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Abstract

We describe an algorithm capable of checking equivalence of two programs that manipulate

recursive data structures such as linked lists, strings, trees and matrices. The first program,

called specification, is written in a succinct and safe functional language with algebraic data

types (ADT). The second program, called implementation, is written in C using arrays and

pointers. Our algorithm, based on prior work on counterexample guided equivalence checking,

automatically searches for a sound equivalence proof between the two programs.

We formulate an algorithm for discharging proof obligations containing relations between recur-

sive data structure values across the two diverse syntaxes, which forms our first contribution.

Our proof discharge algorithm is capable of generating falsifying counterexamples in case of a

proof failure. These counterexamples help guide the search for a sound equivalence proof and

aid in inference of invariants. As part of our proof discharge algorithm, we formulate a program

representation of values. This allows us to reformulate proof obligations due to the top-level

equivalence check into smaller nested equivalence checks. Based on this algorithm, we imple-

ment an automatic (push-button) equivalence checker tool named S2C, which forms our second

contribution.

v



S2C is evaluated on implementations of common string library functions taken from popular C

library implementations, as well as implementations of common list, tree and matrix programs.

These implementations differ in data layout of recursive data structures as well as algorithmic

strategies. We demonstrate that S2C is able to establish equivalence between a single specification

and its diverse C implementations.

Keywords: Equivalence checking; Bisimulation; Recursive Data Structures; Algebraic Data

Types;
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Chapter 1

Introduction

The problem of equivalence checking between a functional specification and an implementation
written in a low level imperative language such as C has been of major research interest. On one
side, the functional programming model closely resembles mathematical functions, which allows
for comparatively easier verification of algorithmic correctness. On the other hand, a low level
imperative language such as C trades the safer abstractions of a functional language for proximity
to the machine language resulting in (usually) significantly faster executables, albeit at the cost
of a substantially higher possibility of algorithmic errors. Being able to establish equivalence
between the two abstractions would allow the user to take advantage of both worlds – (a) easier
proof of functional correctness and (b) more efficient executables. The applications of such an
equivalence checker would include (a) program verification, where the equivalence checker is used
to verify that the C implementation behaves according to the specification and (b) translation
validation, where the equivalence checker attempts to generate a proof of equivalence across the
transformations (and translations) performed by an optimizing compiler.

The verification of a C implementation against its manually written functional specification
through manually-coded refinement proofs has been performed extensively in the seL4 micro-
kernel [32]. Frameworks for program equivalence proofs have been developed in interactive theo-
rem provers like Coq [21] where correlations and invariants are manually identified during proof

1
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codification. On the other hand, programming languages like Dafny [35] offer automated pro-
gram reasoning for imperative languages with abstract data types such as sets and arrays. Such
languages perform automatic compile-time checks for manually-specified correctness predicates
through SMT solvers. Additionally, there exists significant prior work on translation validation
[41, 54, 51, 53, 34, 56, 57, 46, 55, 36, 31, 37, 13, 49, 19, 28, 48, 40] across multiple programming
languages with similar models of computation. In most of these applications, soundness is critial,
i.e., if the equivalence checker determines the programs to be equivalent, then the programs are
indeed equivalent and evidently have equivalent runtime observable behaviour. On the other
hand, a sound equivalence checker may be incomplete and fail to prove equivalence of a program
pair, even if they were equivalent.

In this work, we present S2C, a sound algorithm to automatically search for a proof of equivalence
between a functional specification and its optimized C implementations. We will demonstrate
how S2C is capable of proving equivalence of multiple equivalent C implementations with vastly
different (a) data layouts (e.g. array, linked list representations for a list) and (b) algorithmic
strategies (e.g. alternate algorithms, optimizations) against a single functional specification.
This opens the possibility of regression verification [52, 25], where S2C can be used to automate
verification across software updates that change memory layouts of data structures.

1.1 A Motivating Example

We start by restricting our attention to programs that construct, read, and write to recursive data
structures. In languages like C, pointer and array based implementations of these data-structures
are prone to safety and liveness bugs. Similar recursive data structures are also available in safer
functional languages like Haskell [38], where algebraic data types (ADTs) [16] ensure several
safety properties. We define a minimal functional language, called Spec, that enables the safe
and succinct specification of programs manipulating and traversing recursive data structures.
Spec is equipped with ADTs as well as boolean (bool) and fixed-width bitvector (i<N>) types.

We motivate our work by considering example Spec and C programs. The major hurdles of our
approach are listed alongside an informal discussion of our proposed solutions. We state our
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A0: type List = LNil | LCons (val:i32, tail:List).
A1:
A2: fn mk_list_impl (n:i32) (i:i32) (l:List) : List =
A3: if i ≥u n then l
A4: else make_list_impl(n, i+1i32, LCons(i, l)).
A5:
A6: fn mk_list (n:i32) : List = mk_list_impl(n, 0i32, LNil).

(a) Spec program

B0: typedef struct lnode {
B1: unsigned val; struct lnode* next;
B2: } lnode;
B3:
B4: lnode* mk_list(unsigned n) {
B5: lnode* l = NULL;
B6: for (unsigned i = 0; i < n; ++i) {
B7: lnode* p = malloc(sizeof lnode);
B8: p→val = i; p→next = l; l = p;
B9: }
B10: return l;
B11: }

(b) C program with malloc()

Figure 1.1: Spec and C programs each constructing a Linked List.

primary contributions in section 1.2 and finish with the organization of the rest of the thesis in
section 1.3.

Figures 1.1a and 1.1b show the construction of lists in Spec and C respectively. The List ADT
in the Spec program is defined at line A0 in fig. 1.1a. An empty List is represented by the data
constructor LNil, whereas a non-empty list uses the LCons constructor to combine its first value
(val :i32) and the remaining list (tail :List). The inputs to a Spec procedure (aka function)
are its well-typed arguments, which may include recursive data structure (i.e. ADT) values. The
inputs to a C procedure are its explicit arguments and the implicit state of program memory at
procedure entry. Similarly, the output of a C procedure consists of its explicit return value and
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S0: List mk_list (i32 n) {
S1: List l := LNil;
S2: i32 i := 0i32;
S3: while ¬(i ≥u n):
S4: l := LCons(i, l);
S5: i := i + 1i32;
S6: return l;
SE: }

(a) (Abstracted) Spec IR

C0: i32 mk_list (i32 n) {
C1: i32 l := 0i32;
C2: i32 i := 0i32;
C3: while i <u n:
C4: i32 p := mallocC4(sizeof(lnode));
C5: 𝕞 := 𝕞[addrof(p 𝕞→lnode val)←i]i32;
C6: 𝕞 := 𝕞[addrof(p 𝕞→lnode next)←l]i32;
C7: l := p;
C8: i := i + 1i32;
C9: return l;
CE: }

(b) (Abstracted) C IR

Figure 1.2: IRs for the Spec and C mk_list procedures in figs. 1.1a and 1.1b respectively.

the state of program memory at procedure exit.

The Spec function mk_list (defined at line A6 in fig. 1.1a), takes a bitvector of size 32 (n :i32).
It returns a List value representing the list [(n− 1), (n− 2), . . . , 1, 0]. On the other hand, the
C function mk_list (defined at line B4 in Figure 1.1b) constructs a pointer based linked list
representing a list identical to the Spec function. Unlike Spec, the construction of the linked list
in C requires explicit allocation of memory through calls to malloc in addition to stores to the
memory. We are interested in showing that the Spec and C mk_list procedures are ‘equivalent’
i.e., given equal n inputs, they both construct lists that are ‘equal’.

For comparison, we represent both programs in a common abstract framework. This involves con-
verting both mk_list functions to a common logical representation (intermediate representation
or IR for short). Figures 1.2a and 1.2b show the IRs of the Spec and C mk_list procedures in
figs. 1.1a and 1.1b respectively. For the Spec program, the tail-recursive function mk_list_impl
is converted to a loop and inlined in the top-level function mk_list in the IR. In case of the C
program in fig. 1.1b, the memory state is made explicit (represented by 𝕞), and the size and
memory layout of each type is concretized in the IR. For example, the unsigned and pointer
types are encoded as the i32 bitvector type. A comprehensive description of the logical model is
given in section 2.2.
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S0 S3 SE

S5

i ≥u n

i <u n

(a) CFG of Spec procedure

C0 C3 CE

C4C5

i ≥u n

i <u n

malloc

(b) CFG of C procedure

Figure 1.3: CFG representation of Spec and C IRs shown in figs. 1.2a and 1.2b for the mk_list
procedures in figs. 1.1a and 1.1b respectively.

To reiterate, we are interested in showing equivalence of the Spec and C IRs. Since the argument
n to both procedures have identical types (i.e. i32), their equality is trivially expressible as:
nS = nC 1. However, Spec uses the List ADT to represent a list, whereas the C procedure
represents its list using a collection of lnode objects linked through their next fields in the
memory 𝕞, and simply returns a value of type i32 (lnode* in the original C program) pointing
to the first lnode in the list (or the null value in case of an empty list). In order to express
equality between these two list values (of types List and i32), we would like to ‘adapt’ one of
the values so as to match their types. We choose to lift the C linked list (represented by the i32
value and the C memory state) to a List value using an operator called a lifting constructor. Let
us call this lifting constructor Clistlnode

𝕞 , where the expression Clistlnode
𝕞 (p :i32) represents a

List value constructed from a C pointer p (pointing to an lnode object) in memory state 𝕞. We
will formally define Clistlnode

𝕞 subsequently in section 2.5. For now, such an operator allows us to
express equality between the outputs of the Spec and C procedures as retS = Clistlnode

𝕞 (retC),
where retS and retC represents the values returned by the respective Spec and C procedures in
figs. 1.2a and 1.2b. To further emphasize the fact that we are comparing (a) a Spec ADT value
with (b) an ADT value lifted from C values using a lifting constructor, we use ‘∼’ instead of ‘=’
and call it a recursive relation: retS ∼ Clistlnode

𝕞 (retC).

Consequently, we are interested in proving that given nS = nC at the procedure entries, retS ∼
Clistlnode

𝕞 (retC) holds at the exits of both procedures. Before going into the proof method, we
1We use S and C subscripts to refer to variables in the Spec and C procedures respectively.
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S0 :C0 S3 :C3

S3 :C4S3 :C5

SE :CE

S0→S3
C0→C3

S3→SE
C3→CE

ε
C3→C4

ε
C4→C5

S3→S5→S3
C5→C3

(a) Product-CFG between CFGs
in figs. 1.3a and 1.3b

PC-Pair Invariants

(S0 :C0) P nS = nC

(S3 :C3) I1 nS = nC I2 iS = iC
I3 iS ≤u nS I4 lS ∼ Clistlnode

𝕞 (lC)

(S3 :C4) I5 nS = nC I6 iS = iC
(S3 :C5) I7 iS <u nS I8 lS ∼ Clistlnode

𝕞 (lC)

(SE :CE) E retS ∼ Clistlnode
𝕞 (retC)

(b) Node invariants for product-CFG in fig. 1.4a

Figure 1.4: Product-CFG between the CFGs in figs. 1.3a and 1.3b. Figure 1.4b contains the
corresponding node invariants for the product-CFG.

first introduce an alternate representation of IR, called the Control-Flow Graph (CFG for short).
Figures 1.3a and 1.3b show the CFG representation of the Spec and C IRs in figs. 1.2a and 1.2b
respectively. The CFG representation is fundamentally a labeled transition system representation
of the corresponding IR, and is further explored in section 2.2. In essence, each node represents
a PC location of its IR, and each edge represents (possibly conditional) transition between PCs
through instruction execution. For brevity, we often represent a sequence of instructions with
a single edge, e.g., in fig. 1.3b, the edge C5→C3 represents the path C5→C6→C7→C8→C3 in
fig. 1.2b.

A common approach for showing equivalence between a pair of procedures involves finding a
bisimulation relation across the said procedure-pair. Intuitively, a bisimulation relation (a) corre-
lates program transitions across the specification and implementation procedures, and (b) asserts
inductively-provable invariants between machine states of the two procedures at the endpoints
of each correlated transition [45]. A bisimulation relation itself can be represented as a program,
called a product program [55] and its CFG representation is called a product-CFG. Figure 1.4a
shows a product-CFG between the Spec and C mk_list procedures in figs. 1.3a and 1.3b respec-
tively.

At each node of the product-CFG, invariants relate the states of the Spec and C procedures
respectively. Figure 1.4b lists the node invariants for the product-CFG in fig. 1.4a. At the
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start node (S0 :C0) of the product-CFG, the precondition (labeled P ) ensures equality of input
arguments nS and nC at the procedure entries. Inductive invariants (labeled I ) need to be
inferred at each intermediate product-CFG node (e.g., (S3 :C3)) relating both programs’ states.
For example, at node (S3 :C5), I6 iS = iC is an inductive invariant. The inductive invariant
I4 lS ∼ Clistlnode

𝕞 (lC) is another example of a recursive relation and asserts equality between
the intermediate Spec and C lists at their respective loop heads. Assuming that the precondition
( P ) holds at the entry node (S0 :C0), a bisimulation check involves checking that the inductive
invariants hold too, and consequently the postcondition ( E ) holds at the exit node (SE :CE).
Checking correctness of a bisimulation relation involves checking whether an invariant holds
(among other things). These checks result in proof queries which must be discharged by a solver
(aka theorem prover).

1.2 Our Contributions

As previously summarized in section 1.1, an algorithm to find a bisimulation based proof of
equivalence between a Spec and C procedure involves three major algorithms: A1 An algorithm
for construction of a product-CFG by correlating program executions across the Spec and C
procedures respectively. A2 An algorithm for identification of inductively-provable invariants at
intermediate correlated PCs. A3 An algorithm for solving proof obligations generated by A1

and A2 algorithms. Next we list our major contributions.

Proof Discharge Algorithm

Solving proof obligations ( A3 ) involving recursive relations (generated by A1 and A2 ) is quite
interesting and forms our primary contribution. We describe a sound proof discharge algorithm
capable of tackling proof obligations containing recursive relations using off-the-shelf SMT solvers.
Our proof discharge algorithm is also capable of reconstruction of counterexamples for the original
proof query from models returned by the individual SMT queries. These counterexamples form
the foundation of counterexample-guided heuristics for A1 and A2 algorithms as we will discuss
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shortly. As part of our proof discharge algorithm, we reformulate equality of ADT values (i.e.
recursive relations) as equivalence of programs and discharge these proof queries using a nested
(albeit much simpler) equivalence check.

Spec-to-C Automatic Equivalence Checker Tool

Our second contribution is S2C, a sound equivalence checker tool capable of proving equivalence
between a Spec and a C program automatically. S2C either successfully finds a bisimulation re-
lation implying equivalence or it provides a (sound but incomplete) unknown verdict. S2C builds
upon the Counter tool[28] and uses specialized versions of (a) counterexample-guided correlation
algorithm for incremental construction of a product-CFG ( A1 ) and (b) counterexample-guided
invariant inference algorithm for inference of inductive invariants at correlated PCs in the (par-
tially constructed) product-CFG ( A2 ) based on prior work on counterexample-guided equiva-
lence checking [50]. S2C discharges the required verification conditions (i.e. proof obligations)
using our Proof Discharge Algorithm. The counterexamples generated by the proof discharge
algorithm help steer the search algorithms A1 and A2 .

1.3 Outline of the Thesis

The rest of the thesis is divided into five chapters. We begin with a thorough presentation of the
topics introduced thus far in chapter 2. The major topics discussed include our specification lan-
guage, logical representation of programs, and bisimulation in the context of Spec-C equivalence.
We finish chapter 2 with a logical encoding of proof obligations generated during an equivalence
check.

The next chapter, chapter 3 illustrates our proof discharge algorithm ( A3 ) through proof obliga-
tions originating from equivalence checks between previously shown program-pairs. In the context
of our proof discharge algorithm, we introduce a decomposition procedure based on unification to
reduce a recursive relation to an equivalent set of equalities. The proof discharge algorithm cate-
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gorizes a proof obligation into three types, each of which is illustrated with the help of examples.
We finish with a summary and pseudocode of the algorithm.

Chapter 4 gives an exhaustive overview of the major components of our Spec-to-C equivalence
checker tool, S2C. We begin with a dataflow formulation of the points-to analysis introduced as
part of our proof discharge algorithm in chapter 3. Next, we summarize the counterexample driven
algorithms for product-CFG construction ( A1 ) and invariant inference ( A2 ) based on prior work
[50]. Chapter 4 presents the pseudocode for the major subprocedures used as part of our proof
discharge algorithm, in addition to details of SMT encoding of proof obligations and recovery of
counterexamples from SMT models. We finish with a new representation of expressions, called
‘Value Trees’ which enables the consolidation of multiple subprocedures utilized as a component
of our proof discharge algorithm. We also present an algorithm for converting an expression to
its value tree representation along with illustrative examples of its applications.

We provide a comprehensive evaluation of S2C in chapter 5, followed by its limitations. Chapter 6
concludes our work by reiterating the key ideas presented, alongside additional related work.
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Chapter 2

Preliminaries

2.1 The Specification Language : Spec

We start with an introduction to our specification language, called Spec. Spec supports recursive
algebraic data types (ADT) [16] similar to the ones available in functional languages such as
Haskell [38] and SML [47]. Spec supports mutually recursive ADTs but does not support universal
types. Additionally, Spec is equipped with the following scalar types: unit, bool (boolean) and
i<N> (fixed-width bitvectors). ADTs can be thought of as ‘sum of product’ types where each data
constructor represents a variant (of the sum-type) and the arguments to each data constructor
represents its fields (of the product-type). For example, the List type (defined at A0 in fig. 1.1a)
has two variants LNil and LCons. LNil has no fields while LCons has two fields val and tail of
types i32 and List respectively. Additionally, Spec follows equirecursive typing rules i.e. a List
value l and LCons(1i32, l) have definitionally equal types. Later in section 4.4.9, we further expand
on ADTs in the context of a graphical representation of values used as part of our proof discharge
algorithm. The language also borrows its expression grammar heavily from functional languages.
This includes let-in, if-then-else, match and function application. Pattern matching (i.e.
deconstruction) of ADT values is achieved through match. Unlike functional languages, Spec only
supports first order functions. Also, Spec does not support partial function application. Hence,

11



12 Preliminaries

A0: type Str = SInvalid | SNil
A1: | SCons (ch:i8, tail:Str).
A2:
A3: fn is_empty (s : Str) : bool =
A4: assuming ¬(s is SInvalid) do
A5: s is SNil.

(a) Spec program

B0: #include <stdbool.h>
B1:
B2: bool is_empty(char* s) {
B3: if (!s) return false;
B4: return *s == 0;
B5: }

(b) C program

S0: bool is_empty(Str s) {
S1: assume ¬(s is Sinvalid);
S2: return s is SNil;
SE: }

(c) (Abstracted) Spec IR

C0: bool is_empty(i32 s) {
C1: if (s = 0i32): return false;
C2: return 𝕞[0i32]i8 = 0i8;
CE: }

(d) (Abstracted) C IR

Figure 2.1: Spec and C programs along with corresponding IRs for the is_empty procedures.

〈expr〉 → if 〈expr〉 then 〈expr〉 else 〈expr〉
| let 〈id〉 = 〈expr〉 in 〈expr〉
| match 〈expr〉 with 〈match-clause-list〉
| assuming 〈expr〉 do 〈expr〉
| 〈id〉 ( 〈expr-list〉 )
| 〈data-cons〉 ( 〈expr-list〉 )
| 〈expr〉 is 〈data-cons〉
| 〈expr〉 〈scalar-op〉 〈expr〉
| 〈literalunit〉 | 〈literalbool〉 | 〈literaliN〉

〈match-clause-list〉 → 〈match-clause〉∗
〈match-clause〉 → | 〈data-cons〉 ( 〈id-list〉 ) ⇒ 〈expr〉

〈expr-list〉 → ε | 〈expr〉 , 〈expr-list〉
〈id-list〉 → ε | 〈id〉 , 〈id-list〉

〈literalunit〉 → ()
〈literalbool〉 → false | true
〈literaliN〉 → [0 . . . 2N−1]

Figure 2.2: Simplified expression grammar of Spec language

we limit our attention to C programs containing only first order functions. Spec is equipped
with a special assuming-do construct for explicitly providing assertions. Figure 2.1a shows a
Spec program with the assuming-do construct, with its C equivalent shown in fig. 2.1b. The
corresponding IRs are shown in figs. 2.1c and 2.1d respectively. The significance of explicit
assertions in Spec is further discussed throughout this chapter. Spec also provides intrinsic scalar
operators for expressing computation in C succintly yet explicitly. Examples of scalar operators
include (a) logical operators (e.g., and), (b) bitvector arithmatic operators (e.g., bvadd(+)), and
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A0: type List = LNil | LCons (val:i32, tail:List).
A1:
A2: fn sum_list_impl (l:List) (sum:i32) :i32 =
A3: match l with
A4: | LNil => sum
A5: | LCons(x, rest) =>
A6: sum_list_impl(rest, sum + x).
A7:
A8: fn sum_list (l:List) : i32 =
A9: sum_list_impl(l, 0i32).

(a) Spec program

S0: i32 sum_list (List l) {
S1: i32 sum := 0i32;
S2: while ¬(l is LNil):
S3: // (l is LCons);
S4: sum := sum + l.val;
S5: l := l.next;
S6: return sum;
SE: }

(b) (Abstracted) Spec IR

B0: typedef struct lnode {
B1: unsigned val; struct lnode* next; } lnode;
B2:
B3: unsigned sum_list(lnode* l) {
B4: unsigned sum = 0;
B5: while (l) {
B6: sum += l→val;
B7: l = l→next;
B8: }
B9: return sum;
B10: }

(c) C program

C0: i32 sum_list (i32 l) {
C1: i32 sum := 0i32;
C2: while l 6= 0i32:
C3: sum := sum + l 𝕞→lnode val;
C4: l := l 𝕞→lnode next;
C5: return sum;
CE: }

(d) (Abstracted) C IR

Figure 2.3: Spec and C programs for traversing a Linked List along with corresponding IRs for
the sum_list procedures.

(c) relational operators for comparing bitvectors interpreted as unsigned or signed integers (e.g.,
≤u,s). The equality operator (=) is only supported for scalar types.

Figure 2.2 shows the simplified expression grammar for Spec language. 〈data-cons〉 represents an
ADT data constructor. The ‘〈expr〉 is 〈data-cons〉’ construct returns a value of bool type and
is used to test whether the value 〈expr〉 is of kind 〈data-cons〉. 〈scalar-op〉 includes the logical,
arithmatic and relational operators supported by Spec.
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2.2 Abstract Representation of Programs

As outlined in section 1.1, we convert both Spec and C programs to a common abstract repre-
sentation called the Control-Flow Graph (CFG for short). This process involves first converting
both programs to a linear representation called the IR. In this section, we present both IR and
CFG representations of Spec and C procedures.

2.2.1 Conversion of Programs to Intermediate Representation

IR is a Three-Address-Code (3AC) style intermediate representation. We often omit intermediate
registers in the IR for brevity, and refer to this as the abstracted IR. We have already seen the IRs
(in figs. 1.2a and 1.2b) for the Spec and C programs that construct lists in figs. 1.1a and 1.1b.
Figures 2.3a and 2.3c show Spec and C programs that traverse a list of integers and compute their
sum. The corresponding IR programs for the above are shown in figs. 2.3b and 2.3d respectively.

The following major steps are performed during conversion of a Spec source to its IR representa-
tion:

1. match statements are converted to explicit if-else conditionals where each branch is as-
sociated with a match branch. The sum-is operator is used to query the top-level data
constructor of an expression. The fields of the data constructor are bound to variables
using the product-access or accessor operator. For example, the match statement at A3
(in fig. 2.3a) is lowered to if-else in fig. 2.3b, where ‘l is LCons’ is used to test whether
l is of kind LCons and ‘l.val’ is used to extract the val field of LCons data construc-
tor. Importantly, the expression ‘e.fi’ is well-formed iff ‘e is Vfi’, where Vfi represents
the data constructor containing the field fi. The construction of the IR guarantees the
well-formedness of all accessor expressions.

2. All tail-recursive calls are converted to loops in the IR. However, all non-tail procedure
calls are preserved as is. This transformation enables direct correlation (during equivalence
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checking) of tail-calls in Spec with native loops in C. For example, the tail recursive function
sum_list_impl at A2 (in fig. 2.3a) is converted to a non-recursive function with a loop.

3. All helper functions1 are inlined at their call-site. We are only interested in proving equiv-
alence of non-helper functions in Spec with their C counterparts. For example, the helper
function sum_list_impl (now non-recursive due to previous step), is inlined at call-site A7
in fig. 2.3a.

4. assuming-do statements are converted to their equivalent assume instruction in the IR.
A Spec program is well-defined iff it satisfies all assume clauses encountered during its
execution. These conditions are called undefined behaviour assumes or UB assumes for
short. For example, the assuming-do statement at A4 in fig. 2.1a is converted to an assume
instruction at S1 in fig. 2.1c.

Similarly, the following transformations are carried out during conversion of a C source to its IR:

1. Non-determinism in the original C program is determinized in the IR. This includes con-
cretizing the size and memory layouts of both scalar (e.g. int) and compound (e.g., struct)
types, along with fixing the order of evaluation in case it is unspecified. For example, dur-
ing conversion of C program in fig. 1.1b to IR (in fig. 1.2b), the size of pointer types and
unsigned is fixed to 32 bits (i.e. i32). Similarly, the memory layout (including alignment
and offset) of lnode struct defined at B0 (in fig. 1.1b) is chosen. The implications of de-
terminizing the C program behaviour are further discussed in chapter 4. For now, it is
sufficient to note that we are interested in equivalence between Spec and this determinized
version of C.

2. The memory state of the C program is made explicit, represented using the byte-addressable
array ‘𝕞’. Memory loads and stores are represented using explicit operations on 𝕞, e.g., (a)
memory loads at C3 and C4 in fig. 2.3d, and (b) memory stores at C5 and C6 in fig. 1.2b.
The memory load and store operators are defined promptly in section 2.2.2

1We use a special marker to designate a function as ‘helper’ in Spec. For simplicity, this marker is omitted and
instead helper function names are ended with the ‘_impl’ suffix.
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3. We annotate calls to memory allocation functions (e.g., malloc) with their call-site, i.e., IR
PC. For example, mallocC4 is annotated with its call-site C4 in fig. 1.2b. These annotations
are used by a points-to analysis done as part of our equivalence checking procedure, and
defined subsequently in section 4.1.

2.2.2 IR Instructions

Note that both Spec and C programs are converted to the common IR. For a Spec procedure, IR
supports scalar types, as well as ADTs defined in its Spec source. The IR also inherits the scalar
operators available as part of the Spec language. Each ADT value can be thought of as a key-
value dictionary that maps each of its field names to their respective values. These key-value pairs
are accessed using the previously introduced accessor operator, e.g., l.val and l.next represents
the first and second fields of the LCons data constructor in fig. 2.3b. Recall that, the IR also
allows querying the top-level variant of an ADT value using the sum-is operator, e.g., l is LNil at
S2 in fig. 2.3b. The val field is associated with the LCons data constructor and evidently, l.val
(and l.next) is only well-formed under l is LCons. As previously stated, the well-formedness of all
accessor expressions are preserved during construction of IR for a Spec procedure. Using accessor
and sum-is operators, a List value l can be expanded as:

US : l = if l is LNil then LNil else LCons(l.val, l.next) (2.1)

In this expanded representation of l, the sum-deconstruction operator ‘if-then-else’ condition-
ally deconstructs the sum type into its variants LNil and LCons. The underlined if-then-else
operator is a stricter version of if-then-else, and is reserved for ADT values. An if-then-else
expression e (for an ADT T ) must satisfy the following properties: (a) e has exactly one branch
for each data constructor of T (in the order they are defined), and (b) the branch associated with
the data constructor V has the form V (e1, e2, . . . ) i.e. its top-level operator is V . For exam-
ple, an if-then-else expression for the List type must be of the form: ‘if e1 then LNil else
LCons(e2, e3)’ for some expressions e1, e2, e3. Equation (2.1) is called the unrolling procedure for
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the List variable l. We can similarly define the unrolling procedure for any ADT variable (based
on the definition of the ADT).

On the C side, the size of a pointer is fixed2 and the memory state is modeled as a byte-addressable
array over bitvectors (represented by 𝕞). “𝕞[p]T” represents a memory load operation and
is equal to the bytes at addresses [p, p+sizeof(T)) in 𝕞, interpreted as a value of type T.
Similarly, “𝕞[p← v]T” represents a memory store operation and is equal to 𝕞 everywhere except
at addresses [p, p+sizeof(T)) which contains the value v of type T (e.g., C5 in fig. 1.2b). We
use the following two C-like syntaxes to represent more intricate memory loads succintly:

1. “p 𝕞→T fi” is equivalent to “𝕞[p + offsetof(T, fi)]typeof(T.fi)” i.e., it returns the bytes in
the memory array 𝕞 starting at address ‘p + offsetof(T, fi)’ and interpreted as a value
of type typeof(T.fi).

2. “p[i]T𝕞” is equivalent to “𝕞[p+i×sizeof(T)]T” i.e., it returns the bytes in the memory array
𝕞 starting at address ‘p+ i×sizeof(T)’ and interpreted as a value of type T. Interestingly,
𝕞[p]T = p[0]T𝕞.

