown by

• variant (c) over (d) are 55% for Clang/LLVM, 17%
for GCC and 8% for ICC. This measures the improve-
ments due to the forward-DFA to spread the debug
information.

• variant (b) over (c) are 7% for Clang/LLVM, 33% for
GCC and 1% for ICC. This measures the improvements
due to the use of reversibility of computation in the
forward DFA.

• variant (a) over (b) are 3% for Clang/LLVM, 1.5% for
GCC and 2% for ICC. This measures the improvements
due to the backward DFA.

We observe that Clang/LLVM has most improvements for
variant (c) (forward DFA without reversibility) while GCC
shows most improvements for variant (b) (reversibility).
This can be attributed to the position of the iterator
increment/decrement instruction in Clang/LLVM and
GCC – it’s typically present near the tail of a loop for
Clang/LLVM while it’s near the head of a loop for GCC.

C. Limitations

Our tool is not without limitations, the primary limitation
being its dependence on the equivalence checker for the
generation of a proof of equivalence across the source and the
lowered and optimized assembly version. For our experiments,
we consciously chose benchmarks for which the equivalence
checker can automatically compute the equivalence proof and

which exhibit aggressive optimizations that typically cause a
loss of debugging information. Our results show the efficacy
of our algorithms to spread the debugging information for
these challenging benchmarks. We expect future improvements
in equivalence checking to seamlessly integrate with our

152

algorithms to make this method of improving debugging
information widely applicable.

Another limitation is that our tool does not support product
programs that require correlations of a single assembly point
with several source points. These product programs are required
to prove equivalences in the presence of transformations
like loop fusion, loop re-rolling, etc., and can have multiple
potentially different set of invariants at the same assembly
location. The support for such product programs would require
techniques to choose the right set of invariants from these
multiple possible relations while keeping the resulting debug
information sound.

VI. RELATED WORK AND CONCLUSIONS

Debuggability and optimization are often viewed as con-
flicting goals: compiler optimizations are often disabled (e.g.,
-Og) to keep the program debuggable. Keeping the debugging
headers consistent adds to the developer burden during compiler
development which is already highly complex. Our proposal
leverages the capabilities of a blackbox equivalence checker to
somewhat relieve the developer through an automatic tool to
improve the debugging headers. Our limited experimental stud-
ies demonstrate promise, and we expect future improvements
in equivalence checking to make this approach even more
practical. We contribute algorithms to maximize the debugging
information obtained from an equivalence proof.

This problem of improving debuggability has been previ-
ously tackled through various diverse approaches, e.g., by
using recompilation or dynamic de-optimization to undo the
optimizations [15], by changing the source program to reflect
the effects of compiler optimizations [16], and by providing
new compiler-debugger interfaces [17].

Custom compilers have been developed by modifying an ex-
isting compiler to gather extra debugging information [15]–[21].
Algorithms have been proposed to determine the currentness

of a variable [21]–[23], where a variable is considered non-
current if it is inconsistent with the source-level value expected
at a breakpoint. Another interesting approach involves the
concurrent execution of unoptimized and optimized programs
on identical inputs and comparing their behavior; in case of
differences, the debugging tool suggests the disabling of specific
optimizations on programmer queries [24]. Because errors in
debugging headers are common, prior work has also studied the
validation of existing debugging information [25], [26] — in
contrast, we try and fix/improve it. Our approach resembles the
symbolic debugging proposal [27] where the aim is to recover
debugging information through static analysis approaches.

In contrast to prior approaches, we support existing unmod-
ified compilers and our approach is agnostic of the compiler
and the debugger being used. The debuggability improvements
produced by our tool are within the constraints of the current
compilation and debugging toolchains, and allow programmers
to transparently enjoy benefits of these improvements.

REFERENCES

[1] H. Massalin, “Superoptimizer: A look at the smallest program,” in
ASPLOS ’87: Proceedings of the Second International Conference

on Architectural Support for Programming Languages and Operating

Systems, 1987, pp. 122–126.
[2] R. Joshi, G. Nelson, and K. H. Randall, “Denali: A goal-directed

superoptimizer,” in PLDI ’02: Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation,
Berlin, Germany, June 2002, pp. 304–314.

[3] S. Bansal and A. Aiken, “Automatic generation of peephole
superoptimizers,” in Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS XII. New York, NY, USA: ACM, 2006, pp. 394–
403. [Online]. Available: http://doi.acm.org/10.1145/1168857.1168906

[4] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: a new
approach to optimization,” in POPL ’09: Proceedings of the 36th annual

ACM SIGPLAN-SIGACT symposium on Principles of Programming

Languages. New York, NY, USA: ACM, 2009, pp. 264–276. [Online].
Available: http://www.cs.cornell.edu/~ross/publications/eqsat/

[5] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,” in
Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.
ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 305–316.
[Online]. Available: http://doi.acm.org/10.1145/2451116.2451150

[6] B. Churchill, R. Sharma, J. Bastien, and A. Aiken, “Sound loop
superoptimization for Google native client,” in Proceedings of the

Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’17.
ACM, 2017, pp. 313–326.

[7] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja,
and J. Regehr, “Souper: A synthesizing superoptimizer,” CoRR, vol.
abs/1711.04422, 2017. [Online]. Available: http://arxiv.org/abs/1711.
04422

[8] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A.
Padua, “An evaluation of vectorizing compilers,” in Proceedings of

the 2011 International Conference on Parallel Architectures and

Compilation Techniques, ser. PACT ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 372–382. [Online]. Available:
https://doi.org/10.1109/PACT.2011.68

[9] M. Dahiya and S. Bansal, “Black-box equivalence checking across
compiler optimizations,” in Programming Languages and Systems

- 15th Asian Symposium, APLAS 2017, Suzhou, China, November

27-29, 2017, Proceedings, 2017, pp. 127–147. [Online]. Available:
https://doi.org/10.1007/978-3-319-71237-6_7

[10] B. Churchill, “Blackbox equivalence checking of program optimizations,”
Ph.D. dissertation, Stanford University, 2019.

