
Modeling Dynamic (De)Allocations of Local Memory for
Translation Validation

ABHISHEK ROSE, Indian Institute of Technology Delhi, India

SORAV BANSAL, Indian Institute of Technology Delhi, India

End-to-End Translation Validation is the problem of verifying the executable code generated by a compiler

against the corresponding input source code for a single compilation. This becomes particularly hard in

the presence of dynamically-allocated local memory where addresses of local memory may be observed by

the program. In the context of validating the translation of a C procedure to executable code, a validator

needs to tackle constant-length local arrays, address-taken local variables, address-taken formal parameters,

variable-length local arrays, procedure-call arguments (including variadic arguments), and the alloca()

operator. We provide an execution model, a definition of refinement, and an algorithm to soundly convert a

refinement check into first-order logic queries that an off-the-shelf SMT solver can handle efficiently. In our

experiments, we perform blackbox translation validation of C procedures (with up to 100+ SLOC), involving

these local memory allocation constructs, against their corresponding assembly implementations (with up to

200+ instructions) generated by an optimizing compiler with complex loop and vectorizing transformations.

CCS Concepts: • Software and its engineering→ Formal software verification; Compilers.

Additional Key Words and Phrases: Translation validation, Equivalence checking, Certified compilation

ACM Reference Format:

Abhishek Rose and Sorav Bansal. 2024. Modeling Dynamic (De)Allocations of Local Memory for Translation

Validation. Proc. ACM Program. Lang. 8, OOPSLA1, Article 146 (April 2024), 30 pages. https://doi.org/10.1145/

3649863

1 INTRODUCTION

Compiler bugs can be catastrophic, especially for safety-critical applications. End-to-End Translation
Validation (TV for short) checks a single compilation to ascertain if the machine executable code
generated by a compiler agrees with the input source program. In our work, we validate translations
from unoptimized IR of a C program to optimized executable (or assembly) code, which forms an
overwhelming majority of the complexity in an end-to-end compilation pipeline. In this setting,
the presence of dynamic allocations and deallocations due to local variables and procedure-call
arguments in the IR program presents a special challenge — in these cases, the identification and
modeling of relations between a local variable (or a procedure-call argument) in IR and its stack
address in assembly is often required to complete the validation proof.
Unlike IR-to-assembly, modeling dynamic local memory allocations is significantly simpler

for IR-to-IR TV [Kasampalis et al. 2021; Lopes et al. 2021; Menendez et al. 2016; Namjoshi and
Zuck 2013; Necula 2000; Stepp et al. 2011; Tristan et al. 2011; Zhao et al. 2012, 2013]. For example,
(pseudo)register-allocation of local variables can be tackled by identifying relational invariants that
equate the value contained in a local variable’s memory region (in the original program) with the
value in the corresponding pseudo-register (in the transformed program) [Kang et al. 2018]. If the

Authors’ addresses: Abhishek Rose, Indian Institute of Technology Delhi, New Delhi, India, abhishek.rose@cse.iitd.ac.in;

Sorav Bansal, Indian Institute of Technology Delhi, New Delhi, India, sbansal@iitd.ac.in.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART146

https://doi.org/10.1145/3649863

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0002-2222-8906
HTTPS://ORCID.ORG/0009-0004-2006-9635
https://doi.org/10.1145/3649863
https://doi.org/10.1145/3649863
https://orcid.org/0009-0002-2222-8906
https://orcid.org/0009-0004-2006-9635
https://doi.org/10.1145/3649863
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649863&domain=pdf&date_stamp=2024-04-29

146:2 Abhishek Rose and Sorav Bansal

address of a local variable is observable by the C program (e.g., for an address-taken local variable),
we need to additionally relate the variable addresses across both programs. These address correla-
tions can be achieved by first correlating the corresponding allocation statements in both programs
(e.g., through their names) and then assuming that their return values are equal. Provenance-
based syntactic pointer analyses, that show separation between distinct variables [Andersen 1994;
Steensgaard 1996], thus suffice for translation validation across IR-to-IR transformations.

An IR-to-assembly transformation involves the lowering of a memory allocation (deallocation) IR
instruction to a stackpointer decrement (increment) instruction in assembly. Further, the stack space
in assembly is shared by multiple local variables, procedure-call arguments, and by the potential
intermediate values generated by the compiler, e.g., pseudo-register spills. Provenance-based pointer
analyses are thus inadequate for showing separation in assembly.
Prior work on IR-to-assembly and assembly-to-assembly TV [Churchill et al. 2019; Gupta et al.