Recall that the size and layout of each type in C is concretized in the IR, and hence the values
‘offsetof(T,f)’ and ‘sizeof(T)’ are constants. We use the ‘addrof()’ operator to extract the
address of a memory load expression: “addrof(𝕞[p]T)” is equivalent to p. For example, at PC C5
in fig. 1.2b, addrof(p 𝕞→lnode val) ⇔ p + offsetof(lnode, val). Additionally, given a bitvector
expression e, “e[ub : lb]” represents a bitvector of size (ub− lb+1), such that the ith bit is equal
to the (i+ lb)th bit in e.

2We choose an address width of 4 bytes or 32 bits throughout this thesis.
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S0 SE
¬(s is SInvalid)

(a) CFG of Spec procedure

C0 CE1

CE2

s = 0i32

s 6= 0i32

(b) CFG of C procedure

Figure 2.4: CFG representation of Spec and C IRs in figs. 2.1c and 2.1d for the is_empty
procedures in figs. 2.1a and 2.1b respectively.

S0 S2 SE

S5

l is LNil

l is LCons

(a) CFG of Spec procedure

C0 C2 CE

C4

l = 0

l 6= 0

(b) CFG of C procedure

Figure 2.5: CFG representation of Spec and C IRs in figs. 2.3b and 2.3d for the sum_list
procedures in figs. 2.3a and 2.3c respectively.

2.2.3 Control-Flow Graph Representation

Figures 2.5a and 2.5b show the Control-Flow Graph (CFG) representation of the Spec and C
IRs in figs. 2.3b and 2.3d respectively. Additionally, the CFG representation of IRs in figs. 2.1c
and 2.1d are shown in figs. 2.4a and 2.4b respectively. The Control-Flow Graph is an alternate
graphical representation of an IR program that emphasizes the control flow structures of the
static program. Each CFG node represents a program point (i.e. IR PC) and is denoted by n.
The CFG representation is analogous to a deterministic labeled transition systems and uses a
symbolic state Ωn to represent the machine state at node n. An edge ω from n to n′ (denoted by
ω[n→ n′]) represents transition from n to n′ through execution of instructions and is associated
with:

1. An edge condition representing the condition that must be satisfied by Ωn to trigger ω.
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2. A transfer function representing the symbolic state at n′ (Ωn′) as a function of Ωn i.e. how
the machine state is mutated along the edge ω.

3. An UB assumption representing the condition that must be satisfied by Ωn for the transition
ω to be well-defined. For a Spec procedure, the assume clauses form its UB assumes. Recall
that, a C procedure is determinized during conversion to CFG and thus do not require UB
assumes.

For brevity, we often represent a sequence of instructions with a single edge, e.g., in fig. 2.5a, the
edge S2→S5 represents the path S2→S3→S4→S5 in fig. 2.3b. In such a case, the transfer function
of the edge is the composition of the sequence of instructions. A CFG must contain exactly one
entry node (representing the entry to the function) and (possibly) multiple exit nodes (each
representing an exit from the function). For example, the CFG in fig. 2.4b contains an entry
node C0 and two exit nodes CE1 and CE2 representing exits through the IR PCs C1 and C2 in
fig. 2.1d respectively. Additionally, a CFG must satisfy the following two properties:

(deterministic) For any non-exit node n, the edge conditions associated with its outgoing
edges are non-overlapping. This condition ensures that at most one execution path can be
taken at any node.

(non-blocking) For any non-exit node n, the conjunction of edge conditions associated with
its outgoing edges equal true. This condition ensures that at least one execution path will
be taken at any node.

An edge incident on an exit node is called an exit edge, and is associated with an action repre-
senting the returned value as a function of the symbolic state at the source node. Actions form
the observable behaviour of a CFG while transition through non-exit edges are internal to the
program. For a C CFG, the action includes both the returned value (if non-void) and the memory
state. We restrict ourselves to programs without calls to external procedures (except for malloc
in C), and thus the only observable action of a CFG are its returned values along exit edges. We
often omit the transfer functions in the CFG figures (if they are shown in their corresponding
IR) and only show the edge conditions (unless they are true). The UB assumes are shown inside
curved rectangles (e.g., fig. 2.4b), unless they are true. Henceforth, we refer to the CFGs of Spec
and C procedures as S and C respectively.
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2.3 Equivalence Definition

Given (1) a Spec function specification S, (2) a C implementation C, (3) a precondition Pre that
relates the initial inputs InputS and InputC to S and C respectively, and (4) a postcondition
Post that relates the final outputs OutputS and OutputC of S and C respectively3: S and C are
equivalent if for all possible inputs InputS and InputC such that Pre(InputS, InputC) holds, S’s
execution is well-defined on InputS, and C’s memory allocation requests during its execution on
InputC are successful, then both S and C produce outputs such that Post(OutputS, OutputC)
holds.

Pre(InputS, InputC) ∧ (S def) ∧ (C fits)⇒ Post(OutputS, OutputC)

The (S def) antecedent states that we are only interested in proving equivalence for well-defined
executions of S, i.e., executions that satisfy all assertions expressed using the assuming-do state-
ment. The (C fits) antecedent states that we prove equivalence under the assumption that C’s
memory requirements fit within the available system memory i.e., only for those executions of C
in which all memory allocation requests (through malloc calls) are successful.

Recall that the observables of S and C are the actions associated with their exit edges (i.e.
returned values). For S, observables include the explicit value returned. For C, observables
include the returned value (if non-void) along with the memory state at procedure exit. The
postcondition Post relates these outputs of the two programs. The pair (Pre, Post) represents
the input-output behaviour of C in terms of the specification S, and is called the input-output
specification. In general, Spec and C sources may contain multiple top-level procedures, with
calls to each other. In this case, we are interested in finding equivalence between the CFGs of
each pair of S and C procedures with respect to their input-output specification.

3InputC and OutputC include the initial and final memory state of C respectively.
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S0 :C0 SE :CE2

S0→SE
C0→CE2

(a) Product-CFG between figs. 2.4a and 2.4b

PC-Pair Invariants

(S0 :C0) P sS ∼ Cstru8[]
𝕞 (sC)

(SE :CE2) E retS = retC

(b) Note invariants for product-CFG in fig. 2.6a

Figure 2.6: Product-CFG and its associated node invariants for CFGs in figs. 2.4a and 2.4b.

2.3.1 Constraining Inputs to C

Sometimes, the user may be interested in constraining the nature of inputs to C for the purpose of
checking equivalence only for well-formed inputs. In those circumstances, we use a combination of
(S def) and Pre to constrain the execution of C to inputs for which we are interested in proving
equivalence. For example, consider the function is_empty (shown in figs. 2.1a and 2.1b) that
accepts a string and checks if the string is empty. A string is represented as a list of characters
(i.e. i8) in the Spec procedure. On the other hand, its C analogue expects a standard null-
character4 terminated string represented by a pointer to its first character, say sC . A well-formed
nul-terminated string must point to an allocated region of memory terminating with a nul (i.e.
zero) character and thus sC must be non-null. Observe that the well-formedness of sC is an entry
assumption that must be ensured by the caller. Evidently, we are only interested in verifying the
behaviour of the C procedure (against its specification) for well-formed inputs. Note that at B3
in fig. 2.1b, we handle the case of sC being null for safety, even though a well-formed input would
never trigger it. Since Spec has no notion of pointers, we expose this conditional well-formedness
of C input sC through an explicit data constructor SInvalid for the Str ADT defined at A0 in
fig. 2.1a. Additionally, (S def) asserts ¬(sS is SInvalid) (at A4 and S1→S2 in fig. 2.1c) and the
precondition Pre (labeled P in fig. 2.6b) relates (sS is SInvalid) ⇔ (sC = 0i32)

5. Combined,
(S def) and Pre ensure that we constrain the inputs of S and in turn, C to only well-formed
values during equivalence check. A similar strategy is employed for string functions from the

4We use nul and null to denote the zero character and the null pointer respectively.
5The relation is implied by the recursive relation lS ∼ Cstru8[]

𝕞 (lC) as part of Pre shown in fig. 2.6b. The
lifting constructor Cstru8[]

𝕞 is defined subsequently in section 2.5.
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S0 :C0 SE :CES2 :C2

S0→S2
C0→C2

S2→S5→S2
C2→C4→C2

S2→SE
C2→CE

(a) Product-CFG between figs. 2.5a and 2.5b

PC-Pair Invariants

(S0 :C0) P lS ∼ Clistlnode
𝕞 (lC)

(S2 :C2) I1 lS ∼ Clistlnode
𝕞 (lC)

I2 sumS = sumC

(SE :CE) E retS = retC

(b) Node invariants for product-CFG in fig. 2.7a

Figure 2.7: Product-CFG between the CFGs in figs. 2.5a and 2.5b. Figure 2.7b contains the
corresponding node invariants for the product-CFG.

standard library (e.g. strchr) and is explored in detail during evaluation in section 5.1.1.

2.4 Bisimulation Relation

We construct a bisimulation relation to identify equivalence between the CFGs of Spec and C
procedures. A bisimulation relation correlates the transitions of S and C in lockstep, such that
the lockstep execution ensures identical observable behaviour. A bisimulation relation between
two programs can be represented using a product program [55] and the CFG representation of a
product program is called a product-CFG. Figure 2.7a shows a product-CFG, that encodes the
lockstep execution (bisimulation relation) between the CFGs in figs. 2.5a and 2.5b.

A node in the product-CFG, say (n1 :n2), is formed by pairing nodes n1 and n2 of S and C
respectively. For example, (S2 :C2) is formed by pairing S2 and C2. If the lockstep execution
of both programs is at node (S2 :C2) in the product-CFG, then S’s execution is at S2 and C’s
execution is at C2. The start node (S0 :C0) of the product-CFG correlates the start nodes of
CFGs of S and C. Similarly, an exit node (SE :CE) correlates exit nodes of both programs.

An edge in the product-CFG is formed by pairing a path (a finite sequence of edges) in S with
a path in C6. An edge e (from (s1 :s2) to (d1 :d2)) formed by pairing paths ρ1 and ρ2 is simply

6For ease of exposition, we present product-CFG in the context of path correlations. However, a more general
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denoted by e[(s1 :s2)→(d1 :d2)] = (ρ1, ρ2). A product-CFG edge encodes the lockstep execution
of its correlated paths. For example, the product-CFG edge (S2 :C2)→(S2 :C2) in fig. 2.7a is
formed by pairing S2→S5→S2 and C2→C4→C2 in figs. 2.5a and 2.5b respectively, and represents
that when S makes the transition S2→S5→S2, C makes the transition C2→C4→C2 in lockstep.

Being a Control-Flow Graph (CFG), a product-CFG itself represents a program. For a product-
CFG node n = (n1 :n2), its symbolic state Ωn is the union of the symbolic states Ωn1 and Ωn2

of CFGs S and C respectively. For an edge e[(s1 :s2)→(d1 :d2)] = (ρ1, ρ2), its edge condition
is defined as pathcond(ρ1) ∧ pathcond(ρ2), where pathcond(ρX) represents the condition at the
source node sX under which the path ρX is taken. Our product-CFG only correlates finite paths and
thus the exact path condition can be found by taking the conjunction of the weakest preconditions
of all edge conditions in the path at the source node. Similarly, the UB assumption for the edge e

is defined as ubfree(ρ1)∧ ubfree(ρ2), where ubfree(ρX) represents the condition that execution
along ρX is free of undefined behaviour. The transfer function is given by the union of the transfer
functions associated with ρ1 and ρ2.

At the start node (S0 :C0) of the product-CFG in fig. 2.7a, the precondition Pre (labeled P )
ensures equality of input lists lS and lC at procedure entries. Each intermediate (non-start and
non-exit) product-CFG node (e.g., (S2 :C2)) contains a set of logical predicates called inductive
invariants (labeled I ) that relate the program states of S and C. At an exit node (SE :CE) of the
product-CFG, the postcondition Post (labeled E ) represents equality of observable outputs and
forms our top-level proof obligation. Assuming that the precondition Pre ( P ) holds at the entry
node (S0 :C0), a bisimulation check involves checking that the inductive invariants ( I ) hold too
(at all intermediate product-CFG nodes), and consequently the postcondition Post ( E ) holds at
each exit node (SE :CE). The input-output specification (i.e. (Pre, Post)) is manually provided by
the user while all inductive invariants are identified by an invariant inference algorithm described
in section 4.3.

approach of pathset is used based on prior work [28] for improved completeness of our algorithm. We will explore
pathsets and its consequences on the algorithm in more detail in section 4.2.1.
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2.4.1 Well-formedness of Product-CFG

A product-CFG is called well-formed if it represents a valid bisimulation relation. For a product-
CFG to be well-formed, the following conditions must hold:

(valid control-flow graph) Since a product-CFG is a Control-Flow Graph, it must satisfy
the deterministic and non-blocking properties of a CFG.

(coverage property) At any product-CFG node (n1 :n2), for (possibly) executable paths ρ1

and ρ2, either an outgoing edge e = (ρ1
′, ρ2

′) exists, i.e., pathcond(ρ1) → pathcond(ρ1
′)

and pathcond(ρ2) → pathcond(ρ2
′), or ρ1 and ρ2 represent exclusive executions, i.e.

pathcond(ρ1) ∧ pathcond(ρ2) → False. An edge deemed to be unreachable (due to
an unsatisfiable path condition) represents dead code and may remain uncorrelated in
the product-CFG. Otherwise, the edge represents a possibly executable path. For CFGs
S and C, our product-CFG construction algorithm ensures that: (a) all possibly exe-
cutable paths in C are correlated in the product-CFG, and (b) for an edge e = (ρ1, ρ2),
pathcond(ρ1) = pathcond(ρ2). These two conditions are sufficient to satisfy the cover-
age property. For example, (S def) and Pre conditions entail unreachability of the edge
C0→CE1 in fig. 2.4b. Without (S def), our equivalence checker would fail because the edge
C0→CE1 is only triggered for ill-formed inputs and has no “equivalent” transitions in its
specification.

(divergence preservation) No empty path in S is correlated with a cycle in C and vice versa.
An edge e in the product-CFG may correlate the empty path ε in S with a non-empty
path ρ in C, effectively simulating a stuttering bisimulation relation. The product-CFG
construction algorithm ensures that the resulting product-CFG still satisfies the divergence
preservation property. For example, fig. 1.4a shows the product-CFG between the programs
in figs. 1.3a and 1.3b respectively. The edges (S3 :C3)→(S3 :C4) and (S3 :C4)→(S3 :C5)
correlate the empty path ε with the non-empty paths C3→C4 and C4→C5 respectively.
However, the only cycle C3→C4→C5→C3 in C is still correlated with the non-empty path
S3→S5→S3 in S and thus, the product-CFG in fig. 1.4a preserves divergence.
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(inductivity of invariants) At any intermediate node n, the inductive invariants inferred at
n hold along all incoming edges. In other words, whenever the product-CFG transitions to
the node n, its symbolic state Ωn satisfies the inferred logical predicates.

(validity of postcondition) At any exit node n, the postcondition Post holds. Since the
only observables of S and C are its returned values, this property ensures that whenever the
product-CFG transitions to an exit node, the observables satisfy the required postcondition.

Intuitively, a well-formed product-CFG between S and C represents a combined program which
simulates both programs in lock-step. In this combined execution, invariants relate the combined
program states of S and C. The coverage property ensures that the product-CFG includes all
possible executions of S and C. Divergence preservation ensures a well-formed product-CFG exist
(i.e. a bisimulation relation exist) only if either both programs terminate or both continue indef-
initely producing sequence of equivalent observables. Lastly, validity of postcondition guarantees
that if both programs terminate, their observables satisfy Post.

2.5 Recursive Relation

In section 1.1, we briefly introduced a lifting constructor (Clistlnode
𝕞 ) and associated recursive

relations. In fig. 2.7b, the precondition ( P ) is another instance of a recursive relation: “lS ∼
Clistlnode

𝕞 (lC)” where lS and lC represent the input arguments to the Spec and C procedures
respectively, lnode is the C struct type that contains the val and next fields (defined at B0 in
fig. 2.3c), and 𝕞 is the byte-addressable array representing the current memory state of the C
program. l1 ∼ l2 is read l1 is recursively equal to l2 and is semantically equivalent to l1 = l2. The
‘∼’ simply emphasizes that l1 and l2 are (possibly recursive) ADT values. The lifting constructor
Clistlnode

𝕞 ‘lifts’ a C pointer value p (pointing to an object of type struct lnode) and memory
state 𝕞 to a (possibly infinite in case of a circular list) List value, and is defined through its
unrolling procedure as follows:
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UC : Clistlnode
𝕞 (p :i32) = if p = 0 then LNil

else LCons(p 𝕞→lnode val, Clistlnode
𝕞 (p

𝕞→lnode next))
(2.2)

Note the recursive nature of the lifting constructor Clistlnode
𝕞 : if the pointer p is zero (i.e. p is

the null pointer), then it represents the empty list LNil; otherwise it represents the list formed
by LCons-ing the value stored at p

𝕞→lnode val in memory 𝕞 and the list formed by recursively
lifting p

𝕞→lnode next through Clistlnode
𝕞 . Clistlnode

𝕞 (p) allows us to adapt a C linked list (formed
by chasing pointers in the memory 𝕞) to a List value and compare it with a Spec List value
for equality.

Also, consider the Str lifting constructor Cstru8[]
𝕞 (in fig. 2.6b) used to lift a nul-terminated C

string into a Str value. Similar to the List lifting constructor, Cstru8[]
𝕞 is also defined through

its unrolling procedure as follows:

Cstru8[]
𝕞 (p :i32) = if p = 0 then SInvalid

elif p[0]i8
𝕞 = 0 then SNil

else SCons(p[0]i8
𝕞 , Cstru8[]

𝕞 (p+ 1))

(2.3)

Observe that an ill-formed string is related to the pointer being null, whereas the nul character
represents the empty string.

2.6 Proof Obligations

As previously discussed, algorithms for (a) incremental construction of a Product-CFG and (b)
inference of invariants at intermediate PCs in the (partially constructed) product-CFG, are based
on prior work[50] and discussed subsequently in sections 4.2 and 4.3. We discuss the proof obli-
gations that arise from a given product-CFG. Recall that a bisimulation check involves checking
that all inductive invariants (and the postcondition Post) hold at their associated product-CFG
nodes.
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We use relational Hoare triples to express these proof obligations [14, 29]. If φ denotes a predicate
relating the machine states of S and C, then for a product-CFG edge e = (ρS, ρC), {φs}(e){φd}
denotes the condition: if any machine states σS and σC of programs S and C are related through
precondition φs(σS, σC) and the finite paths ρS and ρC are executed in S and C respectively
without triggering undefined behaviour, then execution terminates in states σ

′
S (for S) and σ

′
C

(for C) and postcondition φd(σ
′
S, σ

′
C) holds.

For every product-CFG edge e[s→ d] = (ρS, ρC), we are interested in proving: {φs}(ρS, ρC){φd},
where φs and φd are the node invariants at the product-CFG nodes s and d respectively. The
weakest-precondition transformer is used to translate a Hoare triple {φs}(ρS, ρC){φd} to the
following first-order logic formula:

(φs ∧ pathcond(ρS) ∧ pathcond(ρC) ∧ ubfree(ρS))⇒ WPρS ,ρC (φd) (2.4)

Here, pathcond(ρX) represents the condition that path ρ is taken in program X and ubfree(ρS)
represents the condition that execution of S along path ρS is free of undefined behaviour.
WPρS ,ρC (φd) represents the weakest-precondition of the predicate φd across the product-CFG edge
e = (ρS, ρC). From now on, we will use ‘LHS’ and ‘RHS’ to refer to the antecedent and consequent
of the implication operator ‘⇒’ in eq. (2.4).

For example, checking that the loop invariant I1 lS ∼ Clistlnode
𝕞 (lC) holds at (S2 :C2) in

fig. 2.7a requires that I1 is provable along the two product-CFG edges (S0 :C0)→(S2 :C2) and
(S2 :C2)→(S2 :C2) terminating at (S2 :C2), which further reduces to the following two proof obli-
gations:

1 {φS0:C0}(S0→S2, C0→C2){lS ∼ Clistlnode
𝕞 (lC)}

2 {φS2:C2}(S2→S5→S2, C2→C4→C2){lS ∼ Clistlnode
𝕞 (lC)}

Using weakest precondition predicate transformer, the proof obligation 2 reduces to the following
first-order logic formula:



28 Preliminaries

lS ∼ Clistlnode
𝕞 (lC) ∧ sumS = sumC ∧ (lS is LCons) ∧ (lC 6= 0)

⇒ lS.next ∼ Clistlnode
𝕞 (lC

𝕞→lnode next)
(2.5)

Due to the presence of recursive relations, these proof queries (e.g., eq. (2.5)) cannot be solved
directly by off-the-shelf solvers and require special handling. The next chapter illustrates our
proof discharge algorithm for solving proof queries involving recursive relations.



Chapter 3

Proof Discharge Algorithm through
Illustative Examples

This chapter demonstrates our proof discharge algorithm through examples. We consider proof
obligations generated due to product-CFG invariants shown in figs. 1.4 and 2.7 representing
bisimulation relations for the mk_list and sum_list procedures respectively. We start by de-
scribing the properties of the proof discharge algorthm. We also list the properties of the proof
obligations generated by our equivalence checker; these properties are essential for the correctness
of our proof discharge algorithm. Next, the proof discharge algorithm is explored using instances
of proof obligations, and we finish with an overview of the algorithm.

3.1 Properties of Proof Discharge Algorithm

3.1.1 Soundness of Proof Discharge Algorithm

An algorithm that evaluates the truth value of a proof obligation is called a proof discharge
algorithm. In case a proof discharge algorithm deems a proof obligation to be unprovable, it
is expected to return false with a set of counterexamples that falsify the proof obligation. A

29
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proof discharge algorithm is precise if for all proof obligations, the truth value evaluated by the
algorithm is identical to the proof obligation’s actual truth value. A proof discharge algorithm is
sound if: (a) whenever it evaluates a proof obligation to true, the actual truth value of that proof
obligation is also true, and (b) whenever it generates a counterexample, that counterexample
must falsify the proof obligation. However, it is possible for a sound proof discharge algorithm
to return false (without counterexamples) when the proof obligation was actually provable.

For proof obligations generated by our equivalence checker, it is always safe for a proof discharge
algorithm to return false (without counterexamples). Keeping this in mind, our proof discharge
algorithm is designed to be sound. Conservatively evaluating a proof obligation to false (when it
was actually provable) may prevent the equivalence proof from completing successfully. However,
importantly, the overall equivalence procedure remains sound i.e. (a) either it successfully finds
a valid proof of equivalence (bisimulation relation) or (b) it conservatively returns unknown.

3.1.2 Conjunctive Recursive Relation Property of Proof Obligations

Resolving the truth value of a proof obligation that contains a recursive relation such as lS ∼
Clistlnode

𝕞 (lC) is unclear. Fortunately, the shapes of the proof obligations generated by our equiv-
alence checker are restricted. Our equivalence checking algorithm ensures that, for an invariant
φs = (φ1

s ∧ φ2
s ∧ ... ∧ φk

s), at any node s of a product-CFG, if a recursive relation appears in φs,
it must be one of φ1

s, φ2
s, ..., or φk

s . We call this the conjunctive recursive relation property of an
invariant φs.

A proof obligation {φs}(e){φd}, where e[s→ d] = (ρS, ρC), gets lowered using WPe(φd) (as shown
in eq. (2.4)) to a first-order logic formula of the following form:

(ηs1 ∧ ηs2 ∧ ... ∧ ηsm)⇒ (ηd1 ∧ ηd2 ∧ ... ∧ ηdn) (3.1)

Thus, due to the conjunctive recursive relation property of φs and φd, any recursive relation in
eq. (3.1) must appear as one of ηsi or ηdj . To simplify proof obligation discharge, we break a
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first-order logic proof obligation P of the form in eq. (3.1) into multiple smaller proof obligations
of the form Pj : (LHS⇒ ηdj ), for j = 1..n. Each proof obligation Pj is then discharged separately.
We call this conversion from a bigger query to multiple smaller queries, RHS-breaking.

We provide a sound (but imprecise) proof discharge algorithm that converts a proof obligation
generated by our equivalence checker into a series of SMT queries. Our algorithm begins by cate-
gorizing a proof obligation into one of three types; each type is discussed separately in subsequent
sections. The categorization is based on a specialized unification procedure, which we describe
next.

3.2 Iterative Unification and Rewriting Procedure

In this section, we introduce a unification procedure capable of decomposing an equality (e.g., a
recursive relation) into an equivalent set of equalities (including scalar equalities and recursive
relations).

3.2.1 Atomic Expression

We begin with some definitions. An expression e whose top-level constructor is a lifting construc-
tor, e.g., e = Clistlnode

𝕞 (lC), is called a lifted expression. An expression e of the form v.a1.a2...an

i.e. a variable nested within zero or more accessors, is called a pseudo-variable. Note that, a
variable is itself a pseudo-variable. Examples of pseudo-variable include the variable l and l.val.

Scalar expressions, pseudo-variables and lifted expressions are collectively called atomic expres-
sions, or atoms for short. Hence, a List variable l, a bitvector expression ei32 and a lifted
expression Clistlnode

𝕞 (p) are all examples of atoms. With each atom of an ADT type, we asso-
ciate an unrolling procedure. By definition, an ADT atom is either a pseudo-variable or a lifted
expression. Each (pseudo-)variable is associated with its unrolling procedure governed by its
type. For example, the unrolling procedure for a List variable l is given by US (eq. (2.1)). For
lifted expressions, the unrolling procedure is given by its definition, e.g., UC (eq. (2.2)) for the
lifting constructor Clistlnode

𝕞 .
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if-then-else

l is LNil LNil LCons

l.val l.tail

(a) if l is LNil then LNil
else LCons(l.val, l.tail)

LCons

42 Clistlnode
𝕞 (p)

(b) LCons(42, Clistlnode
𝕞 (p))

if-then-else

c1 LNil LCons

0 Clistlnode
𝕞 (p)

(c) if c1 then LNil
else LCons(0, l)

Figure 3.1: Expression trees corresponding to three canonical List expressions used in the
context of unification.

3.2.2 Expression Trees

An expression e in which (a) each accessor (e.g., ‘_.tail’) and (b) each sum-is operator (e.g.,
‘_ is LCons’) operate on a pseudo-variable, is called a canonical expression. It is possible to
convert any expression e into its canonical form ê. For example, the canonical form of a +

LCons(b, l).tail.val is given by a+ l.val, where l.val is a pseudo-variable. The pseudocode for
the canonicalization procedure is given in section 4.4.2.

Consider the expression tree of a canonical expression ê, as shown in fig. 3.1. The internal nodes
of ê represents ADT data constructors and the if-then-else sum-deconstruction operator. The
leaves of ê are the atomic subexpressions of ê. For example, in fig. 3.1a, if-then-else , LNil

and LCons are the internal nodes, whereas l is LNil, l.val and l.tail are the (atomic) leaf
expressions. Note that nullary data constructors (e.g. LNil) are considered internal nodes even
through they have no children.

The expression path to a node v in ê’s tree is the path from the root of ê to the node v. The
expression path condition represents the conjunction of all the if conditions (if the then branch
of taken along the path), or their negation (if the else branch is taken along the path) for each
if-then-else along the path. Consider the expression if c1 then LNil else LCons(0, l) and its
associated expression tree in fig. 3.1c. The expression path condition of c1 is true, of LNil is c1

and of Clistlnode
𝕞 (p) is ¬c1.
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3.2.3 Unification Procedure

For two expressions e1 and e2 under expression path conditions p1 and p2 respectively, a unification
procedure θ(p1, e1, p2, e2) attempts to unify the canonical expression trees of e1 and e2 created by
data constructors and the if-then-else operator (as shown in fig. 3.1). The unification procedure
either fails to unify, or it returns correlation tuples 〈p1, a1, p2, e2〉 where atom a1 at expression
path condition p1 in one expression is correlated with expression e2 at expression path condition
p2 in the other expression.

If at least one of e1 and e2 (say e2) is atomic, unification always succeeds and returns a sin-
gle correlation tuple: 〈p2, e2, p1, e1〉. Recall that a variable is an atom and evidently, l and
LCons(42, Clistlnode

𝕞 (p)) successfully unifies (under expression path conditions p1 and p2) yield-
ing 〈p1, l, p2, LCons(42, Clistlnode

𝕞 (p))〉.

For two non-atomic expressions e1 and e2 to unify successfully, it must be true that either the
top-level operator in e1 and e2 is the same data constructor (in which case an unification is
attempted for each of their children), or the top-level operator in at least one of e1 and e2 is
if-then-else. For example, unification of LCons(e1, e2) and LCons(e′1, e′2) proceeds by recursive
attempts to unify e1 with e′1, and e2 with e′2 respectively. On the other hand, unification of
LCons(e1, e2) and LNil fails due to mismatched top-level data constructors.