[11] S. Gupta, A. Rose, and S. Bansal, “Counterexample-guided correlation
algorithm for translation validation,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020. [Online]. Available: https:
//doi.org/10.1145/3428289

[12] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic
program alignment for equivalence checking,” in Proceedings of

the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI 2019. New York, NY,
USA: ACM, 2019, pp. 1027–1040. [Online]. Available: http:
//doi.acm.org/10.1145/3314221.3314596

[13] M. Müller-Olm and H. Seidl, “Analysis of modular arithmetic,” in
Programming Languages and Systems, M. Sagiv, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 46–60.

[14] H. Anton and C. Rorres, Elementary Linear Algebra: Applications Version.
Wiley.

[15] U. Hölzle, C. Chambers, and D. Ungar, “Debugging optimized
code with dynamic deoptimization,” in Proceedings of the ACM

SIGPLAN 1992 Conference on Programming Language Design and

Implementation, ser. PLDI ’92. New York, NY, USA: Association
for Computing Machinery, 1992, p. 32–43. [Online]. Available:
https://doi.org/10.1145/143095.143114

[16] C. M. Tice, “Non-transparent debugging of optimized code,” 2 2000.
[Online]. Available: https://dl.acm.org/doi/book/10.5555/894940

[17] L. Berger and R. Wismüller, “Source-level debugging of optimized
programs using data flow analysis,” 1992.

[18] C. Jaramillo, R. Gupta, and M. L. Soffa, “Fulldoc: A full reporting
debugger for optimized code,” in Static Analysis, J. Palsberg, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 240–259.

[19] P. T. Zellweger, “An interactive high-level debugger for control-flow
optimized programs,” in Proceedings of the Symposium on High-Level

Debugging, ser. SIGSOFT ’83. New York, NY, USA: Association

153

http://doi.acm.org/10.1145/1168857.1168906
http://www.cs.cornell.edu/~ross/publications/eqsat/
http://doi.acm.org/10.1145/2451116.2451150
http://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
http://doi.acm.org/10.1145/3314221.3314596
http://doi.acm.org/10.1145/3314221.3314596
https://doi.org/10.1145/143095.143114
https://dl.acm.org/doi/book/10.5555/894940

for Computing Machinery, 1983, p. 159–172. [Online]. Available:
https://doi.org/10.1145/1006147.1006183

[20] G. Brooks, G. J. Hansen, and S. Simmons, “A new approach to debugging
optimized code,” in Proceedings of the ACM SIGPLAN 1992 Conference

on Programming Language Design and Implementation, ser. PLDI ’92.
New York, NY, USA: Association for Computing Machinery, 1992, p.
1–11. [Online]. Available: https://doi.org/10.1145/143095.143108

[21] A.-R. Adl-Tabatabai and T. Gross, “Source-level debugging of scalar
optimized code,” in Proceedings of the ACM SIGPLAN 1996 Conference

on Programming Language Design and Implementation, ser. PLDI ’96.
New York, NY, USA: Association for Computing Machinery, 1996, p.
33–43. [Online]. Available: https://doi.org/10.1145/231379.231388

[22] R. Wismüller, “Debugging of globally optimized programs using data
flow analysis,” in Proceedings of the ACM SIGPLAN 1994 Conference

on Programming Language Design and Implementation, ser. PLDI ’94.
New York, NY, USA: Association for Computing Machinery, 1994, p.
278–289. [Online]. Available: https://doi.org/10.1145/178243.178430

[23] M. Copperman, “Debugging optimized code without being misled,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 3, p. 387–427, may 1994.

[Online]. Available: https://doi.org/10.1145/177492.177517
[24] C. Jaramillo, R. Gupta, and M. L. Soffa, “Comparison checking: An

approach to avoid debugging of optimized code,” in Proceedings of the

7th European Software Engineering Conference Held Jointly with the

7th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ser. ESEC/FSE-7. Berlin, Heidelberg: Springer-Verlag,
1999, p. 268–284.

[25] G. A. Di Luna, D. Italiano, L. Massarelli, S. Österlund, C. Giuffrida,
and L. Querzoni, “Who’s debugging the debuggers? exposing debug
information bugs in optimized binaries,” in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1034–1045.
[Online]. Available: https://doi.org/10.1145/3445814.3446695

[26] Y. Li, S. Ding, Q. Zhang, and D. Italiano, “Debug information validation
for optimized code,” 2020.

[27] J. Hennessy, “Symbolic debugging of optimized code,” ACM Trans.

Program. Lang. Syst., vol. 4, no. 3, p. 323–344, jul 1982. [Online].
Available: https://doi.org/10.1145/357172.357173

154

https://doi.org/10.1145/1006147.1006183
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/178243.178430
https://doi.org/10.1145/177492.177517
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/357172.357173

	Introduction
	Background
	Blackbox Equivalence Checking
	Debugging Headers

	Problem Statement
	Identifying Maps from Unoptimized IR PCs to Source Code Line/Column Numbers
	Identifying Maps from Assembly PCs to Source Code Line Numbers
	Identifying Maps from Source Variables to Assembly Registers and Stack Slots at Every PC

	Algorithm
	Identifying the Assembly Expression for Each Source Variable
	Identifying the Maximal Set of Assembly PC Locations where the Variable Correlations Hold
	Forward DFA
	Exploiting Reversibility of Computation
	Backward DFA

	Evaluation
	Results
	Ablation Studies
	Limitations

	Related Work and Conclusions
	References