2020; Sewell et al. 2013; Sharma et al. 2013] assumes that local variables are either absent or their
addresses are not observed in the program and so they are removed through (pseudo)register-
allocation. Similarly, these prior works assume that variadic parameters (and other cases of address-
taken parameters) are absent in the program.
Prior work on certified compilation, embodied in CompCert [Leroy 2006], validates its own

transformation passes from IR to assembly, and supports both address-taken local variables and
variadic parameters. However, CompCert sidesteps the task of having to model dynamic allocations
by ensuring that the generated assembly code preallocates the space for all local variables and
procedure-call arguments at the beginning of a procedure’s body. Because preallocation is not
possible if the size of an allocation is not known at compile time, CompCert does not support
variable-sized local variables or alloca(). Moreover, preallocation is prone to stack space wastage.
In contrast to a certified compiler, TV needs to validate the compilation of a third-party compiler,
and thus needs to support an arbitrary (potentially dynamic) allocation strategy.

Example: Consider a C and a 32-bit x86 assembly program in fig. 1. The fib procedure in fig. 1a
accepts two integers n and m, allocates a variable-length array (VLA) v of n+2 elements, computes
the first m+1 fibonacci numbers in v, calls printf(), and returns the<Cℎ fibonacci number. Notice
that for an execution free of Undefined Behaviour (UB), both n and m must be non-negative and m

must be less than (n+2). Note that the memory for local variables (v and i) and procedure-call
arguments (for the call to printf) is allocated dynamically through the alloc instruction in the IR
program (fig. 1b). In the assembly program (fig. 1c), memory is allocated through instructions that
manipulate the stackpointer register esp.

If the IR program uses an address, say U , of a local variable (e.g., U ∈ {?I1, ?I2}) or a procedure-call
argument (e.g., U ∈ {?I7, ?I8}) in its computation (e.g., for pointer arithmetic at lines I3 and I5, or
for accessing the variadic argument at ?I8 within printf), validation requires a relation between U
and its corresponding stack address in assembly (e.g., ?I7 = esp at line A14).

Contributions: We formalize IR and assembly execution semantics in the presence of dynamically
(de)allocated memory for local variables and procedure-call arguments, define a notion of correct
translation, and provide an algorithm that converts the correctness check to first-order logic queries
over bitvectors, arrays, and uninterpreted functions. Almost all production compilers (e.g., GCC)
generate assembly code to dynamically allocate stack space for procedure-call arguments at the
callsite, e.g., in fig. 1c, the arguments to printf are allocated at line A13. Ours is perhaps the first
effort to enable validation of this common allocation strategy. Further, our work enables translation
validation for programs with dynamically-allocated fixed-length and variable-length local variables
for a wide set of allocation strategies used by a compiler including stack merging, stack reallocation
(if the order of allocations is preserved), and intermittent register allocation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:3

C0: int fib(int n, int m) {

C1: int v[n+2];

C2: v[0]=0; v[1]=1;

C3: for(int i=2; i<=m; i++)

C4: v[i]=v[i-1]+v[i-2];

C5: printf("fib(%d)␣=␣%d", m, v[m]);

C6: return v[m];

C7: }

(a) C Program with VLA.

I0: int fib(int* n, int* m):

I1: i=?I1=alloc 1,int,4;

I2: v=?I2=alloc *n+2,int,4;

I3: v[0]=0; v[1]=1; *i=2;

I4: if(*i >B *m) goto I7;

I5: v[*i]=v[*i-1]+v[*i-2];

I6: (*i)++; goto I4;

I7: ?I7=alloc 1,char*,4;

I8: ?I8=alloc 1,struct{int; int;},4;

I9: *?I7=__S__; *?I8=*m; *(?I8 + 4)=v[*m];

I10: t=call int printf(?I7, ?I8);

I11: dealloc I7;

I12: dealloc I8;

I13: r=v[*m];

I14: dealloc I2;

I15: dealloc I1;

I16: ret r;

(b) (Abstracted) IR.

A0: fib:

A1: push ebp; ebp = esp;

A2: push {edi, esi, ebx}; esp = esp-12;

A3: eax = mem4[ebp+8]; ebx = mem4[ebp+12];

A4: esp = esp-(0xFFFFFFF0 & (4*(eax+2)+15));

A4.1: vI1 = allocE 4,4,I1;

A4.2: allocB esp,4*(eax+2),4,I2;

A5: esi = ((esp+3)/4)*4;

A6: mem4[esi] = 0; mem4[esi+4] = 1;

A7: if(ebx ≤B 1) jmp A12;

A8: edi = 0; edx = 1; eax = 2;

A9: ecx = edx+edi; edi = edx; edx = ecx;

A10: mem4[esi+4*eax] = ecx; eax = eax+1;

A11: if(eax ≤B ebx) jmp A9;

A12: edi = mem4[esi+4*ebx]; esp = esp-4;

A13: push {edi, ebx, __S__}; //__S__ is ptr to format string

A13.1: allocB esp, 4,4,I7;

A13.2: allocB esp+4,8,4,I8;

A14: call int printf(<char*> esp, <struct{int; int;}> esp+4)

� ∪ {ℎ?, 2;, I7, I8}� ∪ {ℎ?, 2;, I7, I8}� ∪ {ℎ?, 2;, I7, I8};

A14.1: deallocB I7;

A14.2: deallocB I8;

A15: eax = edi;

A15.1: deallocB I2;

A15.2: deallocE I1;

A16: esp = ebp-12; pop {ebx, esi, edi, ebp};

A17: ret;

(c) (Abstracted) 32-bit x86 Assembly Code.