If the top-level operator in exactly one of e1 and e2 (say e2) is if-then-else, then e1 must have a
data constructor at its root. Given e2 = if c then eth

2 else eel
2 , we first attempt to unify e1 with

the if branch eth
2 — if unification succeeds, we also unify c (then condition) with true. Otherwise,

we unify e1 with the else branch eel
2 and ¬c (else condition) with true. Consider the unification

of a List variable l expanded through its unrolling procedure (i.e. if l is LNil then LNil
else LCons(l.val, l.tail)), and the expression LCons(42, Clistlnode

𝕞 (p)). The first unification
attempt (then branch) unifying LNil and LCons(42, Clistlnode

𝕞 (p)) fails due to mismatched data
constructors. The second unification attempt (else branch) results in the unification of – (a)
¬l is LNil with true, and (b) LCons(l.val, l.tail) with LCons(42, Clistlnode

𝕞 (p)), which eventually
succeeds and returns correlation tuples.
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If the top-level operator in both e1 and e2 is if-then-else, we unify each child (condition and
branch expressions) of the corresponding if-then-else operators. Recall that the if-then-else
operator (introduced in section 2.2) for an ADT T must have exactly one branch for each data
constructor of T , and the branch associated with the data constructor V has V in its top-level.
Whenever we descend down an if-then-else operator, we conjunct the if condition (if then
branch is taken) or its negation (if else branch is taken) with its associated expression path
condition. This allows us to keep track of the expression path conditions for both expressions
during recursive descent into their children. For example, consider the unification of if c1 then
LNil else LCons(0, l) and if c2 then LNil else LCons(i, Clistlnode

𝕞 (p)) under expression path
conditions p1 and p2 respectively. The above results in the following three recursive calls to
the unification procedure θ – (a) θ(p1, c1, p2, c2), (b) θ(p1 ∧ c1, LNil, p2 ∧ c2, LNil), (c) θ(p1 ∧
¬c1, LCons(0, l), p2 ∧ ¬c2, LCons(i, Clistlnode

𝕞 (p))). The pseudocode for the unification procedure
is given in section 4.4.3.

3.2.4 Unification under Rewriting

Recall that our unification procedure θ either fails or successfully unifies two expressions yielding
correlation tuples relating atoms to (possibly) non-atomic expressions. Given two canonical
expressions ea and eb at expression path conditions pa and pb respectively, an iterative unification
and rewriting procedure Θ(pa, ea, pb, eb) is used to identify a set of correlation tuples relating only
atoms in the two expressions. This iterative procedure begins with an attempt to unify ea and
eb. If this unification fails, we return a failure for the original expressions ea and eb. Else, we
obtain correlation tuples between atoms and expressions (with their expression path conditions).
If the unification correlates an atom a1 at expression path condition p1 with another atom a2

at expression path condition p2, we add 〈p1, a1, p2, a2〉 to the final output. Otherwise, if the
unification correlates an atom a1 at expression path condition p1 to a non-atomic expression e2

at expression path condition p2, we rewrite a1 using its unrolling procedure to obtain expression
e1. The unification algorithm then proceeds by unifying e1 and e2 through a recursive call to
Θ(p1, e1, p2, e2).
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For example, consider the unification of a List variable l with LCons(42, Clistlnode
𝕞 (p)) through

θ, yielding the only correlation tuple 〈p1, l, p2, LCons(42, Clistlnode
𝕞 (p))〉. The above tuple relates

an atom with a non-atom, and hence Θ rewrites l using its unrolling procedure (in eq. (2.1)) to if
l is LNil then LNil else LCons(l.val, l.tail). This is followed by another unification attempt
which returns the correlation tuples: 〈true,¬l is LNil, true, true〉, 〈¬l is LNil, l.val, true, 42〉
and 〈¬l is LNil, l.tail, true, Clistlnode

𝕞 (p)〉. The tuples relate only atomic expressions and thus
Θ terminates successfully, yielding the same correlation tuples. In general, the maximum number
of rewrites performed by Θ(pa, ea, pb, eb) (before termination) is bounded by the sum of number
of ADT data constructors in ea and eb. The pseudocode for iterative unification and rewriting is
given in section 4.4.4.

3.2.5 Decomposition of Recursive Relations

For a recursive relation l1 ∼ l2, we unify the canonicalized trees of l1 and l2 through a call to
Θ(true, l1, true, l2). If the n tuples obtained after a successful unification are 〈pi1, ai1, pi2, ai2〉 (for
i = 1 . . . n), then the decomposition of l1 ∼ l2 is defined as:

l1 ∼ l2 ⇔
n∧

i=1

((pi1 ∧ pi2)→ (ai1 = ai2)) (3.2)

Recall that the unification of l and LCons(42, Clistlnode
𝕞 (p)) yields the correlation tuples:

〈true,¬l is LNil, true, true〉, 〈¬l is LNil, l.val, true, 42〉 and 〈¬l is LNil, l.tail, true, Clistlnode
𝕞 (p)〉.

Consequently, the recursive relation l ∼ LCons(42, Clistlnode
𝕞 (p)) decomposes into1:

(l is LCons) ∧ (l is LCons→ l.val = 42) ∧ (l is LCons→ l.next ∼ Clistlnode
𝕞 (p))

In case of a failed unification, the decomposition is defined to be false, e.g., LNil ∼ LCons(0, l)
decomposes into false. Each conjunctive clause of the form ((pi1 ∧ pi2) → (ai1 = ai2))

2 in the

1(l is LCons) is equivalent to ¬(l is LNil). In general, for an ADT value v of type T (with data constructors
V1, V2, . . . , Vk), exactly one of (v is Vi) is true.

2If ai1 and ai2 are ADT values, we replace ai1 = ai2 with ai1 ∼ ai2.
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decomposition is called a decomposition clause. A decomposition clause may relate only atomic
values, i.e., it may relate (a) two scalars or (b) two pseudo-variable(s) and/or lifted expressions.
However, we restrict the shapes of recursive relation invariants such that each recursive relation
in its decomposition strictly relates ADT pseudo-variables to lifted expressions. The invariant
shapes along with the invariant inference procedure is presented in section 4.3. We decompose
a recursive relation by replacing it with its decomposition. We decompose a proof obligation by
decomposing all recursive relations in it.

3.3 Categorization of Proof Obligations

3.3.1 k-unrolling of Recursive Relations

Consider a recursive relation l1 ∼ l2. We unroll l1 ∼ l2 by rewriting the top-level lifted expressions
in l1 and l2 using their respective unrolling procedures and decomposing the new recursive relation.
We unroll an expression e by unrolling each recursive relation in e. More generally, the k-unrolling
of e is found by unrolling the (k− 1)-unrolling of e recursively. For example, the one-unrolling of
LHS ⇒ l ∼ Clistlnode

𝕞 (p) is given by the decomposition of LHS ⇒ l ∼ if p = 0 then LNil else
LCons(p 𝕞→lnode val, Clistlnode

𝕞 (p
𝕞→lnode next)), which evaluates to:

LHS⇒ (l is LNil) = (p = 0) ∧ (l is LCons ∧ p 6= 0)→ (l.val = p
𝕞→lnode val)

∧ (l is LCons ∧ p 6= 0)→ (l.tail ∼ Clistlnode
𝕞 (p

𝕞→lnode next))

3.3.2 Categorization Procedure

For a decomposed proof obligation PD : LHS ⇒ RHS, we identify its k-unrolling (say PK), where
k is a fixed parameter of the algorithm called the unrolling parameter. We use a small value for
k, e.g., five. After k-unrolling, we eliminate those decomposition clauses (p1 ∧ p2) → (a1 = a2)

in PK whose antecedent (p1 ∧ p2) evaluates to false under LHS (ignoring all recursive relations),
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yielding an equivalent proof obligation, say PE. For example, the one-unrolling of P : LHS⇒ l ∼
Clistlnode

𝕞 (0), after elimination, yields PE : LHS ⇒ l is LNil. We categorize a proof obligation
P : LHS⇒ RHS based on the k-unrolled form of its decomposition (i.e. PE) as follows:

• Type I: PE does not contain recursive relations

• Type II: PE contains recursive relations only in the LHS

• Type III: PE contains recursive relations in the RHS

Observe that the process of elimination of decomposition clauses (i.e. PK → PE) itself requires
a precise solver to identify all decomposition clauses that may be eliminated. An imprecise (but
sound) procedure may only identify a subset of these decomposition clauses and evidently classify
a type I (and II) proof obligation as type II (and III). Our proof discharge algorithm ensures that
it is sound as long as the conversion of PK to PE is sound, i.e. we only remove those decomposition
clauses whose antecedent definitely evaluates to false. Henceforth, we will simply use k-unrolling
of P to refer to PE directly. Next, we describe the algorithm for each type of proof obligations
in sections 3.4 to 3.6.

3.4 Handling Type I Proof Obligations

Recall the mk_list Spec and C procedures introduced in chapter 1 (figs. 1.1a and 1.1b). Fig-
ure 3.2 shows their corresponding IRs, along with the product-CFG and its associated node
invariants representing a bisimulation relation. In fig. 3.2c, consider a proof obligation generated
across the product-CFG edge (S0 :C0)→(S3 :C3) while checking if the I4 invariant in fig. 3.2d,
lS ∼ Clistlnode

𝕞 (lC) holds at (S3 :C3): {φS0:C0}(S0→S3, C0→C3){lS ∼ Clistlnode
𝕞 (lC)}. The pre-

condition φS0:C0 ≡ (nS = nC) does not contain a recursive relation. When lowered to first-order
logic through WPS0→S3,C0→C3, this translates to nS = nC ⇒ LNil ∼ Clistlnode

𝕞 (0). Here, LNil is
obtained for lS and 0 (null) is obtained for lC . The one-unrolled form of this proof obligation
yields nS = nC ⇒ true which trivially resolves to true.
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S0: List mk_list (i32 n) {
S1: List l := LNil;
S2: i32 i := 0i32;
S3: while ¬(i ≥u n):
S4: l := LCons(i, l);
S5: i := i + 1i32;
S6: return l;
SE: }

(a) (Abstracted) Spec IR

C0: i32 mk_list (i32 n) {
C1: i32 l := 0i32;
C2: i32 i := 0i32;
C3: while i <u n:
C4: i32 p := mallocC4(sizeof(lnode));
C5: 𝕞 := 𝕞[addrof(p 𝕞→lnode val)←i]i32;
C6: 𝕞 := 𝕞[addrof(p 𝕞→lnode next)←l]i32;
C7: l := p;
C8: i := i + 1i32;
C9: return l;
CE: }

(b) (Abstracted) C IR

S0 :C0 S3 :C3

S3 :C4S3 :C5

SE :CE

S0→S3
C0→C3

S3→SE
C3→CE

ε
C3→C4

ε
C4→C5

S3→S5→S3
C5→C3

(c) Product-CFG between IRs
in figs. 3.2a and 3.2b

PC-Pair Invariants

(S0 :C0) P nS = nC

(S3 :C3) I1 nS = nC I2 iS = iC
I3 iS ≤u nS I4 lS ∼ Clistlnode

𝕞 (lC)

(S3 :C4) I5 nS = nC I6 iS = iC
(S3 :C5) I7 iS <u nS I8 lS ∼ Clistlnode

𝕞 (lC)

(SE :CE) E retS ∼ Clistlnode
𝕞 (retC)

(d) Node invariants for product-CFG in fig. 3.2c

Figure 3.2: Figures 3.2a and 3.2b shows the IRs for the Spec and C mk_list procedures in
figs. 1.1a and 1.1b respectively. Product-CFG between the IRs in figs. 3.2a and 3.2b is shown in
fig. 3.2c. Figure 3.2d contains the corresponding node invariants for the product-CFG.

Consider the following example of a proof obligation: {φS0:C0}(S0→S3→S5→S3, C0→C3){lS ∼
Clistlnode

𝕞 (lC)}. Notice, we have changed the path in S (with IR fig. 3.2a) to S0→S3→S5→S3
here. In this case, the corresponding first-order logic formula evaluates to: (nS = nC) ∧ (0 <u

nS) ⇒ LCons(0, LNil) ∼ Clistlnode
𝕞 (0), where (0 <u nS) is the path condition for the path

S0→S3→S5→S3. One-unrolling of this proof obligation decomposes RHS into false due to failed
unification of LCons and LNil. The proof obligation is further discharged using an SMT solver
which provides a counterexample (model) that evaluates the formula to false. For example, the
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counterexample {nS 7→42, nC 7→42} evaluates this formula to false. These counterexamples assist
in faster convergence of our correlation search and invariant inference procedures (as we will
discuss later in sections 4.2 and 4.3).

Thus for type I queries, k-unrolling reduces all (if any) recursive relations in the original proof
obligation into scalar equalities. The resulting query is further discharged using an SMT solver.
Section 4.4 contains a deeper analysis of the following aspects of our proof discharge algorithm:
(a) translation of formula to SMT logic (section 4.4.7), and (b) reconstruction of counterexamples
from models returned by the SMT solver (section 4.4.8). Assuming a capable enough SMT solver,
all proof obligations in type I can be discharged precisely, i.e., we can always decide whether the
proof obligation evaluates to true or false. If it evaluates to false, we also obtain counterexamples.

3.5 Handling Type II Proof Obligations

Recall the sum_list Spec and C procedures introduced in chapter 2 (figs. 2.3a and 2.3c). Fig-
ure 3.3 shows their corresponding IRs, along with the product-CFG and its associated node
invariants representing a bisimulation relation. Consider the proof obligation for I2 invariant
sumS = sumC across edge (S2 :C2)→(S2 :C2) in fig. 3.3c: {φS2:C2}(S2→S5→S2,
C2→C4→C2){sumS = sumC}, where the node invariant φS2:C2 contains the recursive relation
lS ∼ Clistlnode

𝕞 (lC). The corresponding (simplified) first-order logic formula for this proof obli-
gation is: lS ∼ Clistlnode

𝕞 (lC)∧ (sumS = sumC)∧ (lS is LCons)∧ (lC 6= 0)⇒ (sumS + lS.val) =
(sumC + lC

𝕞→lnode val). We fail to remove the recursive relation on the LHS even after k-
unrolling for any finite unrolling parameter k because both sides of ∼ represent list values of
arbitrary length. In such a scenario, we do not know of an efficient SMT encoding for the re-
cursive relation lS ∼ Clistlnode

𝕞 (lC). Ignoring this recursive relation will incorrectly (although
soundly) evaluate the proof obligation to false; however, for a successful equivalence proof, we
need the proof discharge algorithm to evaluate it to true. Let’s call this requirement R1 .

Now, consider the proof obligation formed by correlating two iterations of the loop in S (with IR



40 Proof Discharge Algorithm through Illustative Examples

S0: i32 sum_list (List l) {
S1: i32 sum := 0i32;
S2: while ¬(l is LNil):
S3: // (l is LCons);
S4: sum := sum + l.val;
S5: l := l.next;
S6: return sum;
SE: }

(a) (Abstracted) Spec IR

C0: i32 sum_list (i32 l) {
C1: i32 sum := 0i32;
C2: while l 6= 0i32:
C3: sum := sum + l 𝕞→lnode val;
C4: l := l 𝕞→lnode next;
C5: return sum;
CE: }

(b) (Abstracted) C IR

S0 :C0 SE :CES2 :C2

S0→S2
C0→C2

S2→S5→S2
C2→C4→C2

S2→SE
C2→CE

(c) Product-CFG between IRs
in figs. 3.3a and 3.3b

PC-Pair Invariants

(S0 :C0) P lS ∼ Clistlnode
𝕞 (lC)

(S2 :C2) I1 lS ∼ Clistlnode
𝕞 (lC)

I2 sumS = sumC

(SE :CE) E retS = retC

(d) Node invariants for
product-CFG in fig. 3.3c

Figure 3.3: Figures 3.3a and 3.3b shows the IRs for the Spec and C sum_list procedures in
figs. 2.3a and 2.3c respectively. Product-CFG between the IRs in figs. 3.3a and 3.3b is shown in
fig. 3.3c. Figure 2.7b contains the corresponding node invariants for the product-CFG.

fig. 3.3a) with one iteration of the loop in C (with IR fig. 3.3b): {φS2:C2}(S2→S5→S2→S5→S2,
C2→C4→C2){sumS = sumC}. The equivalent first-order logic formula is: lS ∼ Clistlnode

𝕞 (lC) ∧
(sumS = sumC)∧ (lS is LCons)∧ (lS.tail is LCons)⇒ (sumS + lS.val+ lS.tail.val) = (sumC +

lC
𝕞→lnode val). Similar to the prior proof obligation, its equivalent first-order logic formula

contains a recursive relation in the LHS. Clearly, this proof obligation should evaluate to false.
Whenever a proof obligation evaluates to false, we expect an ideal proof discharge algorithm to
generate counterexamples that falsify the proof obligation. Let’s call this requirement R2 . Recall
that these counterexamples help in faster convergence of our correlation search and invariant
inference procedures.

To tackle requirements R1 and R2 , our proof discharge algorithm converts the original proof
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LCons 0

LNil 3

11i32 LCons 1

LCons 242i32

93i32

(a) List = LNil |
LCons(i32, List)

TCons 0

TNil 1121i32 TCons 1

TNil 2 TNil 21002i32

(b) Tree = TNil |
TCons(i32, Tree, Tree)

MCons 0

LCons 1 MCons 1

LNil 252i32 LCons 2 MNil 2

LNil 3103i32

(c) Matrix = MNil |
MCons(List, Matrix)

Figure 3.4: Expression trees of three values, each of type List, Tree and Matrix respectively.
The depths are shown as superscripts for each node in the trees.

obligation P : {φs}(e){φd} into two approximated proof obligations (Ppre−o : {φ
od1
s }(e){φd}) and

(Ppre−u : {φud2
s }(e){φd}). Here φ

od1
s and φ

ud2
s represent the over- and under-approximated versions

of precondition φs respectively, and d1 and d2 represent depth parameters that indicate the degree
of over- and under-approximation. To explain our over- and under-approximation scheme, we
first introduce the notion of depth for an ADT value.

3.5.1 Depth of ADT Values

To define depth of an ADT value v, we view the value as its expression tree. The internal nodes
represent ADT data constructors and the leafs (also called terminals) represent scalar constants
(e.g. bitvector literals). The depth of a data constructor or a scalar literal in v is simply the
depth of its associated node in the expression tree representation of v. The depth of ADT value v

is defined as the depth of its expression tree. For example, the depth of LCons(1, LCons(4, LNil))
is 2. Figure 3.4 shows the expression tree and their corresponding node depths for three values,
each of type List, Tree and Matrix respectively.
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3.5.2 Approximation of Recursive Relations

The d-depth overapproximation of a recursive relation l1 ∼ l2, denoted by l1 ∼d l2, represents the
condition that l1 and l2 are recursively equal up to depth d. i.e., l1 and l2 have identical structures
and all terminals at depths ≤ d in the trees of both values are equal (under the precondition
that the terminals exist); however, terminals at depths > d may have different values. l1 ∼d l2

(for finite d) is a weaker condition than l1 ∼ l2 (i.e. overapproximation). The true equality i.e.
l1 ∼ l2 can be thought of as equality of structures and all terminals up to an unbounded depth
i.e. l1 ∼∞ l2.

The d-depth underapproximation of a recursive relation l1 ∼ l2 is written as l1 ≈d l2, where ≈d

represents the condition that l1 and l2 are recursively equal and bounded to depth d, i.e., l1 and
l2 have a maximum depth ≤ d and they are recursively equal up to depth d. Thus, l1 ≈d l2 is
equivalent to Γd(l1) ∧ Γd(l2) ∧ l1 ∼d l2, where Γd(l) represents the condition that the maximum
depth of l is d. l1 ≈d l2 (for finite d) is a stronger condition than l1 ∼ l2 (i.e. underapproximation)
as it bounds the depth to d while also ensuring equality till depth d. For arbitrary depths a and
b (a ≤ b), the approximations of l1 ∼ l2 are related as follows:

l1 ≈a l2 ⇒ l1 ≈b l2 ⇒ l1 ∼ l2 ⇒ l1 ∼b l2 ⇒ l1 ∼a l2 (3.3)

3.5.3 Reduction of Approximate Recursive Relations

Unlike the original recursive relation l1 ∼ l2, its approximations l1 ∼d l2 and l1 ≈d l2 can be
reduced into equivalent conditions absent of recursive relations. Hence, these approximations can
be encoded in and subsequently discharged by a SMT solver.

• l1 ∼d l2 is equivalent to the condition that the tree structures of l1 and l2 are identical till
depth d and the corresponding terminal values in both d-depth identical structures are also
equal. Note that these conditions only require scalar equalities. l1 ∼d l2 can be identified
through unification of l1 and l2 till depth d. This algorithm is similar to the ‘iterative
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unification and rewriting procedure’ in section 3.2 and further described in section 4.4.6. In
this modified unification algorithm, we eagerly expand atomic ADT expressions till depth d,
in contrast to the ‘iterative unification and rewriting procedure’ which terminates whenever
a correlation tuple relates (possibly ADT) atomic expressions. Finally, we only keep those
correlation tuples at depth ≤ d that relate scalar values and discard the recursive relations.

For example, the condition l ∼1 Clistlnode
𝕞 (p) is computed through iterative unification

and rewriting till depth one; yielding the correlation tuples: 〈true, l is LNil, true, p = 0〉,
〈l is LCons, l.val, p 6= 0, p

𝕞→lnode val〉 and 〈l is LCons, l.tail, p 6= 0, Clistlnode
𝕞 (p

𝕞→lnode next)〉.
Keeping only those correlation tuples that relate scalar expressions, the above condition re-
duces to the SMT-encodable predicate:

((l is LNil) = (p = 0)) ∧ ((l is LCons) ∧ (p 6= 0)→ l.val = p
𝕞→lnode val)

• Recall that l1 ≈d l2 ⇔ Γd(l1) ∧ Γd(l2) ∧ l1 ∼d l2. Γd(l) is equivalent to the condi-
tion that the tree nodes at depths > d are unreachable. This is achieved through ex-
panding (canonicalized) l through rewriting till depth d and asserting the unreachabil-
ity of if-then-else paths that reach nodes with depths > d (i.e. asserting the nega-
tion of their expression path conditions). For example, for a List variable l, the con-
dition Γ1(l) is equivalent to (l is LNil) ∨ ((l is LCons) ∧ (l.tail is LNil)). Similarly,
Γ1(Clistlnode

𝕞 (p)) is equivalent to (p = 0) ∨ ((p 6= 0) ∧ (p
𝕞→lnode next = 0)). Finally,

l ≈1 Clistlnode
𝕞 (p) ⇔ Γ1(l) ∧ Γ1(Clistlnode

𝕞 (p)) ∧ l ∼1 Clistlnode
𝕞 (p). The algorithms for

reduction of over- and under-approximate recursive relations are given in section 4.4.6.

3.5.4 Summary of Type II Proof Discharge Algorithm

We over- (under-) approximate a precondition φ till depth d by d-depth over- (under-) approxi-
mating each recursive relation occuring in φ. Due to the conjunctive recursive relation property
(defined in section 3.1.2), the over- and under-approximation of φ are also weaker and stronger
conditions compared to φ respectively. For a type II proof obligation P : {φs}(e){φd}, we first
submit the proof obligation (Ppre−o : {φ

od1
s }(e){φd}) to the SMT solver. Recall that the precon-
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dition φ
od1
s is the d1-depth overapproximated version of φs. If the SMT solver evaluates Ppre−o

to true, then we return true for the original proof obligation P — if the Hoare triple with an
overapproximate precondition holds, then the original Hoare triple also holds.

If the SMT solver evaluates Ppre−o to false, then we submit the proof obligation (Ppre−u :

{φud2
s }(e){φd}) to the SMT solver. Recall that the precondition φ

ud2
s is the d2-depth under-

approximated version of φs. If the SMT solver evaluates Ppre−u to false, then we return false
for the original proof obligation P — if the Hoare triple with an underapproximate precondition
does not hold, then the original Hoare triple also does not hold. Further, a counterexample that
falsifies Ppre−u would also falsify P , and is thus a valid counterexample for use in our correlation
search and invariant inference procedures.

Finally, if the SMT solver evaluates Ppre−u to true, then we have neither proven nor disproven P .
In this case, we imprecisely (but soundly) return false for the original proof obligation P (without
counterexamples). Note that both approximations of P strictly fall in type I and are discharged
as discussed in section 3.4.

Revisiting our examples, the proof obligation {φS2:C2}(S2→S5→S2, C2→C4→C2){sumS = sumC}
is provable using a depth 1 overapproximation of the precondition φS2:C2 — the depth 1 overap-
proximation retains the information that the first value in lists lS and Clistlnode

𝕞 (lC) are equal,
and that is sufficient to prove that the new values of sumS and sumC are also equal (given that
the old values are equal, as encoded in φS2:C2).

Similarly, the proof obligation {φS2:C2}(S2→S5→S2→S5→S2, C2→C4→C2){sumS = sumC} suc-
cessfully evaluates to false using a depth 2 underapproximation of the precondition φS2:C2. In the
depth 2 underapproximate version, we try to prove that if the equal lists lS and Clistlnode

𝕞 (lC)
have exactly two nodes3, then the sum of the two values in lS is equal to the value stored in
the first node in lC . This proof obligation will return counterexample(s) that map program
variables to their concrete values. The following is a possible counterexample to the depth 2
underapproximate proof obligation.

3The underapproximation restricts both lists to have at most two nodes; the path condition for
S2→S5→S2→S5→S2 additionally restricts lS to have at least two nodes. Together, this is equivalent to the
list having exactly two nodes
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{
sumS 7→ 3,
sumC 7→ 3,
lS 7→ LCons(42,LCons(43,LNil)),
lC 7→ 0x123,

𝕞 7→

{ 0x123 7→lnode (.val 7→ 42, .next 7→ 0x456),
0x456 7→lnode (.val 7→ 43, .next 7→ 0),
() 7→ 77

}

}

This counterexample maps variables to values (e.g., sumS maps to an i32 value 3 and lS maps to
a List value LCons(42,LCons(43,LNil))). Additionally, It maps the C program’s memory state
𝕞 to an array that maps the regions starting at addresses 0x123 and 0x456 (regions of size
’sizeof(lnode)’) to memory objects of type lnode (with the val and next fields shown for
each object). All other addresses (except the ones for which an explicit mapping is available), 𝕞
provides a default byte-value 77 (shown as () 7→ 77) in this counterexample.

This counterexample satisfies the preconditions lS ≈2 Clistlnode
𝕞 (lC), sumS = sumC and the

path conditions. Further, when the paths S2→S5→S2→S5→S2 and C2→C4→C2 are executed
starting at the machine state represented by this counterexample, the resulting values of sumS
and sumC are 3+42+43=88 and 3+42=45 respectively. Evidently, the counterexample falsifies the
proof condition because these values are not equal (as required by the postcondition).

3.6 Handling Type III Proof Obligations

In fig. 3.2c, consider a proof obligation generated across the product-CFG edge (S3 :C5)→(S3 :C3)
while checking if the I4 invariant, lS ∼ Clistlnode

𝕞 (lC), holds at (S3 :C3):
{φS3:C5}(S3→S5→S3, C5→C3){lS ∼ Clistlnode

𝕞 (lC)}. Here, a recursive relation is present both
in the precondition φS3:C5 ( I8 ) and in the postcondition ( I4 ) and we are unable to remove them
after k-unrolling. When lowered to first-order logic through WPS3→S5→S3,C5→C3, this translates to
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(showing only relevant relations):

(iS = iC ∧ pC = malloc() ∧ lS ∼ Clistlnode
𝕞 (lC))⇒ (LCons(iS, lS) ∼ Clistlnode

𝕞′ (pC)) (3.4)

On the RHS of this first-order logic formula, LCons(iS, lS) is compared for equality with the lifted
expression Clistlnode

𝕞′ (pC); here pC represents the address of the newly allocated lnode object
(through malloc) and 𝕞′ represents the C memory state after executing the writes at lines C5
and C6 on the path C5→C3, i.e.,

𝕞′ ⇔ 𝕞[addrof(pC →lnode val)← iC ]i32[addrof(pC →lnode next)← lC ]i32 (3.5)

Recall that “𝕞[a← v]T” represents an array that is equal to 𝕞 everywhere except at addresses [a,
a+sizeof(T)) which contains the value v of type ‘T’. Consequently, 𝕞′ is equal to 𝕞 everywhere
except at the val and next fields of the lnode object pointed to by pC . We refer to these memory
writes that distinguish 𝕞 and 𝕞′, as the distinguishing writes.

3.6.1 LHS-to-RHS Substitution and RHS Decomposition

We start by utilizing the ∼ relationships in the LHS (antecedent) of ‘⇒’ to rewrite eq. (3.4) so
that the ADT variables (e.g., lS) in its RHS (consequent) are substituted with the lifted C values
(e.g., Clistlnode

𝕞 (lC)). Thus, we rewrite eq. (3.4) to:

(iS = iC ∧ pC = malloc() ∧ lS ∼ Clistlnode
𝕞 (lC))

⇒ (LCons(iS, Clistlnode
𝕞 (lC)) ∼ Clistlnode

𝕞′ (pC))
(3.6)

Next, we decompose the RHS by decomposing the recursive relation in the RHS followed by RHS-
breaking. This process reduces eq. (3.6) into the following smaller proof obligations (LHS denotes
the antecedent of the proof obligation in eq. (3.6)): (a) LHS ⇒ (pC 6= 0), (b) LHS ∧ (pC 6= 0) ⇒
(iS = pC

𝕞′
→lnode val), and (c) LHS ∧ (pC 6= 0)⇒ Clistlnode

𝕞 (lC) ∼ Clistlnode
𝕞′ (pC

𝕞′
→lnode next).

The first two proof obligations fall in type II and are discharged through over- and under-
approximation schemes as discussed in section 3.5.4:
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1. The first proof obligation with postcondition (pC 6= 0) evaluates to true because the LHS
ensures that pC is the return value of an allocation function (i.e. malloc) which must be
non-zero due to the (C fits) assumption.

2. The second proof obligation with postcondition (iS = pC
𝕞′
→lnode val) also evaluates to true

because iC is written at address pC + offsetof(lnode, val) in 𝕞′ (eq. (3.5)) and the LHS
ensures that iS = iC .

For ease of exposition, we simplify the postcondition of the third proof obligation by rewriting
Clistlnode

𝕞′ (pC
𝕞′
→lnode next) to Clistlnode

𝕞′ (lC). This simplification is valid because lC is written
to address pC + offsetof(lnode, next) in 𝕞′ (eq. (3.5)). Also, we have already shown that
(pC 6= 0) holds due to the (C fits) assumption. This simplification-based rewriting is only done
for ease of exposition, and has no effect on the completeness of the algorithm. Thus, the third
proof obligation can be rewritten as a recursive relation between two lifted expressions:

LHS⇒ Clistlnode
𝕞 (lC) ∼ Clistlnode

𝕞′ (lC) (3.7)

Hence, we are interested in proving equality between two List values lifted from C values under a
precondition. Next, we show how the above can be reposed as the problem of showing equivalence
between two procedures through bisimulation.

3.6.2 Deconstruction Programs for Lifted Values

Consider a program that recursively calls the definition (i.e. unrolling procedure) of Clistlnode
𝕞

(eq. (2.2)) to deconstruct Clistlnode
𝕞 (l). For example, Clistlnode

𝕞 (l) may yield a recursive call to
Clistlnode

𝕞 (l
𝕞→lnode next) and so on, until the argument becomes zero. This program essentially

deconstructs Clistlnode
𝕞 (l) into its terminal (scalar) values and reconstructs a List value equal to

the value represented by Clistlnode
𝕞 (l). We call this program a deconstruction program (denoted by

D) based on the lifting constructor Clistlnode
𝕞 . Figure 3.5 show the IR and CFG representations

for the deconstruction program based on Clistlnode
𝕞 .
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D0: List Clistlnode
𝕞 (i32 l) {

D1: if l = 0:

D2: return LNil;

D3: else:

D4: i32 val := l 𝕞→lnode val;

D5: List tail := Clistlnode
𝕞 (l 𝕞→lnode next);

D6: return LCons(val, tail);

DE: }

(a) (Abstracted) IR of deconstruction program

D0input l

D1

DE2

output LNil

D5

D6

DE6output LCons(val, tail)

l = 0 l 6= 0

val := l
𝕞→lnode val

tail := Clistlnode
𝕞 (l

𝕞→lnode next)

tail := LNil

tail := LCons(val, tail)

l := l
𝕞→lnode next

(b) CFG of deconstruction program

Figure 3.5: IR and CFG representation of deconstruction program based on the lifting construc-
tor Clistlnode

𝕞 defined in eq. (2.2). The edge D5→D6 contains a recursive function call. In fig. 3.5b,
the square boxes show the transfer functions for the deconstruction program. The dashed edges
represent the recursive function call in the CFG representation as shown in fig. 3.5b.

Theorem 1. Under an antecedent LHS, Clistlnode
𝕞 (lC) ∼ Clistlnode

𝕞′ (lC) holds if and only if
the two deconstruction programs D1 and D2, based on Clistlnode

𝕞 (lC) and Clistlnode
𝕞′ (lC), are

equivalent. The equivalence must ensure that the observables generated by both programs (i.e.
output List values) are equal, given that the input lC is provided to both programs respectively
and the antecedent LHS holds at the program entries.

Proof Sketch. The proof follows from noting that the only observables of D1 and D2 are their
output List values. Also, the value represented by a lifted expression is equal to the output of its
deconstruction program. Thus, a successful equivalence proof ensures equal values represented
by the lifting constructors and vice versa.

Thus, to check if Clistlnode
𝕞 (lC) ∼ Clistlnode

𝕞′ (lC) holds; we instead check if a bisimulation
relation exists between their respective deconstruction programs Dfst and Dsnd (implying equiva-
lence). Theorem 1 generalizes to arbitrary lifted expressions with potentially different arguments
and memory states.
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D0 :D0

D1 :D1

DE2 :DE2 D5 :D5

D6 :D6

DE6 :DE6

D0→D1

D1→D2→DE2 D1→D3→D4→D5

D5→D6

D6→DE6

D5→D0

DE2→D6

DE6→D6

(a) Decons-PCFG

PC-Pair Invariants

(D0 :D0) P lfst = lsnd

(D1 :D1) I1 lfst = lsnd

(D5 :D5)
I2 valfst = valsnd

I3 lfst 𝕞→lnode next = lsnd 𝕞′

→lnode next

(D6 :D6)
I4 valfst = valsnd

I5 tailfst = tailsnd

(DE2 :DE2)
E retfst = retsnd

(DE6 :DE6)

(b) Node invariants for decons-PCFG in fig. 3.6a

Figure 3.6: Decons-PCFG and its associated node invariants for the deconstruction programs
based on Clistlnode

𝕞 (lC) and Clistlnode
𝕞′ (lC) respectively.

3.6.3 Checking Bisimulation between Deconstruction Programs

To check bisimulation, we attempt to show that both deconstructions proceed in lockstep, and
the invariants at each step of this lockstep execution ensure equal observables. We use a product-
CFG to encode this lockstep execution between Dfst and Dsnd — to distinguish this product-CFG
from the top-level product-CFG that relates S and C, we call this product-CFG that relates two
deconstruction programs, a deconstruction product-CFG or decons-PCFG for short.

The decons-PCFG for the proof obligation in eq. (3.7) is shown in fig. 3.6a. We distinguish states
between the first and second programs using superscripts: fst and snd respectively. However,
these are omitted in case the states are equal in both programs (e.g. pC). To check bisimulation
between the programs that deconstruct Clistlnode

𝕞 (lC) and Clistlnode
𝕞′ (lC) (i.e. Dfst and Dsnd

respectively), the decons-PCFG correlates one unrolling of the first program with one unrolling of
the second program, as defined by the unrolling procedure in eq. (2.2). Thus, the PC-transition
correlations of Dfst and Dsnd are trivially obtained by unifying the static program structures
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as shown in fig. 3.6a. A node is created in the decons-PCFG that encodes the correlation of
the entries of both programs; we call this node the recursive-node in the decons-PCFG (e.g.
(D0 :D0) in fig. 3.6a). A recursive call becomes a back-edge in the decons-PCFG that terminates
at the recursive-node. Furthermore, a bisimulation check involves identification of invariants
at correlated PC-pairs strong enough to ensure observable equivalence. At the start of both
deconstruction programs, P lfst = lsnd = lC — the same lC is passed to both Dfst and Dsnd,
only the memory states 𝕞 and 𝕞′ (defined in eq. (3.5)) are different. The observables include
the returned List values at correlated program exits (DE2 :DE2) and (DE6 :DE6), which forms the
postcondition (labeled E in fig. 3.6b). Next, the bisimulation check involves identification of
inductive invariants (labeled I in fig. 3.6b) at correlated PC-pairs. The proof obligations arising
due to this bisimulation check include:

1. The if condition (lfst = 0) in Dfst is equal to the corresponding if condition (lsnd = 0)

in Dsnd: (lfst = 0) = (lsnd = 0).

2. If the if condition evaluates to false in both Dfst and Dsnd, then observable values valfst

and valsnd along the path (D1 :D1)→(D5 :D5) (used in the construction of the output lists)
are equal. This forms the invariant I2 in fig. 3.6b and lowers to the following proof
obligation:
(lfst 6= 0) ∧ (lsnd 6= 0)⇒ lfst 𝕞→lnode val = lsnd 𝕞′

→lnode val.

3. If the if condition evaluates to false in both Dfst and Dsnd, then the preconditions are
satisfied at the beginning of the programs invoked through the recursive call. This involves
checking that, along the path (D1 :D1)→(D5 :D5), the actual arguments to the recursive
call satisfies the precondition P at the beginning of the procedure i.e. the recursive-node
(D0 :D0). This forms the invariant I3 in fig. 3.6b and lowers the following proof obligation:
(lfst 6= 0) ∧ (lsnd 6= 0)⇒ lfst 𝕞→lnode next = lsnd 𝕞′

→lnode next.

A successful discharge of the above invariant ( I3 ), by induction, ensures that postcondition
( E ) is satisfied by the values returned by the recursive call at product-CFG node (D6 :D6).
Hence, we can assume that invariant I5 holds at (D6 :D6). This special case of correlating
procedure call edges is further discussed in section 4.2.3 as part of our overall product-CFG
construction algorithm.
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The first check succeeds due to the precondition P lfst = lsnd at the recursive-node. For the
second and third checks, we additionally need to reason that the memory objects lsnd 𝕞′

→lnode val
and lsnd 𝕞′

→lnode next cannot alias with the writes in 𝕞′ (eq. (3.5)) to the newly allocated objects
pC

𝕞′
→lnode val and pC

𝕞′
→lnode next. We capture this aliasing information using a points-to

analysis described next in section 3.6.4.

Notice that a bisimulation check between the deconstruction programs is significantly easier than
the top-level bisimulation check between S and C: here, the correlation of PC transitions is triv-
ially identified by unifying the unrolling procedures of both lifted expressions, and the candidate
invariants are obtained by equating each pair of terminal values that form the observables of both
programs.

3.6.4 Points-to Analysis

To reason about aliasing (as required during bisimulation check in section 2.4), we conservatively
compute may-point-to information for each program value using an interprocedural flow-sensitive
version of Andersen’s algorithm [11]. The range of this computed may-point-to function is the set
of region labels, where each region label identifies a set of memory objects. The sets of memory
objects identified by two distinct region labels are necessarily disjoint. We write p  {R1, R2+}
to represent the condition that value p may point to an object belonging to one of the region
labels R1 or R2+ (but may not point to any object outside of R1 and R2+).

We populate the set of all region labels using allocation sites of C i.e., PCs where a call to malloc
occurs. For example, C4 in fig. 3.2b is an allocation site. For each allocation site A, we create
two region labels: (a) the first region label, called A1, identifies the set of memory objects that
were allocated by the most recent execution of A, and (b) the second region label, called A2+,
identifies the set of memory objects that were allocated by older (not the most recent) executions
of A. We also include a special heap region, H to represent the rest of the memory not covered
by the allocation site regions associated with malloc calls.

For example, at the start of PC C7 in fig. 3.2b, iC  ∅, pC  {C41}, and lC  {C42+}. Since the
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Points-to Invariants

J1 pC  {C41} J2 C41  {C42+}

J3 lC  {C42+} J4 C42+  {C42+,H}

J5 iC  ∅ J6 H {C42+,H}

(a) Points-to invariants at C5 of fig. 1.2b

pC lC iC

C41 C42+ H

𝕞

(b) Points-to graph at C5 of fig. 1.2b

Figure 3.7: Points-to invariants at C5 of C in fig. 1.2b. Figure 3.7b shows the graphical rep-
resentation of the relations in fig. 3.7a. Each node represents a C pseudo-register or a memory
region in 𝕞. An edge A→ R represents the condition that A (or objects in A in case of a memory
region) may point to the memory region R.

may-point-to analysis determines the sets of objects pointed-to by pC and lC to be disjoint, (C41

against C42+), any memory accessed through pC and lC cannot alias at C7 (for accesses within
the bounds of the allocated objects).

The may-point-to information is computed not just for program values (e.g., pC , lC) but also
for each region label. For region labels R1, R2 and R3: R1  {R2, R3} represents the condition
that the values (pointers) stored in objects identified by R1 may point to objects identified by
either R2 or R3 (but not to any other object outside R2 and R3). In fig. 3.2b, at PC C7, we
get C41  {C42+} and C42+  {C42+,H}. The condition C41  {C42+} holds because the next
pointer of the object pointed-to by pC (which is a C41 object at C7) may point to a C42+ object
(e.g., object pointed to by lC). On the other hand, pointers within a C42+ object may not point
to a C41 object.

3.6.5 Transferring Points-to Information to Decons-PCFG

Recall that in section 3.6.3, we reduce the condition Clistlnode
𝕞 (lC) ∼ Clistlnode

𝕞′ (lC) to an equiv-
alence check between their deconstruction programs: Dfst andDsnd. Also, recall that we discharge
the equivalence check through construction of a decons-PCFG encoding the lockstep execution
of the two deconstruction programs. During this bisimulation check, we need to prove that,
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lfst 𝕞→lnode {val, next} and lsnd 𝕞′
→lnode {val, next} are equal in decons-PCFG node (D1 :D1)

shown in fig. 3.6b. Recall that the invariant I1 asserts lfst = lsnd. Thus, to successfully dis-
charge these proof obligations, it suffices to show that lsnd cannot alias with the memory writes
that distinguish 𝕞 and 𝕞′.

Figure 3.7a shows the may-point-to relations identified by our points-to analysis on C in fig. 3.2b at
the program point C5. The points-to analysis determines that at C5 (i.e. start of the product-CFG
edge (S3 :C5)→(S3 :C3) across which the proof obligation is generated), the pointer to the head
of the list, i.e. J3 lC  {C42+}. It also determines that the distinguishing writes (in eq. (3.5))
modify memory regions belonging to C41 only ( J1 ). Further, we get J4 C42+  {C42+,H} at
PC C5. Figure 3.7b shows the points-to graph for the C variables and the memory regions (in
𝕞). This graphical representation clearly illustrates that the objects pointed to by pC (i.e. C41)
and lC (i.e. C42+) are mutually isolated.

However, notice that these determinations only rule out aliasing of the list-head with the distin-
guishing writes. We also need to confirm non-aliasing of the internal nodes of the linked list with
the distinguishing writes. For this, we need to identify a points-to invariant: lsnd  {C42+,H},
at the recursive-node of the decons-PCFG (shown in fig. 3.6a). To identify such points-to invari-
ants, we run our points-to analysis on the deconstruction programs (i.e. Dfst and Dsnd) before
comparing them for equivalence. To model procedure calls, A supergraph is created with edges
representing control flow to (and from) the entry (and exits) of the program respectively (e.g.,
dashes edges in fig. 3.5b). To see why lsnd  {C42+,H} is an inductive invariant at (D0 :D0):

(base case) The invariant holds at entry of the decons-PCFG because lsnd = lC at entry
and J3 lC  {C42+}, which is a stronger condition.

(inductive step) If lsnd  {C42+,H} holds at the entry node, it also holds at the start of a
recursive call. This follows from J4 C42+  {C42+,H} and J6 H {C42+,H} (points-to
information at PC C5), which ensures that lsnd 𝕞′

→lnode next may point to only C42+ and H
objects.

The same analysis is run for both C, and the deconstruction programs Dfst and Dsnd. For a
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deconstruction program D, the boundary condition (at entry) for the points-to analysis is based
on the results of the points-to analysis on C at the PC where the proof obligation is being
discharged. For example, the points-to information of C PC C5 (in fig. 3.2b) is used during the
points-to analysis on Dfst and Dsnd.

During proof query discharge, the points-to invariants are encoded as SMT constraints. This
allows us to complete the bisimulation proof on the decons-PCFG in fig. 3.6a, and consequently,
successfully discharge the proof obligation {φS3:C5}(S3→S5→S3, C5→C3){lS ∼ Clistlnode

𝕞 (lC)}
in fig. 3.2d. The points-to analysis is further discussed in section 4.1.

3.6.6 Summary of Type III Proof Discharge Algorithm

Before the start of an equivalence check, a points-to analysis is run on the C program (IR) once.
During equivalence check, to discharge a type III proof obligation P : LHS⇒ RHS (expressed first-
order logic), we substitute ADT values (in S) in the RHS with lifted C values (in C), based on the
recursive relations present in the LHS. This is followed by decomposition of RHS and RHS-breaking.

Upon RHS-breaking, we obtain several smaller proof obligations, say Pi : LHSi ⇒ RHSi (for
i = 1 . . . n). To prove P , we require all of these smaller proof obligations Pi to be provable.
However, a counterexample to any one of these proof obligations would also be a counterexample
to the original proof obligation P . Due to decomposition and RHS-breaking, each RHSi must be a
decomposition clause and hence, relate atomic expressions. If RHSi relate two scalar values, then
Pi is a type II proof obligation and discharged using the algorithm summarized in section 3.5.4.

If RHSi relates two lifted expressions (i.e. a recursive relation), we check if the deconstruction
programs of the two ADT values being compared can be proven to be equivalent (assuming LHSi
holds at the correlated entry nodes on the first invocation). Similar to the top-level equivalence
check, we attempt to find a bisimulation relation. To improve the precision during bisimilarity
check, we transfer points-to invariants of the C program (at the PC where the proof obligation
is being discharged) to the entry of the deconstruction programs. The same points-to analysis is
run on the deconstruction programs before the equivalence check begins, (through construction
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of decons-PCFG) to identify points-to invariants in the deconstruction programs.

If the bisimilarity check succeeds, we return true for P ; otherwise, we imprecisely return false
(without counterexamples).

3.7 Overview of Proof Discharge Algorithm

Figure 3.8 gives the pseudocode of our proof discharge algorithm. The top-level function respon-
sible for discharging Hoare triple proof obligations is prove(). It accepts a proof obligation along
with the categorization (k) and approximation (do and du) parameters, and either returns True
representing a successful proof attempt, or False(Γ), where Γ is a set of counterexamples. Recall
that our proof discharge algortihm is sound and may return False(∅) to indicate a failed (proof
and counterexample generation) attempt. As discussed in section 2.6, we lower the Hoare triple
into a first-order logic formula using weakest-precondition predicate transformer (lowerWP() in
L2). This is followed by RHS-breaking (introduced in section 3.1), which results in multiple smaller
proof obligations (RHSBreak() in L3). Next, we attempt to prove each of these proof obligations
individually through a call to solve(). If any one of these queries fail, we immediately stop and
return False with the counterexamples in Γ — a counterexample to one of the smaller queries is
also a counterexample to the original query.

solve() is responsible for discharging these smaller queries. The inputs include LHS, RHS (rep-
resenting the proof obligation P : LHS ⇒ RHS); along with the parameters k, do and du. We
start by decomposing and finding the k-unrolled form of P , say PE : LHSk ⇒ RHSk through
decomposeAndUnroll() in L11. Next, we categorize PE into one of the three types (categorize()
in L12). As discussed in section 3.4, we simply discharge a type I query using SMT solvers
(through solveSMT() in L14). solveSMT() is responsible for (a) translating the input formula
(absent of recursive relations) to SMT logic, (b) discharging SMT solver queries, and (c) recon-
structing counterexamples from the models returned by the SMT solvers. The steps (a) and
(c) are further explored in sections 4.4.7 and 4.4.8 respectively. As summarized in section 3.5.4,
for a type II query, we overapproximate LHS into LHSo (through overapproximate() in L16)
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Algorithm 1: Algorithm for discharging proof obligations containing recursive relations
1 Function prove({φs}(ρS , ρC){φd}, k, do, du)
2 F ←[ lowerWP({φs}(ρS , ρC){φd})
3 foreach LHS⇒ RHSi in RHSBreak(F ) do
4 if solve(LHS, RHSi, k, do, du) = False(Γ) then
5 return False(Γ)
6 end
7 end
8 return True
9 end

10 Function solve(LHS, RHS, k, do, du)
11 (LHSk, RHSk)←[ decomposeAndUnroll(LHS, RHS, k)
12 switch categorize(LHSk, RHSk) do
13 case Type I do
14 return solveSMT(LHSk ⇒ RHSk)
15 case Type II do
16 LHSo ←[ overapproximate(LHS, do)
17 if solveSMT(LHSo ⇒ RHSk) = True then
18 return True
19 end
20 LHSu ←[ underapproximate(LHS, du)
21 if solveSMT(LHSu ⇒ RHSk) = False(Γ) then
22 return False(Γ)
23 end
24 return False(∅)
25 case Type III do
26 RHS′ ← [ rewriteRHSUsingLHS(LHS, RHS)
27 foreach Pi ⇒ RHSi in decompose(RHS′) do
28 if RHSi = l1 ∼ l2 then
29 (D1,D2)← [ getDeconstructionPrograms(l1, l2)
30 if checkEquivalence(LHS ∧ Pi,D1,D2) = False then
31 return False(∅)
32 end
33 else if solve(LHS ∧ Pi, RHSi, k, do, du) = False(Γ) then
34 return False(Γ)
35 end
36 end
37 return True
38 end
39 end
40 end

Figure 3.8: Pseudocode of the algorithm responsible for discharging proof obligations containing
recursive relations.
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and attempt to prove LHSo ⇒ RHSk through solveSMT() in L17. In case the proof attempt
fails, we underapproximate LHS into LHSu (through underapproximate() in L20) and attempt
to disprove (i.e. generate counterexamples) LHSu ⇒ RHSk through solveSMT() in L21. If both
attempts fail, we soundly return False (without counterexamples). Lastly, a type III query PE

is discharged as detailed in section 3.6.6. In brief, we rewrite RHS using recursive relations in
LHS (rewriteRHSUsingLHS() in L26) and decompose (decompose() in L27) PE. This results
in smaller proof obligations; ones without a recursive relation in its RHS are type II queries and
discharged through a recursive call to solve. For those containing a recursive relation l1 ∼ l2

in their RHS, we attempt to show equivalence (through checkEquivalence() in L30) between
the deconstruction programs of l1 and l2 constructed through getDeconstructionPrograms() in
L29. If any one of these queries fail, we immediately return False with the counterexamples (if
available). Otherwise, we have successfully proven a type III query and return True.
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Chapter 4

Spec-to-C Equivalence Checker

This chapter presents our automatic equivalence checker S2C. Given a Spec and a C program
along with the input-output specification for each function-pair, S2C searches for a proof of equiv-
alence between the CFGs of each Spec and C procedures: S and C. Recall that CFGs represent
deterministic programs and evidently, the C procedure is determinized during conversion to C.
Hence, S2C checks equivalence between a Spec procedure and the determinized C procedure. A
translation validator (such as the Counter tool [28]) can be used to check equivalence between
the same determinized C procedure against its generated assembly. By restricting the determin-
istic choices made by the C compiler to the same choices made during construction of C, we can
effectively establish end-to-end equivalence between a Spec procedure against its assembly. We
start with a dataflow formulation of the points-to analysis used as part of S2C on C as well as
deconstruction programs during discharge of type III proof obligations in section 4.1. As stated in
section 1.2, S2C is based on three major algortihms: A1 an algorithm to incrementally construct
a product-CFG by correlating program executions across S and C, A2 an algorithm to identify
inductive invariants at intermediate PCs in the (partially constructed) product-CFG, and A3

an algorithm for solving proof obligations generated by A1 and A2 algorithms. We describe
our counterexample-guided best-first search algorithm for construction of a product-CFG ( A1 )
in section 4.2. This is followed by a dataflow formulation of our counterexample-guided invariant
inference algorithm ( A2 ) in section 4.3. Recall that algorithms A1 and A2 are based on prior

59
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Table 4.1: Dataflow Formulation of the Points-to Analysis

Domain ∆C : (𝕊C ∪ ℝ)→ 2ℝ ∆D : (𝕊C ∪ ℝ ∪ 𝕊D)→ 2ℝ

Direction Forward

Boundary Condition
∆n for start node :

∆C
n (t) =

{
∅ t ∈ 𝕊C

ℝ t ∈ ℝ
∆D

n (t) =

{
∆C

nC
(t) t ∈ (𝕊C ∪ ℝ)

∅ t ∈ 𝕊D

Initialization to > ∆n for non-start nodes : ∆n(t) = ∅ t ∈ Domain(∆n)

Transfer function across
edge e = (s→ d)

∆d = fe(∆s) (described in section 4.1)

Meet operator ⊗
∆n ← ∆1

n ⊗∆2
n

∆n(t) = ∆1
n(t) ∪∆2

n(t) t ∈ Domain(∆n)

work on equivalence checking between unoptimized IR (aka determinized C) and assembly [50].
We only summarize these procedures in addition to the primary modifications made in the con-
text of Spec-C equivalence. The previous chapter walked through our proof discharge algorithm
( A3 ) using examples, ending with the pseudocode of proof discharge algorithm (fig. 3.8). In
this chapter, we present pseudocode for multiple subprocedures utilized by our proof discharge
algorithm in section 4.4. Additionally, we describe the process of encoding queries in SMT logic
as well as the recovery of counterexamples from models returned by SMT solvers. We finish with
a new representation of expressions, which allows us to simplify a number of steps performed by
the proof discharge algorithm.

4.1 Points-to Analysis

Recall that in section 3.6.3, we needed to reason about aliasing to successfully discharge a type
III proof obligation. These aliasing relationships are introduced in section 3.6.4 and subsequently
used in section 3.6.5 to successfully discharge a type III proof obligation. An interprocedural,
flow-sensitive, untyped points-to analysis is used to identify these relationships in C as well as each
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deconstruction program D. Table 4.1 presents the dataflow formulation of our points-to analysis.
We start by identifying the set ℝ of all region labels representing mutually non-overlapping
regions of the C memory 𝕞. For each call to malloc() at PC A of C’s IR, we add A1 and A2+

to ℝ. Recall that A1 represents the region of memory returned by the most recent execution of
A. A2+ represents the region of memory returned by older (i.e. all but most recent) executions
of A. ℝ =

⋃
A{A1, A2+} ∪ {H}, where H is the region of memory 𝕞 not covered by the labels

associated with allocation sites.

Let 𝕊C be the set of all scalar pseudo-registers in C’s IR. We use a forward dataflow analysis
to identify a may-point-to function ∆C : (𝕊C ∪ ℝ) 7→ 2ℝ at each program point in C’s IR. For
a deconstruction program D, we are also interested in finding the may-point-to function for all
scalar pseudo-registers in D’s IR, say 𝕊D. Thus, the domain of the may-point-to function for
D (∆D) contains 𝕊D in addition to the domain of ∆C i.e. ∆D : (𝕊C ∪ ℝ ∪ 𝕊D) 7→ 2ℝ. The
’ ’ operator introduced in section 3.6.4 is called the element-wise may-point-to function and is
related to the may-point-to function ∆ as follows: p S ⇔ ∆(p) ⊆ S.

The meet operator is element-wise set-union e.g., p  S1 and p  S2 combines into p  

S1 ∪ S2. Evidently, the > value is the constant function that returns ∅. At entry of C, we
conservatively assume that all memory regions may point to each other. However, at entry of a
deconstruction program D, created during a proof obligation at product-CFG node (nS :nC), we
use C’s precomputed may-point-to function at nC (∆C

nC
) to initialize the points-to relationships

for all state elements in C’s IR (i.e. 𝕊C ∪ℝ). This is a crucial step for proving equality of C values
under different memory states as seen in section 3.6.5.

Next, we discuss the transfer function fe for our points-to analysis. For an IR instruction x := c,
for constant c, the transfer function updates ∆(x) := ∅. For instruction x := y op z (for some
arithmetic or logical operator op), we update ∆(x) := ∆(y) ∪ ∆(z). For a load instruction
x := 𝕞[y]T, we update ∆(x) :=

⋃
t∈∆(y) ∆(t). For a store instruction 𝕞 := 𝕞[x ← y]T, for all

t ∈ ∆(x), we update ∆(t) := ∆(t) ∪ ∆(y). For a malloc instruction x := mallocA() (where A

represents the allocation site), we perform the following steps (in order):
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S0 S3 SE

S5

i ≥u n

i <u n

(a) CFG of Spec procedure

C0 C3 CE

C4C5

i ≥u n

i <u n

malloc

(b) CFG of C procedure

S0 :C0 S3 :C3

S3 :C4S3 :C5

SE :CE

S0→S3
C0→C3

S3→SE
C3→CE

ε
C3→C4

ε
C4→C5

S3→S5→S3
C5→C3

(c) Product-CFG

Figure 4.1: Figures 4.1a and 4.1b shows the CFG representation of Spec and C IRs in figs. 3.2a
and 3.2b for the mk_list procedures in figs. 1.1a and 1.1b. The product-CFG representing path
correlations between figs. 4.1a and 4.1b is shown in fig. 4.1c.

1. Convert all existing occurrences of A1 to A2+, i.e., for all t ∈ (𝕊C ∪ ℝ), if A1 ∈ ∆(t), then
update ∆(t) := (∆(t) \ {A1}) ∪ {A2+}.

2. Update ∆(x) := {A1}.

3. Update ∆(A2+) := ∆(A2+) ∪∆(A1).

4. Update ∆(A1) := ∅.

For function calls, a supergraph is created by adding control flow edges from the call-site to the
procedure head (copying actual arguments to the formal arguments) and from the procedure exit
to the program point just after the call-site (copying returned value to the variable assigned at
the callsite), e.g., in fig. 3.5b, the dashed edges represent supergraph edges.