Fig. 1. Example program with VLA and its lowerings to IR and assembly. Subscripts B and D denote signed

and unsigned comparison respectively. Bold font (parts of) instructions are added by our algorithm.

2 EXECUTION SEMANTICS AND NOTION OF CORRECT TRANSLATION

We are interested in showing that an x86 assembly program A is a correct translation of the unopti-
mized IR representation of a C program C. Prior TV efforts identify a lockstep correlation between
(potentially unrolled) iterations of loops in the two programs to show equivalence [Churchill et al.
2019]. These correlations can be represented through a product program that executes C and A in
lockstep, using a careful choice of program path correlations, to keep the machine states of both
programs related at the ends of correlated paths [Gupta et al. 2020; Zaks and Pnueli 2008].

Our TV algorithm additionally attempts to identify a lockstep correlation between the dynamic
(de)allocation events and procedure-call events performed in both programs, i.e., we require the
order and values of these execution events to be identical in both programs. To identify a lockstep
correlation, our algorithm annotates A with (de)allocation instructions and procedure-call argu-
ments. Our key insight is to define a refinement relation between C and A through the existence of
an annotation in A. We also generalize the definition of a product program so it can be used to
witness refinement in the presence of non-determinism due to addresses of dynamically-allocated
local memory, UB, and stack overflow.
Overview through example: In C, an alloc instruction returns a non-deterministic address of

the newly allocated region with non-deterministic contents, e.g., in fig. 1b, the address (?I2) and
initial contents of VLA v allocated at I2 are non-deterministic. In fig. 1c, our algorithm annotates
an allocB instruction at A4.2 to correlate in lockstep with I2, so that ?I2’s determinized value is
identified through its first operand (esp). An allocB instruction allocates a contiguous address
interval from the stack, starting at esp in this case, to a local variable. The second (4*(eax+2)),
third (4), and fourth (I2) operands of allocB specify the allocation size in bytes, required alignment,
and the PC of the correlated allocation instruction in C (which also identifies the local variable)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:4 Abhishek Rose and Sorav Bansal

respectively. The determinized values of the initial contents of VLA v at I2 are identified to be equal
to the contents of the stack region [esp,esp+4*(eax+2)-1] at A4.1. A corresponding deallocB
instruction, that correlates in lockstep with I14, is annotated at A15.1 to free the memory allocated
by A4.2 (both have operand I2) and return it to stack.

A procedure call appears as an x86 call instruction and we annotate the actual arguments as its
operands in A. In fig. 1c, the two operands (esp and esp+4) annotated at A14 are the determinized
values of ?I7 and ?I8, as obtained through x86 calling conventions. The last annotation at A14 is the
set of memory regions (e.g.,� , ℎ? , 2; , . . . , as described in section 2.2.2) observable by printf in A —
this is equal to the set of memory regions observable by printf in C, as obtained through an over-
approximate points-to analysis. Annotations of allocB at A13.{1,2} and deallocB at A14.{1,2}
identify the memory regions occupied by printf’s parameters during printf’s execution.
Consider the local variable i, allocated at I1, with address ?I1 in fig. 1b. Because i’s address is

never taken in the source program, a correlation of ?I1 with its determinized value in A’s stack
is not necessarily required. Further, the compiler may register-allocate i in which case no stack
address exists for i, e.g., i lives in eax at A8-A11 in fig. 1c. The allocE instruction annotated at
A4.1 performs a “virtual allocation” for variable i in lockstep with I1. The first (4), second (4),
and third (I1) operands of allocE indicate the allocation size, required alignment, and the PC of
the correlated allocation in C respectively. The corresponding deallocE instruction, annotated at
A15.2, correlates in lockstep with I15. The address and initial contents of the memory allocated
by allocE are chosen non-deterministically in A, and are assumed to be equal to the address
and initial contents of memory allocated by a correlated alloc in C, e.g., vI1 = ?I1 at A4.1. A
“virtually-allocated region” is never used byA. We introduce the (de)allocB,E instructions formally
in section 2.4.