The allocation-site abstraction (with a bounded-depth call stack) is known to be effective at
disambiguating memory regions belonging to different data structures [30, 17, 12]. In our work,
we also need to reason about non-aliasing of the most-recently allocated object (through a malloc
call) and the previously-allocated objects (as in the List construction example). The coarse-
grained {1, 2+} categorization of allocation recency is effective for such disambiguation.
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Algorithm 2: Best-first search algorithm for incremental construction of a product-CFG
between S and C
1 Function bestF irstSearch(S, C, µS)
2 πinit ←[ createInitProductCFG(S, C);
3 Q←[ {πinit};
4 while Q is not empty do
5 πcur ← [ extractMostPromising(Q);
6 InferInvariantsAndCounterexamples(πcur);
7 if getPathsetToCorrelateInC(C, πcur) = Found(ξC) then
8 foreach ξS in enumeratePathsetsInS(S, ξC , µS) do
9 πnext ←[ extendProductCFG(πcur, ξS , ξC);

10 Q← [ Q ∪ {πnext};
11 end
12 else if productCFGRepresentsBisim(πcur) then
13 return Found(πcur);
14 end
15 end
16 return NotFound;
17 end

Figure 4.2: Pseudocode of the best-first search algorithm responsible for incremental construc-
tion of a product-CFG between S and C.

4.2 Counterexample-guided Product-CFG Construction

S2C constructs a product-CFG incrementally to search for a bisimulation relation between the
Spec and C CFGs : S and C. Multiple candidate product-CFGs are partially constructed during
this search; the search completes when one of these candidates yield an equivalence proof. Recall
that the incremental product-CFG construction algorithm is based on prior work [50] and we
simply summarize the relevant components in the context of Spec-C equivalence. Figure 4.2
shows the pseudocode of the incremental construction algorithm.

Anchor nodes are identified in S and C, and represents the CFG nodes (i.e. IR PCs) being
considered for correlation. The algorithm ensures that every cycle in both S and C contains at
least one anchor node. The start and exit nodes are always anchor nodes. Also, for every function
call, the nodes just before and after its callsite are considered anchor nodes. For example, in
fig. 4.1b, C4 and C5 are anchor nodes around the call to malloc. A valid selection of anchor
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nodes for the CFGs in figs. 4.1a and 4.1b are: {S0, S3, SE} and {C0, C3, C4, C5, CE} respectively.
For each anchor node in C, our search algorithm searches for a correlated anchor node in S — if a
(partially constructed) product-CFG π contains a product-CFG node (nS :nC), then π correlates
node nC in C with node nS in S. The search procedure begins with a single partially-constructed
product-CFG πinit. πinit contains exactly one node (S0 :C0) that encodes the correlation of the
entry nodes (i.e. S0 and C0) of S and C.

4.2.1 Correlating Pathsets

Recall that a product-CFG edge correlates transitions in S and C. The examples presented so
far only considers correlations between paths in S and C. However, we consider a more general
approach of pathset correlations in the context of product-CFG construction. Pathsets are based
on earlier work on the Counter tool [28, 50] and help improve the completeness of the bisimulation
search by considering correlations of a single path in C with a set of paths in S and vice versa,
where individual paths may be uncorrelated. An example of such a scenario is depicted in
section 5.1.1. For now, we briefly summarize pathsets in the context of Spec-C bisimulation
search. A pathset ξ is essentially a set of paths with the following additional properties: (a) all
paths ρ ∈ ξ begin at the same node and terminate at the same node, and (b) all paths ρ ∈ ξ

are mutually exclusive i.e. at most one of pathcond(ρ) can be true. A (µ, δ)-unrolled pathset ξ
is a pathset from ns to nd such that: (a) all paths ρ ∈ ξ contains at most µ occurrences of any
node except nd as the end node (to-PC) of an edge in ρ, and (b) all paths ρ ∈ ξ contains exactly
δ occurrences of nd as the end (to-PC) of an edge in ρ. Intuitively, δ represents the number of
iterations of a loop (ending at nd) considered as part of a path in ξ, whereas µ bounds the number
of times any node is visited by a path in ξ. (µ, δ)-unrolled pathsets have been shown to be quite
effective at identifying correlations in the presence of compiler transformations such as unrolling
and vectorization [50] and we also found it to be suitable in the context of Spec-C equivalence.

At each step of the incremental construction process, a node (nS :nC) is chosen in a product-CFG
π and a (1,1)-unrolled pathset ξC in C starting at nC (and ending at an anchor node) is selected
(getPathsetToCorrelateInC() in L7). Then, we enumerate (µS, δ)-unrolled pathsets in S (for
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δ ∈ [0, µS]) as potential correlations for the pathset ξC in C (enumeratePathsetsInS() in L8).
µS is a fixed parameter of S2C and is called the unroll factor. For example, during construction of
the product-CFG shown in fig. 4.1c, say we select the product-CFG node (S3 :C3). We choose the
C path(set) C3→C4 and enumerate its potential correlations (i.e. (µS, δ)-unrolled pathsets in S
starting at S3): ε, S3→S5→S3, …, S3→(S5→S3)µS . Importantly, for pathsets ξS (in S) and ξC (in
C) to be considered for correlation, they must originate and terminate at anchor nodes, i.e. the
path S3→S5 is skipped during enumeration. Moreover, the pathset ξC may only contain anchor
nodes as its source and destination. Thus, the path C3→C4→C5 is not considered for ξC , instead
we attempt to correlate the subpaths C3→C4 and C4→C5 individually. Section 4.4.1 briefly
discusses the techniques of handling Hoare triples (i.e. proof obligations) involving pathsets.

For each enumerated correlation possibility (ξS, ξC), a separate product-CFG π′ is created (by
cloning π) and a new product-CFG edge e = (ξS, ξC) is added to π′ (extendProductCFG() in
L9). The head of the product-CFG edge e is the (potentially newly added) product-CFG node
representing the correlation of the end-points of pathsets ξS and ξC . For example, the node
(S3 :C4) is added to the product-CFG if it correlates pathsets ε and C3→C4 starting at (S3 :C3).
Recall that, we consider ε as a candidate for ξS, but not ξC . The algorithm ensures that no cycle
in C is correlated with ε in S (to preserve divergence discussed in section 2.4). For each node
n in a product-CFG π, we maintain a small number of concrete machine state pairs (of S and
C). The concrete machine state pairs at s are obtained as counterexamples to unsucessful proof
obligations {φs}(s → d){φd} (for some edge s → d and node d in π). Thus, by construction,
these counterexamples represent concrete state pairs that may potentially occur at n during the
lockstep execution encoded by π.

4.2.2 Best-First Ranking of Partial Product-CFGs

To evaluate the promise of a possible correlation (ξS, ξC) starting at node n in product-CFG
π, we examine the execution behaviour of the counterexamples at n on the product-CFG edge
e = (s → d) = (ξS, ξC). If the counterexamples ensure that the machine states remain re-
lated at d, then that candidate correlation is ranked higher. This ranking criterion is based
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on prior work [28]. A best-first search (BFS) procedure based on this ranking criterion is used
to incrementally construct a product-CFG (starting from πinit). For each intermediate candi-
date product-CFG π generated during this search procedure, an automatic invariant inference
procedure (discussed next in section 4.3) is used to identify invariants at all the nodes in π

(InferInvariantsAndCounterexamples() in L6). The counterexamples obtained from the proof
obligations generated by this invariant inference procedure are added to the respective nodes in
π; these counterexamples help rank future correlations starting at those nodes.

If after invariant inference, we realize that an intermediate candidate product-CFG π1 is not
promising enough, we backtrack and choose another candidate product-CFG π2 and explore
the potential correlations that can be added to π2 (extractMostPromising() in L5). Thus,
a product-CFG is constructed one edge at a time. If at any stage, a product-CFG π sat-
isfies the well-formedness conditions (introduced in section 2.4.1) and invariants ensure equal
observables (i.e. Post holds at correlated exit nodes), we have successfully shown equivalence
(productCFGRepresentsBisim() in L12). This counterexample-guided BFS procedure is similar
to the one described in prior work on the Counter algorithm [28].

4.2.3 Correlation in the Presence of Function Calls

Recall that S and C may make function calls (including self calls), e.g., C memory allocation,
recursive traversal of a tree data structure. Recall that the nodes just before and after a function
call are always considered anchor nodes. Calls to memory allocation functions in C (i.e. malloc)
are handled by correlating the function call edge with the empty path (ε) in S. For example, in
the product-CFG shown in fig. 4.1c, the malloc edge C4→C5 in C is correlated with ε in S.

For all other calls, our correlation algorithm (in section 4.2) ensures that the anchor nodes around
such a callsite are correlated one-to-one across both procedures. For example, let there be a call
to procedure δ in S at PC nS, i.e. nS is the call-site. Let us denote the program point just after
this call-site as n′

S. Let argsnS
represent the values of the actual arguments of this function call

(at nS). Let retn′
S

represent the value returned by this function call (at n′
S). Similarly, for a

procedure call δ in C, let nC , n′
C , argsnC

and retn′
C

represent the function call-site, program point
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Table 4.2: Dataflow Formulation of the Invariant Inference Algorithm

Domain

{
(φn,Γn)

φn is a conjunction of predicates drawn from
𝔾 (in fig. 4.3b), Γn is a set of counterexamples

}
Direction Forward
Boundary Condition (φn,Γn) for start node : φn ← Pre, Γn ← ∅
Initialization to > (φn,Γn) for non-start nodes : φn ← false, Γn ← ∅

Transfer function across
edge e = (s→ d)

(φd,Γd) = fe(φs,Γs) (shown in fig. 4.3a)

Meet operator ⊗
(φn,Γn)← (φ1

n,Γ
1
n)⊗ (φ2

n,Γ
2
n)

Γn ← Γ1
n ∪ Γ2

n, φn ← strongestInvCover(Γn)

just after the call-site, the values of the actual arguments and the value returned respectively.
Our algorithm ensures that the only correlation possible in a product-CFG π for these program
points are (nS : nC) and (n′

S : n′
C).

We utilize the user-supplied input-output specification for δ, say (Preδ, Postδ), to obtain the
desired invariants at nodes (nS : nC) and (n′

S : n′
C) in the product-CFG. A successful proof

must ensure that Preδ(argsnS
,argsnC

) holds at (nS : nC). Further, the proof can assume that
Postδ(retn′

S
,retn′

C
) holds at (n′

S : n′
C). Note that argsnC

and retn′
C

includes the C memory
states 𝕞nC

(at nC) and 𝕞n′
C

(at n′
C) respectively. Thus, for function calls, we inductively prove

the precondition (on the arguments) at (nS : nC) and assume the postcondition (on the returned
values) at (n′

S : n′
C).

4.3 Invariant Inference and Counterexample Generation

We formulate our counterexample-guided invariant inference algorithm as a forward dataflow
analysis as shown in table 4.2. Figure 4.3a shows the pseudocode for the transfer function for the
said dataflow analysis. The invariant inference procedure is responsible for inferring invariants
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1 Function fe(φs,Γs)
2 Γcan

d ←[ Γd ∪ exece(Γs)
3 φcan

d ← [ strongestInvCover(Γcan
d )

4 while prove({φs}(e){φcan
d }) = False(γs) do

5 γd ←[ exece(γs)
6 Γcan

d ← [ Γcan
d ∪ γd

7 φcan
d ← [ strongestInvCover(Γcan

d )

8 end
9 return (φcan

d ,Γcan
d )

10 end

(a) Transfer function fe across edge e = (s→ d).

Inv →
∑

i c
ivi = c | v1 � v2

| αS ∼ CliftT
𝕞(vC . . .)

(b) Predicate grammar 𝔾 for constructing
invariants. v represents a bitvector variable

in either S or C. c represents a bitvector
constant. � ∈ {<,≤}. αS represents an

ADT variable in S. vC represents a
bitvector variable in C. 𝕞 represents the

current C memory state.

Figure 4.3: Transfer function fe and predicate grammar 𝔾 for invariant inference dataflow
analysis in table 4.2. Given invariants φs and counterexamples Γs at node s, fe returns the
updated invariants φd and counterexamples Γd at node d. strongestInvCover(Γ) computes the
strongest invariant cover for counterexamples Γ. exece(Γ) (concretely) executes counterexamples
Γ over edge e. prove(P ) (in fig. 3.8) discharges a proof obligation P , and returns either True or
False(γs).

φn at each intermediate node n of a (partially constructed) product-CFG, while also generating
a set of counterexamples Γn that represents the potential concrete machine states at n. Recall
that the invariant inference algorithm is based on prior work [50] and we simply summarize the
relevant components in the context of Spec-C equivalence.

Given the invariants and counterexamples at node s: (φs,Γs), the transfer function initializes the
new candidate set of counterexamples at d (Γcan

d ) with the current set of counterexamples at d

(Γd) union-ed with the counterexamples obtained by executing Γs on edge e (through exece). The
candidate invariant at d (φcan

d ) is computed as the strongest cover of Γcan
d (strongestInvCover()

in L7). At each step, the transfer function attempts to prove {φs}(e){φcan
d } (through a call to

prove() in L4). If the proof succeeds (prove() returns True), the candidate invariant φcan
d

is returned along with the counterexamples Γcan
d learned so far. Otherwise, prove() returns

False(γs). The candidate invariant φcan
d is weakened using the counterexamples obtained (i.e.

γs) and the proof attempt is repeated. The candidate invariants are drawn from the predicate
grammar 𝔾 shown in fig. 4.3b. In addition to affine and inequality relations between bitvectors
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in S and C, 𝔾 supports recursive relations between an ADT variable in S and a lifted expression
in C. The candidate lifting constructors of the form CliftT

𝕞 (where 𝕞 is the current memory
state in C) are derived from the lifting constructors present in the precondition Pre and the
postcondition Post, as supplied by the user. More sophisticated strategies for inference of new
lifting constructors is left as future work.

strongestInvCover() for affine relations involve identifying the basis vectors of the kernel of
the matrix formed by the counterexamples in the bitvector domain [39, 19]. For inequality
relations, strongestInvCover() returns true (i.e. the weakest invariant) iff any counterexample in
Γ evaluates the relation to false — this effectively simulates the Houdini approach [26]. Similarly,
in case of a recursive relation l1 ∼ l2, strongestInvCover() returns true iff any counterexample
in Γ evalutes its η-depth over-approximation l1 ∼η l2 to false (effectively falsifying a weaker
condition and thus l1 ∼ l2 itself), where η is a fixed parameter of the algorithm.

4.4 More on Proof Discharge Algorithm

4.4.1 Handling Proof Obligations on Pathsets

Recall that our correlation algorithm attempts to correlate pathsets (instead of paths) between S
and C. Evidently, each edge of a (partially constructed) product-CFG π is associated with a pair
of pathsets (ξS, ξC). A proof obligation originating across a product-CFG edge e[s→ d] = (ξS, ξC)

is of the form {φs}(ξS, ξC){φd}. A Hoare triple of the above form can be broken down into a
conjunction of Hoare triples involving only path correlations as follows:

{φs}(ξS, ξC){φd} ⇔
∧

ρS∈ξS
ρC∈ξC

{φs}(ρS, ρC){φd} (4.1)

Recall that our proof discharge algorithm requires that proof obligations satisfy the conjunctive
recursive relation property (section 3.1). If the original proof obligation {φs}(ξS, ξC){φd} satisfies
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Algorithm 3: Algorithm for discharging proof obligations over pathset correlations
1 Function prove({φs}(ξS , ξC){φd}, k, do, du)
2 foreach (ρS , ρC) in (ξS , ξC) do
3 if areSimultaneouslyActive(ρS, ρC) then
4 if prove({φs}(ρS , ρC){φd}) = False(Γ) then
5 return FalseΓ
6 end
7 end
8 end
9 return True

10 end

Figure 4.4: Pseudocode of the algorithm responsible for discharging proof obligations over
pathset correlations between S and C.

this property, so does each of {φs}(ρS, ρC){φd}. Hence, the proof discharge algorithm presented
in chapter 3 is capable of handling these smaller proof obligations and by extension (eq. (4.1)),
the original proof obligation {φs}(ξS, ξC){φd}. If |ξ| represents the number of paths in a pathset
ξ, the proof obligation {φs}(ξS, ξC){φd} results in |ξS| × |ξC | smaller proof obligations.

Figure 4.4 shows the pseudocode for discharging proof obligations over pathsets. The function
prove({φs}(ξS, ξC){φd}, k, do, du) is responsible for discharging {φs}(ξS, ξC){φd} with parameters
k, do and du. Consider a product-CFG edge e[s→ d] = (ξS, ξC). We call a pair of paths ρS ∈ ξS

and ρC ∈ ξC simultaneously active if there exists a combined machine state at s (satisfying the
node invariants φs) for which S and C takes the paths ρS and ρC respectively. In practice,
the number of paths in S that are simultaneously active with a path in C (and vice versa) is
quite low and consequently, most of these proof obligations usually end up with an unsatisfiable
LHS when lowered to first-order logic (through eq. (2.4)) due to presence of pathcond(ρS) and
pathcond(ρC). Our proof discharge procedure begins with an attempt to disprove LHS (0-depth
overapproximate) which trivially resolves the smaller proof obligations to true for path pairs
that are not simultaneously active (areSimultaneouslyActive() in L3). For path pairs that are
simultaneously active, we discharge the smaller Hoare triple queries through prove() in L4 (in
fig. 3.8). Additionally, a counterexample to any one of {φs}(ρS, ρC){φd} is also a counterexample
to the original proof obligation {φs}(ξS, ξC){φd}.
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Algorithm 4: Algorithm for converting an expression to its canonical form
1 Function canonicalize(e)
2 ê←[ e
3 while e contains e′ = e1.ai where e1 is foldable do
4 if e1 = V

(n)
1 (e11, e

2
1, . . . , e

n
1 ) then

5 ê← [ {e′ 7→ ei1}ê
6 else if e1 = if c1 then V

(n)
1 (e11, e

2
1, . . . , e

n
1 ) else eel

1 then
7 if V (n)

1 contains ai then ê← [ {e′ 7→ ei1}ê
8 else ê← [ {e′ 7→ eel

1 .ai}ê
9 else e1 = CliftT

𝕞(e
1, e2, . . . , en)

10 ê← [ {e′ 7→ rewrite(e1).ai}ê
11 end
12 end
13 while e contains e′ = e1 is V

(m)
 where e1 is foldable do

14 if e1 = V
(n)
1 (e11, e

2
1, . . . , e

n
1 ) then

15 if V (n)
1 = V

(m)
2 then ê← [ {e′ 7→ true}ê

16 else ê← [ {e′ 7→ false}ê
17 else if e1 = if c1 then V

(n)
1 (e11, e

2
1, . . . , e

n
1 ) else eel

1 then
18 if V (n)

1 = V
(m)
2 then ê← [ {e′ 7→ c1}ê

19 else ê← [ {e′ 7→ ¬c1 ∧ (eel
1 is V

(m)
 )}ê

20 else e1 = CliftT
𝕞(e

1, e2, . . . , en)
21 ê← [ {e′ 7→ rewrite(e1).ai}ê
22 end
23 end
24 return ê

25 end

Figure 4.5: Pseudocode of the canonicalization procedure responsible for converting an expres-
sion to its canonical form.

4.4.2 Canonicalization Procedure

Figure 4.5 shows the pseudocode for the canonicalization procedure. canonicalize(e) is responsi-
ble for converting an expression e to its canonical form ê (introduced in section 3.2.2). Recall that
a pseudo-variable is an expression of the form v.a1.a2...an, where v is a variable. Also recall that,
an expression e is canonical iff each accessor and sum-is expression operate on a pseudo-variable.
An ADT expression with a data constructor, a lifting constructor or the if-then-else-operator
at its top-level, is called a foldable expression. canonicalize(e) iteratively folds each accessor
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Algorithm 5: Algorithm for unifying two expressions
1 Function θ(p1, e1, p2, e2)
2 if e1 is atomic then
3 return Succ({〈p1, e1, p2, e2〉})
4 else if e2 is atomic then
5 return Succ({〈p2, e2, p1, e1〉})
6 else if e1 = V

(n)
1 (e11, e

2
1, . . . , e

n
1 ) and e2 = V

(m)
2 (e12, e

2
2, . . . , e

m
2 ) then

7 if V (n)
1 6= V

(m)
2 then

8 return Fail
9 end

10 return
⊔

i∈[1,n] θ(p1, e
i
1, p2, e

i
2)

11 else if e1 = V
(n)
1 (e11, e

2
1, . . . , e

n
1 ) and e2 = if c2 then eth

2 else eel
2 then

12 Rth ← [ θ(p1, true, p2, c2) t θ(p1, e1, p2 ∧ c2, eth
2 )

13 if Rth = Succ(S) then return Succ(S)
14 Rel ← [ θ(p1, true, p2,¬c2) t θ(p1, e1, p2 ∧¬c2, eel

2 );
15 if Rel = Succ(S) then return Succ(S)
16 return Fail
17 else if e1 = if c1 then eth

1 else eel
1 and e1 = V

(m)
2 (e12, e

2
2, . . . , e

m
2 ) then

18 Rth ← [ θ(p1, c1, p2, true) t θ(p1 ∧ c1, eth
1 , p2, e2)

19 if Rth = Succ(S) then return Succ(S)
20 Rel ← [ θ(p1,¬c1, p2, true) t θ(p1 ∧¬c2, eel

1 , p2, e2);
21 if Rel = Succ(S) then return Succ(S)
22 return Fail
23 else e1 = if c1 then eth

1 else eel
1 and e2 = if c2 then eth

2 else eel
2

24 R1 ← [ θ(p1, c1, p2, c2);
25 R2 ← [ θ(p1 ∧ c1, eth

1 , p2 ∧ c2, eth
2 )

26 R3 ← [ θ(p1 ∧¬c1, eel
1 , p2 ∧¬c2, eel

2 )
27 return R1 tR2 tR3

28 end
29 end

Figure 4.6: Pseudocode of the algorithm responsible for unifying two expressions yielding cor-
relation tuples relating atoms with (possibly) non-atoms in case of a successful unification.

and sum-is subexpressions of e that operate on a foldable argument. Thus, canonicalize(e)

returns an expression where none of the accessor or sum-is subexpressions is foldable. This con-
dition implies the requirements of the canonical form. For example, a+ LCons(b, l).tail.val and
Clistlnode

𝕞 (p) is LNil canonicalizes to a + l.val and (p = 0) respectively. {e1 7→ e2}e represents
the expression obtained by substituting all instances of e1 with e2 in e.
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Algorithm 6: Algorithm for unifying two expressions under rewriting of ADT atoms
1 Function Θ(pa, ea, pb, eb)
2 R← [ ∅
3 S ← [ θ(pa, ea, pb, eb)
4 if S = Fail then return Fail
5 foreach 〈p1, a1, p2, e2〉 in S do
6 if e2 is atomic then
7 R←[ R ∪ {〈p1, a1, p2, e2〉}
8 else
9 e1 ← [ rewrite(a1)

10 R1 ← [ Θ(p1, e1, p2, e2)
11 if R1 = Fail then return Fail
12 R←[ R ∪R1

13 end
14 end
15 return Succ(R)

16 end

Figure 4.7: Pseudocode of the algorithm responsible for unifying two expressions yielding cor-
relation tuples relating only atoms in case of a successful unification.

4.4.3 Unification Procedure

Figure 4.6 shows the pseudocode for the unification algorithm introduced in section 3.2.3. The
function θ(p1, e1, p2, e2) is responsible for unifying expressions e1 and e2 under the expression path
conditions p1 and p2 respectively. θ either fails to unify with the Fail output, or it successfully
returns Succ(S), where S is the set of correlation tuples that relate (a) either two atomic ex-
pressions, or (b) an atom with an non-atomic expression. θ(p1, e1, p2, e2) terminates when one of
e1 and e2 is an atomic expression. In case both e1 and e2 contains a data constructor at their
top-level, θ attempts to recursively unify the data constructors and their corresponding children.
If exactly one of e1 and e2 is a if-then-else expression, θ attempts to unify both branches of
if-then-else with the other expression. Additionally, θ unifies the if-then-else condition of the
successful branch (if any) with true. If both e1 and e2 are if-then-else expressions, θ attempts
to recursively unify their children. θ uses the t -operator to combine the results of successive
self-calls. A t B is equal to Succ(S1 ∪ S2) if A = Succ(S1) and B = Succ(S2); otherwise (if
one of A and B is Fail), A t B = Fail. Additionally, for a if-then-else expression with if
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Algorithm 7: Algorithm for decomposing a recursive relation
1 Function decompose(l1, l2)
2 P ← [ true
3 l̂1 ← [ canonicalize(l1)
4 l̂2 ← [ canonicalize(l2)
5 R←[ Θ(true, l̂1, true, l̂2)
6 if R = Fail then return false
7 foreach 〈p1, a1, p2, a2〉 in R do
8 if a1 is scalar then
9 P ←[ P ∧ ((p1 ∧ p2)→ (a1 = a2))

10 else
11 P ←[ P ∧ ((p1 ∧ p2)→ (a1 ∼ a2))
12 end
13 end
14 return P

15 end

Figure 4.8: Pseudocode of the algorithm responsible for decomposing a recursive relation
through unification.

condition c, c is well-formed under the expression path condition. Hence, when conjuncting c to
the expression path condition, we use an ‘ordered and’ operator ∧ , where e1 ∧ e2 is equivalent to
e1 ∧ (e1 → e2).

4.4.4 Iterative Unification and Rewriting Procedure

Figure 4.7 shows the pseudocode for the iterative unification and rewriting procedure introduced
in section 3.2.4. Θ(pa, ea, pb, eb) is responsible for unifying expressions ea and eb under the ex-
pression path conditions pa and pb respectively. Θ either fails to unify with the Fail output, or
it successfully returns Succ(S), where S is the set of correlation tuples that relate only atomic
expressions. Θ attempts to iteratively (a) unify the expressions (through a call to the unification
procedure θ in section 4.4.3), and (b) perform rewriting (of atom a1 for those correlation tuples
〈p1, a1, p2, e2〉 where e2 is non-atomic), followed by a recursive call to Θ. For example, the unifica-
tion of l and LCons(42, Clistlnode

𝕞 (p)) yields the correlation tuples: 〈true, l is LCons, true, true〉,
〈l is LCons, l.val, true, 42〉 and 〈l is LCons, l.tail, true, Clistlnode

𝕞 (p)〉.
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4.4.5 Decomposition Procedure for Recursive Relations

Figure 4.8 shows the pseudocode for the decomposition algorithm defined in section 3.2.5. The
function decompose(l1, l2) is responsible for computing the decomposition of the recursive rela-
tion l1 ∼ l2. Recall that, decomposition of a recursive relation l1 ∼ l2 requires the unification of
(canonicalized) l1 and l2 through the top-level invocation of Θ(true, l2, true, l2). If the n corre-
lation tuples obtained after a successful unification are 〈pi1, ai1, pi2, ai2〉 (for i = 1 . . . n), then the
decomposition of l1 ∼ l2 is defined as:

l1 ∼ l2 ⇔
n∧

i=1

((pi1 ∧ pi2)→ (ai1 = ai2)) (4.2)

If the unification fails (with a Fail output), the decomposition is defined to be false. For ex-
ample, recall that the unification of l and LCons(42, Clistlnode

𝕞 (p)) yields the correlation tuples:
〈true, l is LCons, true, true〉, 〈l is LCons, l.val, true, 42〉 and 〈l is LCons, l.tail, true, Clistlnode

𝕞 (p)〉.
Consequently, l1 ∼ LCons(42, Clistlnode

𝕞 (l2)) decomposes into the conjunctive predicate: (l is LCons)∧
(l is LCons→ l.val = 42) ∧ (l is LCons→ l.next ∼ Clistlnode

𝕞 (p)).

4.4.6 Reduction Procedures for Approximate Recursive Relations

Recall that type II proof obligations (summarized in section 3.5.4) are discharged by over- and
under-approximating the LHS (resulting in a weaker and a stronger proof obligation respectively),
followed by discharging both proof obligations through SMT solvers. We overapproximate LHS
by substituting each recursive relation l1 ∼ l2 in the LHS with its do-depth overapproximation
l1 ∼do l2. Similarly, the LHS is underapproximated by substituting each recursive relation l1 ∼ l2

with its du-depth underapproximation l1 ∼du l2.
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Algorithm 9: Pseudocode for the algorithm responsible for unifying two expressions
yielding depth-augmented correlation tuples relating atoms with (possibly) non-atoms
in case of a successful unification.
1 Function θD(p1, e1, p2, e2, d)
2 if e1 is atomic then
3 return Succ({〈p1, e1, p2, e2〉d})
4 else if e2 is atomic then
5 return Succ({〈p2, e2, p1, e1〉d})
6 else if e1 = V

(n)
1 (e11, e

2
1, . . . , e

n
1 ) and e2 = V

(m)
2 (e12, e

2
2, . . . , e

m
2 ) then

7 if V (n)
1 6= V

(m)
2 then

8 return Fail
9 end

10 return
⊔

i∈[1,n] θD(p1, e
i
1, p2, e

i
2, d+ 1)

11 else if e1 = V
(n)
1 (e11, e

2
1, . . . , e

n
1 ) and e2 = if c2 then eth

2 else eel
2 then

12 Rth ← [ θD(p1, true, p2, c2, d) t θD(p1, e1, p2 ∧ c2, eth
2 , d)

13 if Rth = Succ(S) then return Succ(S)
14 Rel ← [ θD(p1, true, p2,¬c2, d) t θD(p1, e1, p2 ∧¬c2, eel

2 , d)
15 if Rel = Succ(S) then return Succ(S)
16 return Fail
17 else if e1 = if c1 then eth

1 else eel
1 and e1 = V

(m)
2 (e12, e

2
2, . . . , e

m
2 ) then

18 Rth ← [ θD(p1, c1, p2, true, d) t θD(p1 ∧ c1, eth
1 , p2, e2, d)

19 if Rth = Succ(S) then return Succ(S)
20 Rel ← [ θD(p1,¬c1, p2, true, d) t θD(p1 ∧¬c2, eel

1 , p2, e2, d)
21 if Rel = Succ(S) then return Succ(S)
22 return Fail
23 else e1 = if c1 then eth

1 else eel
1 and e2 = if c2 then eth

2 else eel
2

24 R1 ← [ θD(p1, c1, p2, c2, d)
25 R2 ← [ θD(p1 ∧ c1, eth

1 , p2 ∧ c2, eth
2 , d)

26 R3 ← [ θD(p1 ∧¬c1, eel
1 , p2 ∧¬c2, eel

2 , d)
27 return R1 tR2 tR3

28 end
29 end

D-depth Iterative Unification and Rewriting Procedure

Section 3.5.3 briefly describes the process of reducing an overapproximate recursive relation into
its SMT-encodable equivalent absent of recursive relations. We use modified versions of unification
and ‘iterative unification and rewriting’ algorithms (defined in sections 4.4.3 and 4.4.4 respec-
tively) to reduce an approximate recursive relation into its SMT-equivalent. The D-depth unifi-
cation and ‘iterative unification and rewriting’ procedures are represented by ΘD(pa, ea, pb, eb, d)
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Algorithm 10: Algorithm for D-depth unifying two expressions under rewriting of ADT
atoms
1 Function ΘD(pa, ea, pb, eb, d)
2 R← [ ∅
3 S ← [ ΘD(pa, ea, pb, eb, d)
4 if S = Fail then return Fail
5 foreach 〈p1, a1, p2, e2〉d′ in S do
6 if e2 is atomic then
7 if d′ ≤ D and a1 is not scalar then
8 e1 ←[ rewrite(a1)
9 er2 ←[ rewrite(e2)

10 R1 ← [ ΘD(p1, e1, p2, e
r
2, d

′) if R1 = Fail then return Fail
11 R← [ R ∪R1

12 else
13 R← [ R ∪ {〈p1, a1, p2, e2〉d′}
14 end
15 else
16 e1 ← [ rewrite(a1)
17 R1 ← [ ΘD(p1, e1, p2, e2, d

′)
18 if R1 = Fail then return Fail
19 R←[ R ∪R1

20 end
21 end
22 return Succ(R)

23 end

Figure 4.9: Pseudocode of the algorithm responsible for D-depth unifying two expressions
yielding depth-augmented correlation tuples relating only atoms in case of a successful unification.

and θD(p1, e1, p2, e2, d) respectively, where D is a parameter of the algorithm. The pseudocode for
these two procedures are shown in algorithm 9 and fig. 4.9 respectively. The D-depth ‘iterative
unification and rewriting’ returns depth-augmented correlation tuples of the form 〈p1, a1, p2, a2〉d
such that d ≥ D for all correlation tuples relating ADT values. Unlike Θ which terminates
unification iff both expressions are atomic, ΘD performs rewriting of both ADT atomic ex-
pressions and continues to unify deeper into their respective expression trees until all correla-
tion tuples relate ADT expressions at depth ≥ D. For example, the 1-depth unification of l

and Clistlnode
𝕞 (p) yields the (depth augmented) correlation tuples: 〈true, l is LNil, true, p = 0〉0,

〈l is LCons, l.val, p 6= 0, p
𝕞→lnode val〉1 and 〈l is LCons, l.tail, p 6= 0, Clistlnode

𝕞 (p
𝕞→lnode next)〉1.
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Algorithm 11: Algorithm for reducing an overapproximate recursive relation into an
equivalent SMT-encodable condition
1 Function overapproxD(l1, l2)
2 P ← [ true
3 l̂1 ← [ canonicalize(l1)
4 l̂2 ← [ canonicalize(l2)
5 R←[ ΘD(true, l̂1, true, l̂2, 0)
6 if R = Fail then return false
7 foreach 〈p1, a1, p2, a2〉d in R do
8 if a1 is scalar and d ≤ D then
9 P ←[ P ∧ ((p1 ∧ p2)→ (a1 = a2))

10 end
11 end
12 return P

13 end

Figure 4.10: Pseudocode of the algorithm responsible for reducing an overapproximate recursive
relation into an equivalent SMT-encodable condition free of recursive relations.

Reduction Procedure for Overapproximate Recursive Relations

overapproxD(l1, l2) is responsible for reducing the overapproximation l1 ∼D l2 into its SMT-
encodable equivalent condition. overapproxD is similar to the decomposition procedure in sec-
tion 4.4.5 except it only preserves scalar equalities till a maximum depth of D (inclusive).
This essentially asserts that both l1 and l2 have identical structures (by equating expression
path conditions) and equal scalar values (by equating scalar leaf expressions) till a depth of
D. For example, recall that l and Clistlnode

𝕞 (p) 1-depth unifies into the correlation tuples:
〈true, l is LNil, true, p = 0〉0, 〈l is LCons, l.val, p 6= 0, p

𝕞→lnode val〉1 and
〈l is LCons, l.tail, p 6= 0, Clistlnode

𝕞 (p
𝕞→lnode next)〉1. Keeping only the scalar clauses till depth

1, l ∼1 Clistlnode
𝕞 (p) reduces to: ((l is LNil) = (p = 0)) ∧ ((l is LCons) ∧ (p 6= 0) → l.val =

p
𝕞→lnode val).
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Algorithm 12: Algorithm for computing a predicate bounding the maximum depth of
a value to D
1 Function isDepthBoundedD(l, p, d)
2 if d > D then return ¬p
3 if l is atomic then
4 if l is scalar then return true
5 else
6 lr ←[ rewrite(l)
7 return isDepthBoundedD(lr, p, d)

8 end
9 else if l = V (n)(l1, l2, . . . , ln) then

10 return
∧

i∈[1,n] isDepthBoundedD(li, p, d+ 1)

11 else l = if c then lth else lel

12 cth ←[ isDepthBoundedD(lth, p∧ c, d)
13 cel ←[ isDepthBoundedD(lel, p∧¬c, d)
14 return cth ∧ cel

15 end
16 end

Figure 4.11: Pseudocode of the algorithm responsible for computing an SMT-encodable predi-
cate bounding the maximum depth of a value to D.

Reduction Procedure for Underapproximate Recursive Relations

Recall that, an underapproximate recursive relation l1 ≈du l2 is equivalent to Γdu(l1) ∧ Γdu(l2) ∧
l1 ∼du l2, where Γd(l) asserts that l has a maximum depth of d (defined in section 3.5.2). The
function responsible for computing ΓD(l) is isDepthBoundedD(l, p, d), where p and d represents
the current expression path condition and depth of l, and D is a parameter of the algorithm.
Figure 4.11 gives the pseudocode for isDepthBoundedD. The top-level invocation is given by
isDepthBoundedD(l, true, 0). isDepthBoundedD recursively traverses the expression tree of l

(while rewriting as necessary), until it reaches a node at depth > D, at which point it returns
the condition asserting the unreachability of such a node. For example, for a List variable l,
Γ1(l) (i.e. isDepthBounded1(l, true, 0)) returns the predicate: ¬(l is LCons∧ l.tail is LCons).
Expanding e1 ∧ e2 to e1 ∧ (e1 → e2) and using the identity ¬(e is LNil) = e is LCons, the above
reduces to the equivalent condition: (l is LNil) ∨ ((l is LCons) ∧ (l.tail is LNil)).

Finally, underapproxD(l1, l2) is responsible for reducing the underapproximation l1 ≈D l2 into
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Algorithm 13: Algorithm for reducing an underapproximate recursive relation to an
equivalent SMT-encodable condition

Function underapproxD(l1, l2)

l̂1 ← [ canonicalize(l1);
l̂2 ← [ canonicalize(l2);
overapprox ← [ overapproxD(l̂1, l̂2);
depthbound1 ← [ isDepthBoundedD(l̂1, true, 0);
depthbound2 ← [ isDepthBoundedD(l̂2, true, 0);
return overapprox ∧ depthbound1 ∧ depthbound2;

end

Figure 4.12: Pseudocode of the algorithm responsible for reducing an underapproximate recur-
sive relation to an equivalent SMT-encodable condition free of recursive relations.

its SMT-encodable equivalent condition. The pseudocode for underapproxD is given in fig. 4.12.
For example, l ≈1 Clistlnode

𝕞 (p) ⇔ Γ1(l) ∧ Γ1(Clistlnode
𝕞 (p)) ∧ l ∼1 Clistlnode

𝕞 (p). Γ1(l) and
Γ1(Clistlnode

𝕞 (p)) reduces to the conditions (l is LNil) ∨ ((l is LCons) ∧ (l.tail is LNil)) and
(p = 0) ∨ ((p 6= 0) ∧ (p

𝕞→lnode next = 0)) respectively. Finally, l ≈1 Clistlnode
𝕞 (p) reduces to:

(l is LNil) ∨ ((l is LCons) ∧ (l.tail is LNil)) ∧

(p = 0) ∨ ((p 6= 0) ∧ (p
𝕞→lnode next = 0)) ∧

((l is LNil) = (p = 0)) ∧ ((l is LCons) ∧ (p 6= 0)→ l.val = p
𝕞→lnode val)

4.4.7 SMT Encoding of First Order Logic Formula

As summarized in fig. 3.8, our proof discharge algorithm solves a proof obligation P : LHS ⇒
RHS, through a sequence of queries (Pi : LHSi ⇒ RHSi) to off-the-shelf SMT solvers. Recall
that P may contain recursive relations. However, our algorithm ensures that each Pi is free of
recursive relations and only contain scalar equalities. We encode each query Pi in SMT logic with
bitvector and array theories. We begin by converting Pi to its canonical form P̂i (as described
in section 4.4.2). Although P̂i does not contain recursive relations, it may still contain ADT
variables, as well as accessor and sum-is expressions. Recall that in the canonicalized form, all
accessor and sum-is expressions are of the forms v.a1.a2...an and v.a1.a2...an is V respectively.
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Such an expression e is called flattenable and the name of the ADT variable v is called the index
of e. P̂i is lowered into an intermediate expression P̂ f

i through a process called flattening. This
involves ‘flattening’ all flattenable subexpressions of P̂i to variables such that P̂ f

i only contains
scalar values with scalar and memory operations (but importantly not ADT values). Flattening
is a two step process as described next.

1. For each accessor expression e = v.a1.a2...an, we replace it with a variable named v‖a1‖a2‖
. . .‖an, where ‖ concatenates two strings with a ‘ ’ character in between i.e. "a"‖"b" = "a b".

2. For each ADT T with data constructors V1, V2, . . . , Vk, we define an enumeration type E(T )
in SMT logic with items E(V1), E(V2), . . . , E(Vk) respectively. The last step guarantees that
each sum-is expression e must be of the form: v is V . We replace e with the its SMT
equivalent: (v ‖ "tag") = E(V ) 1.

For example, the canonical expression a+ l.val flattens to a+l val. Similarly, (l.tail is LCons)
flattens to l tail tag = E(LCons). Due to flattening, each flattenable subexpression e in P̂i

with index "str" gets lowered into a variable in P̂ f
i whose name begins with "str ". For the ADT

variable v, let F(v) be the set of all such lowered variables in P̂ f
i . For example, flattening of an

expression with l.val and l is LCons results in F(l) = {l val, l tag}. Importantly, P̂ f
i may only

contain scalar and memory operations (but not ADT values).

Scalar types and their operations map one-to-one with their SMT equivalents. The memory
element 𝕞 is represented as a byte-addressable (i.e. i8) array. A memory load 𝕞[a]T is expanded
into the concatenation of sizeof(T) array-select operations. A memory write 𝕞[a ← v]T is
expanded into sizeof(T) nested array-store operations.

4.4.8 Reconciliation of Counterexamples

As previously discussed in section 4.4.7, each ADT variable v gets lowered into a set of scalar
variables F(v) in its SMT encoding. Evidently, the models returned by SMT solvers map these

1Spec does not allow naming a field of a data constructor tag. Furthermore, fields cannot contain the ‘_’
character. Combined, these two conditions prevent collision between variable names obtained due to flattening.
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Algorithm 14: Algorithm for reconciling a constant valuation for variable v from a
model γ returned by an SMT solver
1 Function reconcile(v, T, γ)
2 if T is scalar then
3 if γ maps v then return γ[v]
4 else return rand(T )
5 else
6 if γ maps v ‖ "tag" then
7 E(V )← [ γ[v ‖ "tag"]
8 args←[ []
9 let [a1 : T1, a2 : T2, . . . , an : Tn] be the fields of V .

10 foreach a′ : T ′ in [a1 : T1, a2 : T2, . . . , an : Tn] do
11 arg ← [ reconcile(v ‖ a′, T ′, γ)
12 args.append(arg)
13 end
14 return V (args . . . )

15 else
16 return rand(T )
17 end
18 end
19 end

Figure 4.13: Pseudocode of the algorithm responsible for reconciling a constant valuation for a
variable v from model γ returned by an SMT solver.

variables (in F(v) instead of v) to constant values. We are interested in recovering a coun-
terexample for the original query from a model returned by an SMT solver. Recall that, these
counterexamples help guide the correlation search (in section 4.2) and invariant inference (in
section 4.3) procedures. The process of constructing a concrete value for v from the constants
returned for F(v) by an SMT solver is called reconciliation. Obviously, the reconciled counterex-
ample must be a valid counterexample to the original proof obligation.

The function reconcile(v, T, γ) is responsible for reconciling a concrete value for the variable v (of
type T ) from the model γ (returned by an SMT solver). rand(T ) returns an arbitrary constant
of type T . For example, consider the rather contrived proof obligation P : true ⇒ l is LNil.
Clearly, any valuation of l where l is a non-empty list is a valid counterexample to P . However, a
counterexample γ returned by an SMT solver would instead map l tag to E(LCons). reconcile()
identifies that l tag maps to the data constructor LCons and attempts to recursively reconcile
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values for each of its fields val and tail. Since γ do not contain a mapping for either of these
fields (l val and l tail tag), we soundly generate random constants for these instead (through
rand()). reconcile() returns a non-empty but otherwise arbitrary list for l, which is indeed a
valid counterexample to the original proof obligation P .

4.4.9 Value Tree Representation

This section presents a graphical representation of expressions that helps us simplify the imple-
mentation of multiple subprocedures used by our proof discharge algorithm. This includes the
process of canonicalization, reduction of approximate recursive relations, as well as the creation
of deconstruction programs as part of type III proof obligations. We call this the value tree
representation and use V(e) to denote a value tree associated with e. We give an algorithm to
convert an expression e into V(e) and list its applications.

Before diving into value trees, we start by introducing an analogous (but simpler) representation
for types, called type trees. We use T (τ) to denote a type tree associated with τ . Recall that
ADTs are simply ‘sum of product’ types where each data constructor represents a variant (of the
sum-type) and contains values for each of its fields (of the product-type). On top of ADTs, IR
has build-in scalar types: unit, bool and i<N>. Types in IR can be represented in first order
recursive types [27] using the product (×) and sum (+) type constructors; and the scalar types
(i.e. nullary type constructors). The type system is characterized by the grammar 𝕋 as follows:

T → µα. T | T × · · · × T | T + · · ·+ T | unit | bool | i〈N〉 | α

Every IR type can be encoded as a closed term (i.e. term without free variables) in 𝕋. For
example, the List type can be written as µα.unit+(i32×α). Note the use of a type variable α

which is bound using µ to represent recursion. Similarly, the Matrix type is represented by the
term µα.unit+ ((µβ.unit+ (i32× β))× α), where the type variables α and β are used to bind
recursive types Matrix and List at their definitions respectively.
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+
0

unit ×
1

i32

LNil LCons

val tail

(a) List = LNil |
LCons(i32, List)

+
0

unit ×
1

i32

TNil TCons

val
left

right

(b) Tree = TNil |
TCons(i32, Tree, Tree)

+
0

unit ×
1

+
2

unit ×
3

i32

MNil MCons

row

LNil LCons

val

cols

tail

(c) Matrix = MNil |
MCons(List, Matrix)

Figure 4.14: Type tree representation for the ADTs – List, Tree and Matrix respectively.

Figure 4.14 shows the type trees for three ADTs – List, Tree, and Matrix respectively. In a
type tree, each internal node represents either a product ( × ) or a sum ( + ) type constructor.
The leaf nodes are the scalar types. Each outgoing edge of a + node is associated with a data
constructor of the corresponding ADT (i.e. LCons for List). Similarly, each outgoing edge of a
× node is associated with a field of the corresponding data constructor (i.e. val for LCons). We
assign integer indices to the internal nodes and use [v :label]2 to identify the edge outgoing at v
associated with label, where label is either a data constructor or a field name. The root node is
denoted by v0. The edges going outward from the root node are called tree-edges, e.g., [0 :LCons]
and [1 : val] in fig. 4.14a. Edges that are not tree-edges, are called backedges, e.g., [1 : cols] in
fig. 4.14c. Every backedge induces an unique simple cycle in the type tree representation.

Recall that types in Spec (and in IR) follow equirecursive typing rules i.e. types µα.T and
T [µα.T/α] in 𝕋 are equal types, where T [µα.T/α] represents the new type obtained by substituting
all free instances of α with µα.T , and is defined as the unfolding of µα.T . In general, under

2The [v : label] syntax is chosen over v1 → v2 because type trees may have multi-edges (e.g. fig. 4.14b), in
which case v1 → v2 no longer represents an unique edge.
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+
0

unit ×
1

i32

LNil LCons

val tail

(a) Canonical List ADT

+
0

unit ×
1

i32 +
2

unit

LNil LCons

val tail

LNil LCons

(b) Peeled List ADT

+
0

unit ×
1

i32 +
2

unit ×
3

i32

LNil LCons

val tail

LNil LCons

val tail

(c) Unrolled List ADT

Figure 4.15: Three type trees representing the ADT List. Figure 4.15a shows the type tree
for the canonical form of List. Figure 4.15b is obtained by peeling the back-edge [1 : tail] in
fig. 4.15a. Figure 4.15c is obtained by unrolling the back-edge [1 :tail] in fig. 4.15a or by peeling
the back-edge [2 :LCons] in fig. 4.15b respectively.

equirecursive typing, two types are equal iff their infinite expansions (through unfolding) are
equal. In the type tree representation, two types are equal iff their infinite expansions are equal.
Such type trees are called isomorphic and two types are isomorphic iff they represent the same
type. An unfolding in the term representation corresponds to unrolling one iteration of a simple
cycle in its type tree. Figure 4.15 shows three type trees for the List type. Figure 4.15a
corresponds to the canonical (intuitively the ‘smallest’) type tree for the List type. The type
trees figs. 4.15b and 4.15c are obtained by peeling and unrolling the backedge [1 : tail] (in
fig. 4.15a) respectively. Peeling is a form of partial unrolling which only extracts the head of
a cycle. In practice, equality of two types (encoded in 𝕋) can be reposed as syntactic equality
of their canonical forms [20]. In general, type trees may contain cycles (due to backedges) and
hence are not quite ‘trees’. However, they represent the actual (possibly infinite) trees obtained
through repeated unrolling of cycles.

With type trees out of the way, we are ready to present their value analogue called ‘value trees’.
Figure 4.16 shows the value trees for three List expressions. Note that, all three value trees
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+
0

()
ζ0 ×

1

123
ζ1

ξ

LNil
true

LCons
false

val tail

(a) LNil

+
0

()
ζ0 ×

1

ω1.valζ1

ξ ω1 := l

LNil
ω1 is LNil

LCons
ω1 is LCons

val
ω1 := ω1.next
tail

(b) l :List

+
0

()
ζ0 ×

1

42
ζ1

+
2

()
ζ2

ξ

LNil
p = 0

LCons
p 6= 0

val tail

LNil
true

LCons
false

(c) if p = 0 then LNil
else LCons(42, LNil)

Figure 4.16: Value trees of three List-typed expressions

are isomorphic to one of the List type trees shown in fig. 4.15, e.g., fig. 4.16c is isomorphic to
fig. 4.15b. In general, for an expression e of type τ , its value tree V(e) resembles a type tree T (τ)
with the following distinctions:

1. Similar to a type tree, each internal node in V(e) is either a + or a × node.

2. Each node v in V(e) is associated with a symbolic state Ωv similar to the control-flow graph
representation (presented in section 2.2.3) of a program.

3. Recall that an edge leaving a + node is labeled with a data constructor. These edges
are additionally labeled with an edge condition (a boolean valued function over Ωn). We
identify such an edge with [v : V ; c], where v is the + node, V is a data constructor and
c is the edge condition. The set of edge conditions of all edges leaving a + node must be
mutually exclusive and exhaustive.

4. Recall that an edge v → v′ leaving a × node is labeled with a field name. Such an edge
is also associated with a transfer function (Ωv′ as a function of Ωv), and is denoted by
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[v :fi; tf], where v is the × node, fi is a field name and tf is the transfer function.

5. Instead of a scalar type τs, each leaf node v in V(e) contains an expression of type τs (as a
function of Ωv).

6. Additionally, a value tree contains a special node (called the entry node), and a special edge
(called the entry edge) from the entry node to v0 (i.e. the root of the tree). We use ξ to
denote the entry node. The entry edge is associated with a transfer function tfξ. We often
omit the entry node in figures for brevity.

7. A value tree V(e) can be converted to a type tree T as follows: (a) remove the entry node
and edge pair, (b) remove edge conditions and transfer functions associated with all edges,
and (c) replace each leaf node expression of (scalar) type τs with τs itself. The resulting
type tree T represents the type τ of the expression e.

Intuitively, a value tree simultaneously represents the value of the expression as well as the
canonical CFG of its deconstruction program. We will subsequently discuss these properties
along with their applications in the context of our proof discharge algorithm. First, we give an
algorithm to convert an expression e to its value tree representation V(e).

4.4.10 Conversion of Expressions to their Value Trees

In this section, we present an algorithm to recursively construct a value tree for any arbitrary
expression e. We take a visual approach to align with the graphical nature of value trees.

Scalar Operators

Given an expression e = e1 � e2, fig. 4.17 shows the construction of V(e) from V(e1) and V(e2)
respectively. Since e1 and e2 have scalar types, their value trees must have exactly one node (i.e.
a leaf node) containing an expression (e′1 and e′2 respectively) of the same type. � represents an
aribtrary scalar operator, i.e. an operator that accepts scalar values and produce another scalar
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V(ei) =
e′i

tfi

V(e1 � e2) =
tf1(e′1)� tf2(e′2)

Figure 4.17: Construction of V(e1� e2) from V(e1) and V(e2). � represents an arbitrary scalar
operator.

V(ei) =
vi

tfi

V(LCons(e1, e2)) =

+
0

RLNil

×
1

v1 v2

LNil
false

LCons
true

tf1

val
tf2

tail

Figure 4.18: Construction of V(LCons(e1, e2)) from V(e1) and V(e2). RLNil represents an arbi-
trary value tree corresponding to the product-type (in 𝕋) associated with LNil.

value. Importantly, arrays over bitvectors are considered scalar types and thus memory load and
store satisfy the properties of scalar operators. Given an expression s and a transfer function tf,
tf(s) represents the expression obtained by applying tf, interpreted as a substitution, to s. This
is equivalent to the weakest-precondition of s along an edge associated with tf. The construction
shown in fig. 4.17 can be generalized to n-ary scalar operators for n > 2.

ADT Data Constructors

Given an expression e = LCons(e1, e2), fig. 4.18 depicts the construction of V(e) from V(e1) and
V(e2) respectively. In general, for an arbitrary data constructor V of ADT T , the construction
begins with a + node (0 in fig. 4.18) such that the outgoing edge associated with the value
constructor V (LCons in fig. 4.18) has an edge condition of true while all other edges are assigned
the edge condition false. For each data constructor V ′ 6= V of T , we append a random value tree
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V(e) =
+

0

e1
v2

tf

MNil
c1

MCons
c2 V(e is MCons) =

c2

tf

Figure 4.19: Construction of V(e is MCons) from V(e). The dashed edge represents the (possibly
empty) set of backedges originating in the subtree rooted at v2 that terminates at 0.

corresponding to the product-type associated with V ′ in 𝕋. For example, given List is associated
with the sum-type µα.Unit+ (i32× α), the product-types associated with LNil and LCons are:
Unit and µα.i32×(Unit+α) respectively. We use Rτ to denote an arbitrary (i.e. random) value
tree of type τ . For the outgoing edge associated with the data constructor V ([0 :LCons; true] in
fig. 4.18), we construct a product node (1 in fig. 4.18) and append the value trees corresponding
to the arguments ei as children of the product node.

Sum-Is Operator

Given a sum-is expression e′ = e is MCons, fig. 4.19 shows the construction of V(e′) from V(e).
The process is rather straightforward and for a general expression e is Vi, entails extracting the
edge condition c (c2 in fig. 4.19) from V(e is Vi) edge [v0 :V ; c] ([0 :MCons; c2] in fig. 4.19). Notice
that the entry transfer function tf is preserved during this construction.

Product-Access Operator

Given an expression e′ = e.cols, fig. 4.20 depicts the construction of V(e′) from V(e). Intuitively,
V(e′) represents the subtree of V(e) rooted at the + node reached by taking the edges [0 :

MCons; c2] followed by [1 : cols; tf2]. However, this path may contain backedges or the subtree
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V(e) =

+
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v2

tf

MNil
c1
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tf1

row
tf2
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unroll=====⇒
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+
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s1 ×
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2
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tf

MNil
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row
tf2
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MNil
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V(e.cols) =

+
0

s1 ×
1

v2

tf · tf2

MNil
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c2

tf1

row
tf2

cols

Figure 4.20: Construction of V(e.cols) from V(e). Similar to type trees, unroll [1 : cols]
represents the operation of hoisting one iteration of the cycle 0→1→0.

itself may contain backedges leaving the subtree. In such a case, we perform peeling until all such
backedges strickly terminate within this subtree. For example, in fig. 4.20, the edge [1 :cols; Ω2]

is a backedge and hence we peel it once. In the resulting (equivalent) value tree, the subtree
(rooted at 2) contains a backedge leaving the subtree (dashed edge [2 :MCons]) which requires one
more peeling operation. The resulting value tree contains the subtree rooted at the + node 2
which satisfies the two conditions above and hence V(e′) is simply constructed by extracting the
subtree rooted at node 2. Note that we preserve the transfer functions from the entry to node
2 during extraction. tf1 · tf2 represents the composition of the transfer functions tf1 and tf2
respectively.

If-Then-Else Operator

Given an expression e = if c then MNil else MCons(e1, e2), fig. 4.21 describes the construction of
V(e) using V(c), V(e1) and V(e2). Let us consider a general if-then-else expression e (associated
with the ADT T with data constructors V1, V2, . . . , Vn) such that the branch associated with Vi
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V(c) =
c′

tf

V(ei) = vi

tfi V

(
if c then MNil
else MCons(e1, e2)

)
=

+
0

() ×
1

v1 v2

MNil
tf(c′)

MCons
¬tf(c′)

tf1

row
tf2
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Figure 4.21: Construction of V( if c then MNil else MCons(e1, e2) ) from V(c), V(e1) and
V(e2).

is given by Vi(e
1
i , e

2
i , . . . ). We begin with the construction of a + root node (0 in fig. 4.21)

such that the outgoing edge associated with Vi has the edge condition equal to the expression
path condition of the branch Vi(e

1
i , e

2
i , . . . ) (tf(c′) and ¬tf(c′) for MNil and MCons respectively

in fig. 4.21). For each outgoing edge associated with the data constructor Vi, we construct a ×
node (1 for MCons in fig. 4.21) and append the value trees corresponding to the arguments eji as
its children.

Lifting Constructor

Given an expression e = Clistlnode
𝕞 (p), fig. 4.22 shows the construction of V(e) from V(p). Recall

the recursive definition of the lifting constructor Clistlnode
𝕞 given in eq. (2.2). We start by

assuming that v
Clist
ω1 is the value tree for the lifted expression Clistlnode

𝕞 (ω1). Hence, the value
tree of Clistlnode

𝕞 (p) is identical to v
Clist
ω1 except we assign the actual argument (i.e. tf(p′)) to

the formal argument ω1 along the entry edge. Next, we expand the subtree v
Clist
ω1 based on the

unrolling procedure of Clistlnode
𝕞 (defined in eq. (2.2)) until the entire value tree becomes a self-

referencial structure. For example, after expanding through eq. (2.2) once in fig. 4.22, the value
tree contains a tree-edge [1 :tail] incident on the self-referencial subtree v

Clist
ω1 . In the last step,

we fold all self-referencial tree-edges ([1 : tail] in fig. 4.22) by converting them into backedges
terminating at the root of the subtree being referenced (0 for v

Clist
ω1 in fig. 4.22).
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LNil
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LNil
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ω1 6= 0

val tail
ω1 := ω1
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Figure 4.22: Construction of V(Clistlnode
𝕞 (p)) from V(p). The process involves assuming that

v
Clist
ω1 is the value tree of Clistlnode

𝕞 (ω1), followed by expansion of vClist
ω1 using the definition of

Clistlnode
𝕞 (in eq. (2.2)) and, finally folding the tree-edge [1 :tail] incident on the self-referencial

subtree v
Clist
ω1 into a backedge.

Variables

Finally, we are interested in constructing the value tree for a variable. Recall that, every ADT
(pseudo-)variable is associated with an unrolling procedure characterized by the ADT itself, e.g.,
eq. (2.1) for the List variable l. The Matrix ADT is defined as Matrix = MNil | MCons(List, Matrix),
and thus the unrolling procedure for a Matrix variable m is given by:

m = if m is MNil then MNil else MCons(m.row,m.cols) (4.3)

Figure 4.23 illustrates the construction V(m) for the Matrix variable m. The process consists
of the same three steps used to construct the value tree for a lifted expression – assume, expand
and fold. First, we assume that vMat

ω1
and vLis

ω2
are the value trees corresponding to the pseudo-

variables ω1 and ω2 of Matrix and List types respectively. Thus, V(m) is equal to vMat
ω1

except
for tfξ = {ω1← [ m}. We expand the definitions of vMat

ω1
and vLis

ω2
once each before the value tree

becomes self-referencial. Finally, we fold the tree-edges [1 :cols] and [3 :tail] into the backedges
terminating at the roots of the subtrees representing vMat

ω1
and vLis

ω2
respectively (nodes 0 and 3 in

fig. 4.23).
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Figure 4.23: Construction of V(m) for a Matrix variable m. The process is analogous to
the construction of value trees for lifted expressions as shown in fig. 4.22. First, we assume
that vMat

ω1
and vLis

ω2
represents the value trees of Matrix and List-typed pseudo-variables ω1 and

ω2 respectively. Next, we expand both subtrees using the unrolling procedures in eqs. (2.1)
and (4.3) until the value tree becomes self-referencial. Finally, we fold tree-edges incident on the
self-referencial subtrees into backedges.
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+
0

()
ζ0 ×

1

ω1.valζ1

ξ ω1 := l

LNil
ω1 is LNil

LCons
ω1 is LCons

val
ω1 := ω1.next
tail

(a) V(l)

+
0

()
ζ0 ×

1

ω1
𝕞→lnode val

ζ1

ξ ω1 := p

LNil
ω1= 0

LCons
ω1 6= 0

val
ω1 := ω1

𝕞→lnode next
tail

(b) V(Clistlnode
𝕞 (p))

Figure 4.24: Value trees for a List variable l and a lifted expression Clistlnode
𝕞 (p) respectively.

4.4.11 Applications of Value Trees

With the conversion algorithm out of the way, we next discuss a handful of properties of value
trees along with their applications, in the context of our proof discharge algorithm. This allows
us to formulate the value tree construction algorithms for approximate recursive relations.

Program Interpretation of Value Trees

A value tree V can be interpreted as a non-deterministic Control-Flow Graph corresponding to
a program. Similar to the CFG representation, every node v is associated with a symbolic state
Ωn. In this interpretation, edges without an edge condition (e.g. outgoing at a × node) are
assigned the true edge condition. Similarly, edges without a transfer function (e.g. outgoing at a
+ node) are assigned an identity transfer function. The entry node ξ is the start node and each
leaf node ζ represents an exit node. An edge incident on a leaf node ζ (containing an expression
e) is called an exit edge and is associated with an observable action that returns e.
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Canonical Deconstruction Property

A path originating at the entry node ξ and terminating at an exit node ζ is called an execution path
and is denoted by ep. Generalizing the edge syntax, [v :label1, label2, . . . , labeln] represents
the path starting at v such that its n consecutive edges are associated with the labels labeli∀i ∈
[1, n]. Hence, an execution path ep can be written as ξ → [v0 :label1, label2, . . . , labeln], or
ep[label1, label2, . . . , labeln] in short. Recall that, edges leaving a × node are associated
with field names. The field trace of ep, Ftrace(ep) is defiend as the ordered list of field names
associated with edges in the path ep. For an execution path ep[LCons, tail, LCons, val] in the
value tree shown in fig. 4.24a, Ftrace(ep) is given by [tail, val]. Given a value tree V(e) and an
execution path ep with a field trace [a1, a2, . . . , an], e.a1.a2...an is defined as the component of e
with respect to ep, denoted by Compep(e). The canonical deconstruction property for a value tree
ensures that:

1. The condition under which Compep(e) is accessible (i.e. is well-formed as discussed in sec-
tion 2.2.1) is equal to the path condition of ep, denoted by pathcond(ep).

2. The value of Compep(e) is equal to the value returned by V(e) (interpreted as a program)
along the execution path ep. This is equivalent to the weakest-precondition of the value
returned along the path ep and is denoted by retval(ep).

3. Both pathcond(ep) and retval(ep) are in the canonical form (section 4.4.2).

Consider the value tree corresponding to the lifted expression e = Clistlnode
𝕞 (p) as shown

in fig. 4.24b. The execution path ep[LCons, val] corresponds to the component Compep(e) =

Clistlnode
𝕞 (p).val. The path condition and the value returned along ep are given by pathcond(ep) =

(p 6= 0) and retval(ep) = p
𝕞→lnode val respectively. Note that Compep(e) is well-formed iff

pathcond(ep) is true and Compep(e) = retval(ep). Furthermore, both are in canonical forms.
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Reduction of Approximate Recursive Relations

Since an ADT represents a ‘sum of product’ type, each level of an ADT value (in its expression tree
as shown in section 3.5.1) corresponds to two levels – + and × in the value tree representation.
Combining the above observation with the value tree properties discussed above (section 4.4.11)
allow us to reformulate approximate recursive relations between l1 and l2 as bounded equivalence
[15] between V(l1) and V(l2). The d-depth over-approximation l1 ∼d l2 asserts that V(l1) and V(l2)
are equivalent for all execution paths up to a depth3 of 2 · d . Clearly, this is a weaker condition
because V(l1) and V(l2) may behave differently for longer execution paths. The d-depth under-
approximation l1 ≈d l2 asserts that V(l1) and V(l2) are equivalent for all execution paths up to
a depth of 2 · d and all other execution paths are unreachable. This is a stronger condition than
general equivalence because paths deeper than 2 · d may indeed be reachable. Let EPδ(l1, l2) be
the set of all execution path pairs 〈ep1, ep2〉 in l1 and l2, such that Ftrace(ep1) = Ftrace(ep2)
and depths of ep1 and ep2 are equal to δ. For example, consider the value trees shown in fig. 4.24
corresponding to the List values e1 = l and e2 = Clistclnode

𝕞 (p) respectively. Then, EP0(e1, e2) =
∅, EP1(e1, e2) = {〈ξ→0→ζ0, ξ→0→ζ0〉} and EP2(e1, e2) = {〈ξ→0→1→ζ1, ξ→0→1→ζ1〉}. Finally,
the d-depth approximations of l1 ∼ l2 are given by:

l1 ∼d l2 =

2·d∑
δ=0

( ∧
〈ep1,ep2〉
∈EPδ(l1,l2)

pathcond(ep1) = pathcond(ep)
retval(ep1) = retval(ep2)

)
(4.4)

l1 ≈d l2 =

2·d∑
δ=0

( ∧
〈ep1,ep2〉
∈EPδ(l1,l2)

pathcond(ep1) = pathcond(ep)
retval(ep1) = retval(ep2)

)
∧

( ∧
〈ep1,ep2〉

∈EP2·d+1(l1,l2)

¬pathcond(ep1)
¬pathcond(ep2)

)
(4.5)

Recall that the canonical deconstruction property ensures that the reductions in eqs. (4.4)
and (4.5) are in the canonical form. Thus, the value trees corresponding to l1 ∼d l2 and l1 ≈d l2

are constructed by creating a single (leaf) node with the boolean expressions given in eqs. (4.4)
and (4.5) respectively. The conversion algorithm presented in section 4.4.10 together with the

3The depth of an execution path ep is defined as the depth of the exit node in the unrolled (executable) value
tree. If ep contains n edges (including the entry edge), then its depth is equal to (n− 1).
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+
0

()
ζ0 ×

1

ω1
𝕞→lnode val

ζ1

ξ ω1 := lC

LNil
ω1= 0

LCons
ω1 6= 0

val
ω1 := ω1

𝕞→lnode next
tail

(a) V(Clistlnode
𝕞 (lC))

+
0

()
ζ0 ×

1

ω2
𝕞′
→lnode val

ζ1

ξ ω2 := lC

LNil
ω2= 0

LCons
ω2 6= 0

val
ω2 := ω2

𝕞′
→lnode next

tail

(b) V(Clistlnode
𝕞′ (lC))

Node Pair Invariants

(ξ :ξ) P LHS in eq. (4.6)

(0 :0)
(1 :1)

I1 ω1= ω2 I2 ω1 {C42+,H} I3 ω2 {C42+,H}
I4 pC  {C42+} I5 lC  {C42+}
I6 C41  {C42+} I7 C42+  {C42+,H} I8 H {C42+,H}

(ζ0 :ζ0) E1 () = ()

(ζ1 :ζ1) E2 ω1
𝕞→lnode val = ω2

𝕞′

→lnode val

(c) Invariants table for bisimulation relation between fig. 4.25a and fig. 4.25b.

Figure 4.25: Value trees of Clistlnode
𝕞 (lC) and Clistlnode

𝕞′ (lC) along with their associated node
invariants at correlated node pairs.

handling of approximate recursive relations described above enables the reduction of a proof obli-
gation P without recursive relations directly to its canonical form by – (a) constructing V(P )

and (b) extracting the boolean expression at its root.

Bisimilarity of Value Trees

Unlike its approximations, a recursive relation l1 ∼ l2 asserts general equivalence between V(l1)
and V(l2) respectively. Similar to our top-level equivalence check between S and C, we attempt
to prove that V(l1) and V(l2) are bisimilar. To make the search for a bisimulation relation easier,
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we peel V(l1) and V(l2) to unify their static structures. Once unified, the bisimulation relation
requires the inference of inductive invariants at correlated nodes such that under the precondition
at (ξ :ξ), inductive invariants hold and both V(l1) and V(l2) have equal observables at correlated
exit nodes (ζi :ζi).

Recall the type III proof obligation illustrated in section 3.6:

(iS = iC) ∧ pC = malloc() ∧ lS ∼ Clistlnode
𝕞 (lC) ∧ (pC 6= 0)

⇒ Clistlnode
𝕞 (lC) ∼ Clistlnode

𝕞′ (lC)
(4.6)

The memory 𝕞′ is defined as:

𝕞′ ⇔ 𝕞[addrof(pC →lnode val)← iC ]i32[addrof(pC →lnode next)← lC ]i32

The points-to invariants available at C5 (in fig. 3.2b) are discussed in Section 3.6.5. The relevant
ones for a successful bisimulation are as follows: pC  {C41} lC  {C42+}, C41  {C42+},
C42+  {C42+,H}, and H  {C42+,H}. Similar to a deconstruction program, we run our
points-to analysis on the value trees to identify potentially beneficial points-to invariants at all
correlated nodes. Figure 4.25 shows the value trees of Clistlnode

𝕞 (lC) and Clistlnode
𝕞′ (lC) along

with the table of invariants required for a successful bisimulation check. Unlike deconstruction
programs, value trees do not contain procedure calls and instead represent values of arbitrary
depth using cycles.



Chapter 5

Evaluation

We have implemented S2C on top of the Counter tool [28]. We use four SMT solvers running
in parallel for solving SMT proof obligations discharged by our proof discharge algorithm: z3-
4.8.7, z3-4.8.14 [23], Yices2-45e38fc [24], and cvc4-1.7 [2]. An unroll factor of four is used
to handle loop unrolling in the C implementation. We use a default value of eight for over- and
under-approximation depths (do and du). The default values for unrolling parameter k (used for
categorization of proof obligations) and η (used by strongestInvCover() during weakening of
recursive relation invariants) are five.

S2C requires the user to provide a Spec program S (specification), a C implementation C, and
a file that contains their input-output specifications. For each function pair, S2C attempts to
find equivalence between their CFGs S and C under their respective Pre and Post (given as
part of input-output specification). An equivalence check requires the identification of lifting
constructors to relate C values to the ADT values in S through recursive relations. Such relations
may be required at the entry of both programs (i.e. in the precondition Pre), in the middle of
both programs (i.e. as invariants at intermediate product-CFG nodes), and at the exit of both
programs (i.e. in the postcondition Post). Pre and Post are user-specified, whereas the inductive
invariants are inferred automatically by our algorithm. During invariant inference, S2C derives
the candidate lifting constructors from the user-specified Pre and Post. More sophisticated
approaches to finding lifting constructors are left as future work.

99
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Table 5.1: String lifting constructors and their definitions
Lifting Constructor Definition

T1 Str = SInvalid | SNil | SCons(ch:i8, tail:Str) OptStr = NotFound | Found(str:Str)

Cstru8[]
𝕞 (p :i32)

if p = 0i32 then SInvalid
elif p[0i32]

i8
𝕞 = 0i8 then SNil

else SCons(p[0i32]
i8
𝕞 , Cstru8[]

𝕞 (p+ 1i32))

Coptstru8[]
𝕞 (p :i32) if p = 0i32 then NotFound else Found(Cstru8[]

𝕞 (p))

Cstrlnode(u8)
𝕞 (p :i32)

if p = 0i32 then SInvalid
elif p

𝕞→lnode val = 0i8 then SNil
else SCons(p 𝕞→lnode val, Cstrlnode(u8)

𝕞 (p
𝕞→lnode next))

Coptstrlnode(u8)
𝕞 (p :i32) if p = 0i32 then NotFound else Found(Cstrlnode(u8)

𝕞 (p))

Cstrclnode(u8)
𝕞 (p :i32, i :i2)

if p = 0i32 then SInvalid
elif p

𝕞→lnode chunk[i]i8
𝕞 = 0i8 then SNil

else SCons(p 𝕞→lnode chunk[i]i8
𝕞 , Cstrclnode(u8)

𝕞 (i = 3i2?p
𝕞→clnode next : p, i+ 1i2))

Coptstrclnode(u8)
𝕞 (p :i32, i :i2) if p = 0i32 then NotFound else Found(Cstrclnode(u8)

𝕞 (p, i))

5.1 Experiments

We consider programs involving four distinct ADTs, namely, T1 Str, T2 List, T3 Tree,
and T4 Matrix. For each Spec program specification, we consider multiple C implementations
that differ in their (a) memory layout of ADTs, and (b) algorithmic strategies. For example, a
Matrix in C may be laid out in a two-dimensional array, a one-dimensional array using row or
column major layouts etc. On the other hand, an optimized implementation may choose manual
vectorization of an inner-most loop. Next, we consider each ADT in more detail. For each, we
discuss (a) its corresponding programs, (b) C memory layouts and their lifting constructors, and
(c) varying algorithmic strategies. All Spec specifications are written based on naive algorithms
that simply confirm to the function specifications. Importantly, no consideration was given to
the actual C implementations during the design of specifications.
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5.1.1 String

We wrote a single specification in Spec for each of the following common string library functions:
strlen, strchr, strcmp, strspn, strcspn, and strpbrk. For each specification program, we
took multiple C implementations of that program, drawn from popular libraries like glibc [4],
klibc [5], newlib [8], openbsd [9], uClibc [10], dietlibc [3], musl [6], and netbsd [7]. These
library implementations use a nul-terminated array to represent a string, and the corresponding
lifting constructor is Cstru8[]

𝕞 . u<N> represents the N-bit unsigned integer type in C. For example,
u8 represents unsigned char type.

Further, we implemented custom C programs for these functions that uses linked list and chunked
linked list data structures to represent a string. In a chunked linked list, a single list node (linked
through a next pointer) contains a small array (chunk) of values. We use a default chunk size of
four for our benchmarks. The corresponding lifting constructors are Cstrlnode(u8)

𝕞 and Cstrclnode(u8)
𝕞

respectively. These lifting constructors are defined in table 5.1. Cstrlnode(u8)
𝕞 requires a single

argument p representing the pointer to the list node. On the other hand, Cstrclnode(u8)
𝕞 requires

two arguments p and i, where p represents the pointer to the chunked linked list node and i

represents the position of the initial character in the chunk.

An Example : strchr

Additionally, we define an optional string type OptStr to specify behaviour of functions that
conditionally return a string (e.g. strchr, strpbrk). The OptStr ADT along with three (pairs
of) lifting constructors for the three layouts of the Str ADT are shown in table 5.1. strchr accepts
a string t and a character c1 and returns the longest suffix of t that begins with c, otherwise it
returns the null pointer to indicate failure to find c in the string t. In case c is the null character
(i.e. nul), strchr is defined to return the empty string (instead of the null pointer). Figures 5.1a
and 5.1b show the IRs of the strchr specification and a generic C implementation respectively.
We demonstrate two important aspects of S2C using this example – (a) use of (S def) and Pre

1Due to historical reasons, the type of c is declared as int to maintain backward compatibility with pre C-98
code. However, the function is specified to cast it to a character and use it instead.
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S0: OptStr strchr (Str s, i8 c) {
S1: while true:
S2: assume ¬(s is SInvalid);
S3: if s is SNil:
S4: if c = 0i8: return Found(s);
S5: return NotFound();
S6: i8 ch := s.ch; // (s is SCons)
S7: if c = ch: return Found(s);
S8: s := s.tail;
SE: }

(a) Strchr specification

char* strchr(char* t, int c);

C0: i32 strchr (i32 t, i32 c) {
C1: i8 ch := c[7:0];
C2: while t[0i32]

i8
𝕞 6= ch:

C3: if t[0i32]
i8
𝕞 = 0i8:

C4: return 0i32;
C5: t := t + 1i32
C6: return t;
CE: }

(b) Strchr implementation

S0 :C0 S1 :C2 SE :CE

S0→S1
C0→C2

S1→S3→(S4 + (S4→S5) + S7)→SE
C2→((C3→C4) + C6)→CE

S1→S3→S7→S8→S1
C2→C3→C5→C2

(c) Product-CFG for programs figs. 5.1a and 5.1b

PC-Pair Invariants

(S0 :C0) P1 sS ∼ Cstru8[]
𝕞 (tC)

P2 cS = cC [7 : 0]

(S1 :C2) I1 sS ∼ Cstru8[]
𝕞 (tC)

I2 cS = chC

(SE :CE) E retS ∼ Coptstru8[]
𝕞 (retC)

(d) Node invariants for product-CFG in fig. 5.1c

Figure 5.1: Figures 5.1a and 5.1b show the (abstracted) IRs for the Spec specification and a
generic nul-terminated array based C implementation of strchr. Figure 5.1c shows the product-
CFG representing a bisimulation relation between figs. 5.1a and 5.1b. The node invariants for
the product-CFG in fig. 5.1c are given in fig. 5.1d.

to constrain the C implementation to only well-formed inputs (in section 2.3.1), and (b) need for
correlating pathsets (instead of paths) (in section 4.2.1).

Recall that a nul-terminated C string is only well-formed if the string itself does not belong to
a region of memory containing the null pointer. This well-formedness condition is necessary to
prove that the pointer to the string returned at C6 (in fig. 5.1b) is non-null (used uniquely to
indicate a failure to find the character c in the string t). As previously discussed in section 2.3, we
expose this well-formedness condition in the specification using the explicit Str data constructor
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SInvalid. Finally, we assert that sS in fig. 5.1a is well-formed using the assuming-do statement
(S3 in fig. 5.1a) and relate the non-null well-formedness condition of the C input string tC with the
condition of sS being SInvalid using Pre (labeled P1 in fig. 5.1d). Note the use of Coptstru8[]

𝕞

in the postcondition (labeled E in fig. 5.1d).

Figure 5.1c shows the product-CFG showing the path correlations between S and C. Consider the
product-CFG edge (S1 :C2)→(SE :CE) correlating the pathsets: S1→S3→(S4+ (S4→S5) + S7)→SE

(in S) and C2→((C3→C4) + C6)→CE (in C). The → and + operators are used to represent ‘se-
ries’ and ‘parallel’ path combinations. The above two pathsets represent the following two sets
{S1→S3→S4→SE, S1→S3→S4→S5→SE, S1→S3→S7→SE} and {C2→C3→C4→CE, C2→C6→CE} re-
spectively. In S, the case of cS being nul is handled explicitly at S4, whereas S7 handles the case
of sS containing the (non-nul) character cS. Interestingly in C, both these cases are taken care of
by the singular exit edge outgoing at C6. This is an example where a path in C (i.e. C2→C6→CE)
is simultaneously active with two paths in S (i.e. S1→S3→S4→SE and S1→S3→S7→SE). Ev-
idently, for a successful bisimulation proof, we are required to correlate the C path C2→C6→CE
with the S pathset {S1→S3→S4→SE, S1→S3→S7→SE}. Such situations are rather frequent
because the strongly-typed specification is forced to handle each case explicitly while a C imple-
mentation may take advantage of the underlying representation to generalize multiple explicit
cases into one.

Another Example : strlen

Figure 5.2 shows the strlen specification and two vastly different C implementations. Figure 5.2b
is a generic implementation using a C-style nul-terminated array to represent a string. The second
implementation in fig. 5.2c differs from fig. 5.2b in the following: (a) it uses a chunked linked list
data layout for the input string and (b) it uses specialized bit manipulations to identify whether
a (4 byte) chunk contains the nul character simultaneously. S2C is able to automatically find
a bisimulation relation for both implementations against the unaltered specification. Figure 5.3
shows the product-CFG and its associated node invariants for each implementation.

Lifting constructors are named based on the C data layout being lifted and the type of the lifted
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S0: i32 strlen (Str s) {
S1: i32 len := 0i32;
S2: while ¬(s is SNil):
S3: assume ¬(s is SInvalid);
S4: // (s is SCons)
S5: s := s.tail;
S6: len := len + 1i32;
S7: return len;
SE: }

(a) Strlen specification

size_t strlen(char* s);

C0: i32 strlen (i32 s) {
C1: i32 i := 0i32;
C2: while s[0i32]

i8
𝕞 6= 0i8:

C3: s := s + 1i32;
C4: i := i + 1i32;
C5: return i;
CE: }

(b) Generic strlen implementation using array

typedef struct clnode {
char chunk[4]; struct clnode* next; } clnode;

size_t strlen(clnode* cl);

C0: i32 strlen (i32 cl) {
C1: i32 hi := 0x80808080i32; i32 lo := 0x01010101i32;
C2: i32 i := 0i32;
C3: while true:
C4: i32 dword_ptr := addrof(cl 𝕞→clnode chunk);
C5: i32 dword := dword_ptr[0i32]

i32
𝕞 ;

C6: if ((dword− lo) & (∼ dword) & hi) 6= 0i32:
C7: if dword_ptr[0i32]

i8
𝕞 = 0i8: return i;

C8: if dword_ptr[1i32]
i8
𝕞 = 0i8: return i+ 1i32;

C9: if dword_ptr[2i32]
i8
𝕞 = 0i8: return i+ 2i32;

C10: if dword_ptr[3i32]
i8
𝕞 = 0i8: return i+ 3i32;

C11: cl := cl 𝕞→clnode next; i := i+ 4i32;
CE: }

(c) Optimized strlen implementation using chunked linked list

Figure 5.2: Figure 5.2a shows the (abstracted) IR for the Spec specification of strlen. Fig-
ures 5.2b and 5.2c show the (abstracted) IRs for two C implementations of strlen. Figure 5.2b
is a generic implementation using a nul-terminated array to represent a string, whereas fig. 5.2c
is an optimized implementation with a chunked linked list memory layout for a string.
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S0 :C0 SE :CES2 :C2

S0→S2
C0→C2

S2→S6→S2
C2→C4→C2

S2→SE
C2→CE

(a) Product-CFG for programs figs. 5.2a and 5.2b

PC-Pair Invariants

(S0 :C0) P sS ∼ Cstrchar[]
𝕞 (sC)

(S2 :C2) I1 sS ∼ Cstrchar[]
𝕞 (sC)

I2 lenS = iC

(SE :CE) E retS = retC

(b) Invariants for product-CFG in fig. 5.3a

S0 :C0 SE :CES2 :C3

S0→S2
C0→C2

S2→(S6→S2)4

C3→C6→(ε + (C7→C8→C9→C10))→C11→C3

S2→SE
C3→C6→C7→(ε + C8 + (C8→C9)

+(C8→C9→C10))→CE

(c) Product-CFG for programs figs. 5.2a and 5.2c

PC-Pair Invariants

(S0 :C0) P sS ∼ Cstrclnode
𝕞 (clC , 0)

(S2 :C3) I1 sS ∼ Cstrclnode
𝕞 (clC , 0)

I2 lenS = iC

(SE :CE) E retS = retC

(d) Invariants for product-CFG in fig. 5.3c

Figure 5.3: Product-CFGs and their node invariants representing bisimulation relations between
the specification fig. 5.2a and its two implementations in figs. 5.2b and 5.2c respectively.

value. For example, Cstru8[] represents a Str lifting constructor for an array layout. In general,
we use the following naming convention for different C data layouts: T[] represents an array of
type T (e.g., u8[]). lnode(T) represents a linked list node type containing a value of type T.
Similarly, clnode(T) and tnode(T) represent a chunked linked list and a tree node with values
of type T respectively.

5.1.2 List

We wrote a Spec program specification that creates a list, a program that traverses a list to
compute the sum of its elements and a program that computes the dot product of two lists. We
use three different data layouts for a list in C: array (Clistu32[]

𝕞 ), linked list (Clistlnode(u32)
𝕞 ), and

a chunked linked list (Clistclnode(u32)
𝕞 ). The lifting constructors are shown in table 5.2. Although
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Table 5.2: List lifting constructors and their definitions
Lifting Constructor Definition

T2 List = LNil | LCons(val:i32, tail:List)

Clistu32[]
𝕞 (p i n :i32)

if i ≥u n then LNil
else LCons(p[i]i32

𝕞 , Clistu32[]
𝕞 (p, i+ 1i32, n))

Clistlnode(u32)
𝕞 (p :i32)

if p = 0i32 then LNil
else LCons(p 𝕞→lnode val, Clistlnode

𝕞 (p
𝕞→lnode next))

Clistclnode(u32)
𝕞 (p :i32, i :i2)

if p = 0i32 then LNil
else LCons(p 𝕞→clnode chunk[i]i32

𝕞 , Clistclnode
𝕞 (i = 3i2?p

𝕞→clnode next : p, i+ 1i2))

Table 5.3: Tree lifting constructors and their definitions
Lifting Constructor Definition

T3 Tree = TNil | TCons(val:i32, left:Tree, right:Tree)

Ctreeu32[]
𝕞 (p i n :i32)

if i ≥u n then TNil
else TCons(p[i]i32

𝕞 , Ctreeu32[]
𝕞 (p, 2i32 × i+ 1i32, n), Ctreeu32[]

𝕞 (p, 2i32 × i+ 2i32, n))

Ctreetnode(u32)
𝕞 (p :i32)

if p = 0i32 then TNil
else TCons(p 𝕞→tnodeval,Ctreetnode(u32)

𝕞 (p
𝕞→tnodeleft),Ctreetnode(u32)

𝕞 (p
𝕞→tnoderight))

similar to the string lifting constructors, these lifting constructors differ widely in their data
encoding. For example, Clistu32[]

𝕞 (p, i, n) represents a List value constructed from a C array of
size n, pointed to by p and starting at the ith index. The list becomes empty when we are at the
end of the array. Clistlnode(u32)

𝕞 and Clistclnode(u32)
𝕞 , on the other hand, encodes the empty list

(i.e. LNil) using the null pointer. These layouts are in contrast to the Str layouts, all of which
uses the nul character to indicate the empty string.

5.1.3 Tree

We wrote a Spec program that computes the sum of the elements of a binary tree through
an inorder traversal using recursion. We use two different data layouts for a tree: (a) a flat
array where a complete binary tree is laid out in breadth-first search order commonly used for
heaps (Ctreeu32[]

𝕞 ), and (b) a linked tree node with two pointers for the left and right children
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Table 5.4: Matrix and auxiliary List lifting constructors with their definitions
Lifting Constructor Definition

T4 Matrix = MNil | MCons(row:List, cols:Matrix)

Cmatu32[][]
𝕞 (p i u v :i32)

if i ≥u u then MNil
else MCons(Clistu32[]

𝕞 (p[i]i32
𝕞 , 0i32, v), Cmat

u32[][]
𝕞 (p, i+ 1i32, u, v))

Clistu32[r]
𝕞 (p i j u v :i32)

if j ≥u v then LNil
else LCons(p[i× v + j]i32

𝕞 , Clistu32[r]
𝕞 (p, i, j + 1i32, u, v))

Cmatu32[r]
𝕞 (p i u v :i32)

if i ≥u u then MNil
else MCons(Clistu32[r]

𝕞 (p, i, 0i32, u, v), Cmat
u32[r]
𝕞 (p, i+ 1i32, u, v))

Clistu32[c]
𝕞 (p i j u v :i32)

if j ≥u v then LNil
else LCons(p[i+ j × u]i32

𝕞 , Clistu32[c]
𝕞 (p, i, j + 1i32, u, v))

Cmatu32[c]
𝕞 (p i u v :i32)

if i ≥u u then MNil
else MCons(Clistu32[c]

𝕞 (p, i, 0i32, u, v), Cmat
u32[c]
𝕞 (p, i+ 1i32, u, v))

Cmatlnode(u32[])
𝕞 (p v :i32)

if p = 0i32 then MNil
else MCons(Clistu32[]

𝕞 (p
𝕞→lnode val, 0i32, v), Cmat

lnode(u32[])
𝕞 (p

𝕞→lnode next, v))

Cmatlnode(u32)[]
𝕞 (p i u :i32)

if i ≥u u then MNil
else MCons(Clistlnode(u32)

𝕞 (p[i]i32
𝕞 ), Cmatlnode(u32)[]

𝕞 (p, i+ 1i32, u))

Cmatclnode(u32)
𝕞 (p i u :i32)

if i ≥u u then MNil
else MCons(Clistclnode(u32)

𝕞 (p[i]i32
𝕞 , 0i2), Cmat

clnode(u32)[]
𝕞 (p, i+ 1i32, u))

(Ctreetnode(u32)
𝕞 ) (shown in table 5.3). Both Spec and C programs contain non-tail recursive

procedure calls for left and right children. S2C is able to correlate these recursive calls using
user-provided Pre and Post as discussed in section 4.2.3. At the entry of the recursive calls, S2C
is required to prove that Pre holds for the arguments and at the exit of the recursive calls, S2C
assumes Post on the values returned.

5.1.4 Matrix

We wrote a Spec program to count the frequency of a value appearing in a 2D matrix. A matrix is
represented as an ADT that resembles a List of Lists ( T4 in table 5.4). The C implementations
for a Matrix object include (a) a two-dimensional array (Cmatu32[][]

𝕞 ), (b) a flattened row-major
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Proven Disproven Unknown Σ

QI
13 6 0 19

68.4% 31.6% 0.02%

QII
64966 1407 133 66506
97.7% 2.1% 0.2% 62.42%

QIII
32588 - 7441 40029
81.4% 18.6% 37.56%

Total number of queries: 106554

(a) Total number of queries discharged by
our solver during equivalence checks for the
tests listed in tables 5.5 and 5.6. We show
the relative distribution of returned results
for each type of query (QI, QII and QIII).

(b) Minimum over- and under-approximation depths at
which approximate queries were successfully proven or

disproven with counterexamples by our solver.
Approximate queries include type II prove, disprove

queries and type III prove queries.

array (Cmatu32[r]
𝕞 ), (c) a flattened column-major array (Cmatu32[c]

𝕞 ), (d) a linked list of 1D arrays
(Cmatlnode(u32[])

𝕞 ), (e) a 1D array of linked lists (Cmatlnode(u32)[]
𝕞 ) and (f) a 1D array of chunked

linked list (Cmatclnode(u32)[]
𝕞 ) memory layouts. Note that both T[r] and T[c] represent a 1D array

of type T; r and c emphasizes that these arrays are used to represent matrices in row-major
and column-major encodings respectively. We also introduce two auxiliary lifting constructors
Clistu32[r]

𝕞 and Clistu32[c]
𝕞 for lifting each row of matrices lifted using the corresponding Cmatu32[r]

𝕞

and Cmatu32[c]
𝕞 Matrix lifting constructors. These lifting constructors are listed in table 5.4.

5.2 Results

Tables 5.5 and 5.6 lists the various C implementations and the time S2C took to compute equiv-
alence against their specifications. For functions that take two or more data structures as argu-
ments, we show results for different combinations of data layouts for each argument. We use QI,
QII and QIII to represent the number of type I, II and III queries discharged by our solver respec-
tively. PBT denotes the number of times our counterexample-guided best-first search (described
in section 4.2) backtracked during the search for a product-CFG representing equivalence. A
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Data Layout Variant Time(s) (do,du) PBT QI(P,D,U) QII(P,D,U) QIII(P,U)

list
u32[] sum naive 44 (1,2) 0 0 30 (21,6,3) 8 (4,4)

sum opt 97 (4,5) 3 0 78 (60,13,5) 13 (4,9)
dot naive 89 (1,2) 0 0 39 (27,9,3) 30 (8,22)
dot opt 218 (4,5) 3 0 133 (112,16,5) 40 (8,32)

lnode(u32) sum naive 58 (1,2) 0 0 31 (13,18,0) 9 (4,5)
sum opt 121 (4,5) 3 0 70 (55,15,0) 15 (4,11)
dot naive 81 (1,2) 0 0 31 (20,11,0) 30 (8,22)
dot opt 251 (4,5) 3 0 116 (99,17,0) 42 (8,34)
construct 260 (0,1) 0 19 (13,6,0) 109 (89,20,0) 42 (6,36)

clnode(u32) sum opt 84 (4,5) 2 0 29 (16,13,0) 15 (4,11)
dot opt 178 (4,5) 2 0 38 (23,15,0) 42 (8,34)
strlen

u8[] dietlibcs 34 (0,2) 0 0 32 (25,7,0) 9 (4,5)
dietlibcf 113 (3,2) 4 0 80 (62,18,0) 48 (8,40)
glibc 132 (3,2) 4 0 126 (112,14,0) 58 (12,46)
klibc 30 (0,2) 0 0 21 (17,4,0) 7 (4,3)
musl 422 (3,2) 2 0 96 (69,27,0) 219 (12,207)
netbsd 31 (0,2) 0 0 21 (17,4,0) 7 (4,3)
newlib 428 (3,2) 2 0 95 (70,25,0) 219 (12,207)
openbsd 33 (0,2) 0 0 21 (17,4,0) 7 (4,3)
uClibc 31 (0,2) 0 0 21 (17,4,0) 7 (4,3)

lnode(u8) naive 41 (0,2) 0 0 24 (17,7,0) 9 (4,5)
opt 152 (3,5) 4 0 95 (83,12,0) 15 (4,11)

clnode(u8) opt 84 (3,5) 4 0 97 (89,8,0) 19 (8,11)
strchr

u8[] dietlibcs 53 (1,1) 0 0 32 (25,7,0) 22 (12,10)
dietlibcf 226 (4,1) 6 0 258 (244,14,0) 244 (228,16)
glibc 435 (4,1) 9 0 330 (308,22,0) 386 (280,106)
klibc 53 (1,1) 0 0 29 (23,6,0) 22 (12,10)
newlibs 56 (1,1) 0 0 39 (33,6,0) 34 (24,10)
openbsd 53 (1,1) 0 0 29 (22,7,0) 22 (12,10)
uClibc 53 (1,1) 0 0 29 (23,6,0) 22 (12,10)

lnode(u8) naive 64 (1,1) 0 0 31 (24,7,0) 22 (12,10)
opt 322 (4,1) 6 0 258 (244,14,0) 244 (228,16)
strcmp

u8[],u8[] dietlibcs 101 (1,1) 0 0 52 (44,8,0) 34 (16,18)
freebsd 99 (1,1) 0 0 50 (42,8,0) 26 (8,18)
glibc 100 (1,1) 0 0 53 (44,9,0) 26 (8,18)
klibc 101 (1,1) 0 0 52 (44,8,0) 26 (8,18)
musl 100 (1,1) 0 0 52 (44,8,0) 40 (22,18)
netbsd 101 (1,1) 0 0 51 (42,9,0) 26 (8,18)
newlibs 99 (1,1) 0 0 52 (44,8,0) 34 (16,18)
newlibf 1763 (4,1) 10 0 195 (156,39,0) 380 (32,348)
openbsd 101 (1,1) 0 0 50 (42,8,0) 26 (8,18)
uClibc 97 (1,1) 0 0 56 (48,8,0) 34 (16,18)

lnode(u8),lnode(u8) naive 116 (1,1) 3 0 56 (44,12,0) 34 (16,18)
opt 802 (4,1) 6 0 1526 (1511,15,0) 46 (16,30)

clnode(u8),clnode(u8) opt 587 (4,1) 4 0 841 (831,10,0) 38 (8,30)

Table 5.5: Time taken by S2C for successful equivalence checks between Spec and C program pairs. do and du

represents the minimum over- and under-approximation depths at which the equivalence checks succeeded. PBT

represents the number of backtrackings performed by the best-first search algorithm. Additionally, we list the
number of queries discharged by our solver by query type (QI, QII and QIII) and returned result.



110 Evaluation

Data Layout Variant Time(s) (do,du) PBT QI(P,D,U) QII(P,D,U) QIII(P,U)

strspn
u8[],u8[] dietlibc 317 (1,2) 0 0 197 (184,13,0) 156 (81,75)

opt 876 (4,2) 5 0 4864 (4840,24,0) 1747 (1664,83)
u8[],lnode(u8) naive 555 (1,2) 0 0 197 (184,13,0) 187 (81,106)

opt 1194 (4,2) 5 0 4864 (4840,24,0) 1778 (1664,114)
u8[],clnode(u8) opt 808 (4,2) 4 0 2026 (2008,18,0) 853 (742,111)
lnode(u8),u8[] naive 705 (1,2) 0 0 157 (143,14,0) 231 (105,126)

opt 1333 (4,2) 5 0 3279 (3256,23,0) 1838 (1704,134)
lnode(u8),lnode(u8) naive 441 (1,2) 1 0 157 (142,15,0) 194 (105,89)

opt 1138 (4,2) 6 0 3288 (3264,24,0) 1801 (1704,97)
lnode(u8),clnode(u8) opt 1130 (4,2) 6 0 1371 (1344,27,0) 916 (782,134)

strcspn
u8[],u8[] dietlibc 573 (1,2) 1 0 139 (124,15,0) 202 (57,145)

opt 848 (4,2) 5 0 1034 (1013,21,0) 537 (376,161)
u8[],lnode(u8) naive 544 (1,2) 0 0 137 (124,13,0) 161 (55,106)

opt 863 (4,2) 5 0 1034 (1013,21,0) 478 (364,114)
u8[],clnode(u8) opt 748 (4,2) 5 0 1202 (1182,20,0) 523 (412,111)
lnode(u8),u8[] naive 1067 (1,2) 0 0 117 (103,14,0) 292 (81,211)

opt 1253 (4,2) 4 0 758 (737,21,0) 639 (408,231)
lnode(u8),lnode(u8) naive 412 (1,2) 0 0 117(103,14,0) 168 (79,89)

opt 738 (4,2) 4 0 830 (809,21,0) 493 (396,97)
lnode(u8),clnode(u8) opt 976 (4,2) 4 0 925 (904,21,0) 575 (444,131)

strpbrk
u8[],u8[] dietlibc 565 (1,2) 0 0 85 (72,13,0) 196 (67,129)

opt 851 (4,2) 5 0 283 (263,20,0) 602 (466,136)
u8[],lnode(u8) naive 663 (1,2) 0 0 86 (70,16,0) 178 (67,111)

opt 920 (4,2) 5 0 285 (263,22,0) 585 (466,119)
u8[],clnode(u8) opt 852 (4,2) 4 0 280 (262,18,0) 678 (562,116)
lnode(u8),u8[] naive 1011 (1,2) 0 0 83 (70,13,0) 290 (91,199)

opt 1157 (4,2) 5 0 296 (275,21,0) 702 (498,204)
lnode(u8),lnode(u8) naive 501 (1,2) 0 0 82 (70,12,0) 188 (91,97)

opt 814 (4,2) 5 0 299 (275,24,0) 603 (498,105)
lnode(u8),clnode(u8) opt 919 (4,2) 4 0 295 (274,21,0) 688 (546,142)

tree
u32[] sum 1673 (1,2) 0 0 49 (31,18,0) 377 (10,367)
tnode(u32) sum 1149 (1,2) 0 0 52 (30,22,0) 262 (10,252)

matfreq
u8[][] naive 450 (1,3) 0 0 152 (116,22,14) 172 (95,77)

opt 1667 (4,6) 4 0 5403 (5357,31,15) 2763 (2685,78)
u8[r] naive 458 (1,3) 0 0 160 (123,22,15) 172 (95,77)

opt 1441 (4,6) 4 0 5394 (5349,30,15) 2763 (2685,78)
u8[c] naive 391 (1,3) 0 0 161 (123,23,15) 172 (95,77)

opt 1527 (4,6) 4 0 5392 (5349,28,15) 2763 (2685,78)
lnode(u8[]) naive 516 (1,3) 0 0 117 (84,30,3) 234 (126,108)

opt 1612 (4,6) 0 0 3664 (3632,29,3) 2836 (2728,108)
lnode(u8)[] naive 1032 (1,2) 0 0 96 (68,21,7) 352 (96,256)

opt 3484 (4,6) 3 0 10172 (10134,31,7) 4338 (4082,256)
clnode(u8)[] opt 1755 (4,6) 0 0 1373 (1347,18,8) 1648 (1392,256)

Table 5.6: Time taken by S2C for successful equivalence checks between Spec and C program pairs. do and du

represents the minimum over- and under-approximation depths at which the equivalence checks succeeded. PBT

represents the number of backtrackings performed by the best-first search algorithm. Additionally, we list the
number of queries discharged by our solver by query type (QI, QII and QIII) and returned result.
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higher value of PBT represents that the search backtracked multiple times due to a combination
of large search space and a sub-optimal choice in best-first ranking. We also show the minimum
over-approximation (do) and under-approximation (du) depths at which the equivalence proofs
successfully completed (keeping all other parameters to their default values). Figure 5.4a shows
a breakdown of the number of queries discharged by our solver by query type and returned re-
sult. Our solver may either return proven implying a successfully proven query, disproven with
counterexamples that falsify the query, or unknown representing a failure respectively. Given
that 62.42% of all queries are type II queries, support for counterexample generation for type
II queries is found to be extremely helpful in guiding the best-first search. During over- and
under-approximation attempts (for type II and type III queries), we use a strategy similar to
“iterative deepening” [33]. Instead of using the maximum approximation depth (eight for our
tests) first, we begin with a smaller value which is increased until our attempt either succeeds or
we reach the maximum permissible depth. For prove (i.e. over-approximation) and disprove (i.e.
under-approximation) attempts, we start with approximation depths zero and two respectively.
For both cases, we increase these depths by one until the maximum depth of eight is reached. A
lower value translates to a simpler SMT query leading to a higher probability of a faster solu-
tion and lower probability of timeouts by the off-the-shelf SMT solvers. However, the precision
of an attempt increases with higher approximation depths as previously discussed in detail in
section 3.5.2. Figure 5.4b depicts the distribution of minimum approximation depths at which
approximate (type II prove & disprove and type III prove) queries were successfully discharged
(proven or disproven) by the solver. It can be seen that the vast majority of the attempts were
successful for approximation depths smaller than eight and the number of successful attempts
decreases exponentially with increasing depth. The above observation reinforces the idea of “it-
erative deepening” because the time saved by solving smaller queries significantly outweighs the
comparatively rare loss of time in attempting the same query with increasing approximation
depths.

The complete list of specifications used for our evaluation can be found in chapter 6. Additionally,
S2C along with the testcases used during evaluation is available as a docker image at [1].
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S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1: type OptStr = NotFound | Found (str:Str).
S2:

S3: fn strchr_impl (s:Str) (c:i8) : OptStr =
S4: assuming ¬(s is SInvalid) do
S5: match s with
S6: | SInvalid => NotFound
S7: | SNil => if c == 0i8 then Found(s) else NotFound
S8: | SCons(ch, rest) => if c == ch then Found(s) else strchr_impl(rest, c).
S9:

SE: fn strchr (s:Str) (c:i8) : OptStr = strchr_impl(s, c).

(a) Spec specification of strchr()

C0: char* strchrnul(char* s, int c);
C1:

C2: char* strchr(char* s, int c) {
C3: char* r = strchrnul(s, c);
C4: return *(unsigned char*)r == *(unsigned char*)c ? r : 0;
CE: }

(b) Freebsd implementation of strchr()

Figure 5.5: Figure 5.5a shows our Spec specification of strchr(). Figure 5.5b is a C imple-
mentation of strchr() taken from the freebsd C library implementation.

5.3 Limitations

S2C is not without limitations. Since S2C is only interested in finding a bisimulation relation,
a whole class of non-bisimilar but equivalent program pairs is beyond our scope. In addition
to recursive relations based on the lifting constructors provided as part of Pre and Post, S2C
currently only supports bitvector affine and inequality relations. Consequently, non-linear bitvec-
tor invariants (such as polynomial invariants) are not supported. More importantly, S2C does
not attempt to infer lifting constructors and merely uses the lifting constructors (with differ-
ent arguments) provided as part of the input-output characteristics. While our correlation and
invariant inference algorithms are based on the Counter tool [28], which is designed primarily
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for equivalence checking between (C-like) unoptimized IR and assembly, we found them to be
quite effective for equivalence checking between Spec and deterministic C as well. However, S2C
inherits many of the limitations of the Counter tool.

For example, S2C fails to find a proof of equivalence if the unrolling in the C implementation is
higher than the unrolling parameter µS used during path enumeration as part of the product-
CFG construction algorithm. Larger values of µS would significantly increase the correlation
search space and likely have negative implications on the runtime of the algorithm. Next, we
demonstrate two common cases where S2C is unable to find a proof of equivalence through two
examples. Figure 5.5 shows our Spec specification and a C implementation for the C function
strchr. Similarly, fig. 5.6 shows our Spec specification and a C implementation for strspn.
Both specifications (in figs. 5.5a and 5.6a) are rather straightforward and written to conform to
the standard specifications of these functions. The first C implementation (in fig. 5.5b) defines
strchr in terms of another function strchrnul. S2C fails to find a proof of equivalence in this
case because it is unable to correlate the C function call edge at C3 with a suitable function
call in the specification. At present, our correlation algorithm only supports the correlation of
a function call edge with another function call edge. Figure 5.6b shows an implementation of
strspn adapted from the musl C library implementation. This implementation maintains a bitset
(named ‘byteset’) of 28 bits to represent whether a character byte is present in the string ‘c’. The
bitset is initialized at C5 by setting those bits to 1 that correspond to characters contained in
‘c’. Next, the input string ‘s’ is traversed until it reaches the end or finds a character absent
from the bitset. Clearly, this implementation is drastically different from the naive algorithm of
the specification (fig. 5.6a) and non-bisimilar. Hence, S2C fails in this case as well. These two
examples highlight two of the major drawbacks of S2C – (a) non-matching function calls and (b)
non-bisimilar algorithmic choices.

Additionally, S2C suffers from a similar trade-off with regards to the approximation parameters
do and du – a smaller than necessary value would cause a failed equivalence check while a larger
value may have major impact on the size of queries and counterexamples for reasons discussed
next. Consider a recursive relation relating values of a non-linear ADT such as Tree. It’s d-depth
approximation reduces into O(2d) scalar equalities resulting in large SMT queries, which to our
experience is a major source of SMT solver timeouts during evaluation. We partially subvert this
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S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1:

S2: fn strspn_impl2 (accept:Str) (c:i8) : bool =
S3: assuming ¬(accept is SInvalid) do
S4: match accept with
S5: | SInvalid => false
S6: | SNil => false
S7: | SCons(ch, rest) => if ch == c then true else strspn_impl2(rest, c).
S8:

S9: fn strspn_impl (s:Str) (accept:Str) (l:i32) : i32 =
S10: assuming ¬(s is SInvalid) do
S11: match s with
S12: | SInvalid => 0i32
S13: | SNil => l
S14: | SCons(ch, rest) => if strspn_impl2(accept, ch)
S15: then strspn_impl(rest, accept, l + 1i32)
S16: else l.
S17:

SE: fn strspn (s:Str) (accept:Str) : i32 = strspn_impl(s, accept, 0i32).

(a) Spec specification of strspn()

C0: #define BITOP(a,b,op) (a[(size_t)b / 32] op (size_t)b % 32)
C1:

C2: size_t strspn(char* s, char* c) {
C3: char* a = s;
C4: size_t byteset[8] = { 0 };
C5: for (; *c && BITOP(byteset, *(unsigned char*)c, |=); c++);
C6: for (; *s && BITOP(byteset, *(unsigned char*)s, &); s++);
C7: return s - a;
CE: }

(b) Musl implementation of strspn()

Figure 5.6: Figure 5.6a shows our Spec specification of strspn(). Figure 5.6b depicts a pos-
sible C implementation of strspn() adapted from the musl C library implementation. The
implementation is simplified for a 32-bit architecture and special cases are omitted for brevity.

issue by using an iterative deepening strategy for approximate queries described previously in
section 5.2.
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Also, the completeness of type III proof obligations is highly contingent on the precision of our
points-to analysis on C as well as the deconstruction programs being checked for equivanece as
part of the nested bisimulation check. We found our coarse-grained {1,2+} categorization of
allocation recency combined with allocation-site based points-to analysis to be quite good at
identifying required points-to invariants. However, such an abstraction is far from complete.
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Chapter 6

Conclusion

As introduced in chapter 1, most of the current solutions to the problem of equivalence checking
between a functional specification and a C program relies heavily on manually provided corre-
lation, inductive invariants as well as proof assistants for discharging said obligations. While
the size of programs considered in our work is quite small, we hope the ideas in S2C will help
automate the proofs for such systems to some degree.

Prior work on push-button verification of specific systems [18, 44, 42, 43] involves a combination of
careful system design and automatic verification tools like SMT solvers. Constrained Horn Clause
(CHC) Solvers [22] encode verification conditions of programs containing loops and recursion, and
raise the level of abstraction for automatic proofs. Comparatively, S2C further raises the level of
abstraction for automatic verification from SMT queries and CHC queries to lifting constructors
and automatic discharge of proof obligations involving recursive relations.

A key idea in S2C is the conversion of proof obligations involving recursive relations to bisimula-
tion checks. Thus, S2C performs nested bisimulation checks as part of a ‘higher-level’ bisimulation
search. This approach of identifying recursive relations as invariants and using bisimulation to
discharge the associated proof obligations may have applications beyond equivalence checking.
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List of Specifications

Figure 1 shows the Spec specification for each function used to evaluate S2C. The functions
are mk_list, sum_list, dot_list, sum_tree, strlen, strchr, strcmp, strspn, strcspn, strpbrk and
matfreq respectively.

S0: type List = LNil | LCons (val:i32, tail:List).
S1:

S2: fn mk_list_impl (n:i32) (i:i32) (l:List) : List =
S3: if i ≥u n then l
S4: else make_list_impl(n, i+1i32, LCons(i, l)).
S5:

SE: fn mk_list (n:i32) : List = mk_list_impl(n, 0i32, LNil).

(a) Spec specification of mk_list()

S0: type List = LNil | LCons (val:i32, tail:List).
S1:

S2: fn sum_list_impl (l:List) (sum:i32) : i32 =
S3: match l with
S4: | LNil => sum
S5: | LCons(x, rest) => sum_list_impl(rest, sum + x).
S6:

SE: fn sum_list (l:List) : i32 = sum_list_impl(l, 0i32).

(b) Spec specification of sum_list()

Figure 1: Spec specifications corresponding to functions used during evaluation of S2C
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S0: type List = LNil | LCons (val:i32, tail:List).
S1:

S2: fn dot_list_impl (x:List) (y:List) (res:i32) : i32 =
S3: assuming (x is LNil) == (y is LNil) do
S4: match x with
S5: | LNil => res
S6: | LCons(xv, xrest) => match y with
S7: | LNil => res
S8: | LCons(yv, yrest) =>
S9: dot_list_impl(xrest, yrest, res + xv * yv).
S10:

SE: fn dot_list (x:List) (y:List) : i32 = dot_list_impl(x, y, 0i32).

(c) Spec specification of dot_list()

S0: type Tree = TNil | TCons (val:i32, left:Tree, right:Tree).
S1:

S2: fn sum_tree (t:Tree) : i32 =
S3: match t with
S4: | TNil => 0i32
S5: | TCons(val, left, right) => let l = sum_tree(left),
S6: r = sum_tree(right),
SE: in val + l + r.

(d) Spec specification of sum_tree()

S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1:

S2: fn strlen_impl (s:Str) (len:i32) : i32 =
S3: assuming ¬(s is SInvalid) do
S4: match s with
S5: | SInvalid => 0i32
S6: | SNil => len
S7: | SCons(ch, rest) => strlen_impl(rest, len + 1i32).
S8:

SE: fn strlen (s:Str) : i32 = strlen_impl(s, 0i32).

(e) Spec specification of strlen()

Figure 1: Spec specifications corresponding to functions used during evaluation of S2C
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S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1: type OptStr = NotFound | Found (str:Str).
S2:

S3: fn strchr_impl (s:Str) (c:i8) : OptStr =
S4: assuming ¬(s is SInvalid) do
S5: match s with
S6: | SInvalid => NotFound
S7: | SNil => if c == 0i8 then Found(s) else NotFound
S8: | SCons(ch, rest) => if c == ch then Found(s) else strchr_impl(rest, c).
S9:

SE: fn strchr (s:Str) (c:i8) : OptStr = strchr_impl(s, c).

(f) Spec specification of strchr()

S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1: type LtEqGt = Less | Equal | Greater.
S2:

S3: fn strcmp_impl (s1:Str) (s2:Str) : LtEqGt =
S4: assuming ¬(s1 is SInvalid) do
S5: match s1 with
S6: | SInvalid => Less
S7: | SNil => assuming ¬(s2 is SInvalid) do
S8: match s2 with
S9: | SInvalid => Less
S10: | SNil => Equal
S11: | SCons(_, _) => Less
S12: | SCons(ch1, rest1) => assuming ¬(s2 is SInvalid) do
S13: match s2 with
S14: | SInvalid => Less
S15: | SNil => Greater
S16: | SCons(ch2, rest2) => if ch1 <u ch2 then Less
S17: else if ch1 >u ch2 then Greater
S18: else strcmp_impl(rest1, rest2).
S19:

SE: fn strcmp (s1:Str) (s2:Str) : LtEqGt = strcmp_impl(s1, s2).

(g) Spec specification of strcmp()

Figure 1: Spec specifications corresponding to functions used during evaluation of S2C
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S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1:

S2: fn strspn_impl2 (accept:Str) (c:i8) : bool =
S3: assuming ¬(accept is SInvalid) do
S4: match accept with
S5: | SInvalid => false
S6: | SNil => false
S7: | SCons(ch, rest) => if ch == c then true else strspn_impl2(rest, c).
S8:

S9: fn strspn_impl (s:Str) (accept:Str) (l:i32) : i32 =
S10: assuming ¬(s is SInvalid) do
S11: match s with
S12: | SInvalid => 0i32
S13: | SNil => l
S14: | SCons(ch, rest) => if strspn_impl2(accept, ch)
S15: then strspn_impl(rest, accept, l + 1i32)
S16: else l.
S17:

SE: fn strspn (s:Str) (accept:Str) : i32 = strspn_impl(s, accept, 0i32).

(h) Spec specification of strspn()

S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1:

S2: fn strcspn_impl2 (reject:Str) (c:i8) : bool =
S3: assuming ¬(reject is SInvalid) do
S4: match reject with
S5: | SInvalid => false
S6: | SNil => false
S7: | SCons(ch, rest) => if ch == c then true else strcspn_impl2(rest, c).
S8:

S9: fn strcspn_impl (s:Str) (reject:Str) (l:i32) : i32 =
S10: assuming ¬(s is SInvalid) do
S11: match s with
S12: | SInvalid => 0i32
S13: | SNil => l
S14: | SCons(ch, rest) => if strcspn_impl2(reject, ch)
S15: then l
S16: else strcspn_impl(rest, reject, l + 1i32)
S17:

SE: fn strcspn (s:Str) (reject:Str) : i32 = strcspn_impl(s, reject, 0i32).

(i) Spec specification of strcspn()

Figure 1: Spec specifications corresponding to functions used during evaluation of S2C
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S0: type Str = SInvalid | SNil | SCons (ch:i8, tail:Str).
S1: type OptStr = NotFound | Found(str:Str).
S2:

S3: fn strpbrk_impl2 (accept:Str) (c:i8) : bool =
S4: assuming ¬(accept is SInvalid) do
S5: match accept with
S6: | SInvalid => false
S7: | SNil => false
S8: | SCons(ch, rest) => if ch == c then true else strpbrk_impl2(rest, c).
S9:

S10: fn strpbrk_impl (s:Str) (accept:Str) : OptStr =
S11: assuming ¬(s is SInvalid) do
S12: match s with
S13: | SInvalid => NotFound
S14: | SNil => NotFound
S15: | SCons(ch, rest) => if strpbrk_impl2(accept, ch)
S16: then Found(s)
S17: else strpbrk_impl(rest, accept).
S18:

SE: fn strpbrk (s:Str) (accept:Str) : OptStr = strpbrk_impl(s, accept).

(j) Spec specification of strpbrk()

S0: type List = LNil | LCons (val:i32, tail:List).
S1: type Mat = MNil | MCons (row:List, cols:Mat).
S2:

S3: fn matfreq_impl2 (row:List) (x:i32) (res:i32) : i32 =
S4: match row with
S5: | LNil => res
S6: | LCons(v, rest) => let val_res = if v == x then res + 1i32 else res
S7: in matfreq_impl2(rest, x, val_res).
S8:

S9: fn matfreq_impl1 (mat:Mat) (x:i32) (res:i32) : i32 =
S10: match mat with
S11: | MNil => res
S12: | MCons(row, rest) => let mvec_res = matfreq_impl2(row, x, res)
S13: in matfreq_impl1(rest, x, mvec_res).
S14:

SE: fn matfreq (mat:Mat) (x:i32) : i32 = matfreq_impl1(mat, x, 0i32).

(k) Spec specification of matfreq()

Figure 1: Spec specifications corresponding to functions used during evaluation of S2C
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