Consider the memory access v[*i] at I5 in fig. 1b, and assume we identify a lockstep correlation
of this memory access with the assembly program’s access mem4[esi+4*eax] at A10 in fig. 1c, with
value relations esi=v and eax=*i. We need to cater to the possibility where *i>B*n+2 (equivalently,
eax >B mem4[ebp+12]+2), which would trigger UB in C, and may go out of variable bounds in stack
in assembly. Our product program encodes the necessary UB semantics that allow anything to
happen in assembly (including out of bound stack access) if UB is triggered in C.

Finally, consider the stackpointer decrement instruction at A4 in fig. 1c. If eax (which corresponds
to *n) is too large, this instruction at A4 may potentially overflow the stack space. Our product
program encodes the assumption that an assembly program will have the necessary stack space
required for execution, which is necessary to be able to validate a translation from IR to assembly.

Thus, we are interested in identifying legal annotations of (de)allocB,E instructions and operands
of procedure-call instructions in A, such that the execution behaviours of A can be shown to refine
the execution behaviours of C, assuming A has the required stack space for execution. We show
refinement separately for each procedure � in C and its corresponding implementation � in A.
Thereafter, a coinductive argument shows refinement for full programs C and A starting at the
main() procedure. We do not support inter-procedural transformations.
Paper organization: Sections 2.1 to 2.3 describe a procedure’s execution semantics for both IR

and assembly representations. Refinement, through annotations, is defined in section 2.4. Section 3
defines a product program and its associated requirements such that refinement can be witnessed,
and section 4 provides an algorithm to automatically construct such a product program.

2.1 Intermediate and Assembly Representations

2.1.1 IR. The unoptimized IR used to represent C is mostly a subset of LLVM — it supports all the
primitive types (integer, float, code labels) and the derived types (pointer, array, struct, procedure)
of LLVM. Being unoptimized, our IR does not need to support LLVM’s undef and poison values,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:5

va_start(ap, ;0BC)

0 ≔ va_start_ptr
store void∗, 4, 0, ⟨|0? ⟨|

va_arg(ap, g)

0 ≔ load void∗, 4, ⟨|0? ⟨|
A4BD;C ≔ load ⟨|g ⟨| , ⟨|alignof(g) ⟨| , 0
0′ ≔ 0 + ⟨|roundup4 (sizeof(g)) ⟨|
store void∗, 4, 0′, ⟨|0? ⟨|

va_copy(aq, ap)

0 ≔ load void∗, 4, ⟨|0? ⟨|
store void∗, 4, 0, ⟨|0@ ⟨|

va_end(ap)

store void∗, 4, 0, ⟨|0? ⟨|

Fig. 2. Translation of C’s variadic macros to LLVM3 instructions. roundup4 (0) returns the closest multiple of

4 greater than or equal to 0.

it instead treats all error conditions as UB. Syntactic conversion of C to LLVM IR entails the
usual conversion of types/operators. A global variable name 6 or a parameter name ~ appearing
in a C procedure body is translated to the variable’s start address in IR, denoted lb.6 and lb.~

respectively1. A local variable declaration or a call to C’s alloca() operator is converted to LLVM’s
alloca instruction, and to distinguish the two, we henceforth refer to the latter as the “alloc”
instruction. Unlike LLVM, our IR also supports a dealloc instruction that deallocates a variable at
the end of its scope — we use LLVM’s stack{save,restore} intrinsics (that maintain equivalent
scope information for a different purpose) to introduce explicit dealloc instructions in our IR.
Henceforth, we refer to our IR as LLVM3 (for LLVM + dealloc).

We discuss our logical model in the context of compilation to 32-bit x86 for the relative simplicity
of the calling conventions in 32-bit mode. Like LLVM, a procedure definition in LLVM3 can only
return a scalar value — aggregate return value is passed in memory. Unlike LLVM which allocates
memory for a parameter only if its address is taken, LLVM3 allocates memory for all parameters —
LLVM3 thus takes all parameters through pointers, e.g., both n and m are passed through pointers in
fig. 1b. This makes the translation of a procedure-call from C to LLVM3 slightly more verbose, as
explicit instructions to (de)allocate memory for the arguments are required. An example of this
translation is shown in fig. 1 where a call to printf at C5 of fig. 1a translates to instructions I7-I12
in fig. 1b: the LLVM3 program performs two allocations, one for the format string, and another for
the variable argument list; the latter represented as an object of “struct” type containing two ints.
The call instruction takes the pointers returned by these allocations as operands.

Figure 2 shows the C-to-LLVM3 translations for variadic macros. The translation rules have
template holes marked by ⟨| ⟨| for types and variables of C which are populated at the time of
translation with appropriate LLVM3 entities. LLVM3 ’s va_start_ptr instruction returns the first
address of the current procedure’s variable argument list.

2.1.2 Assembly. Broadly, an assembly program A consists of a code section (with a sequence of
assembly instructions), a data section (with read-only and read-write global variables), and a symbol
table that maps string symbols to memory addresses in code and data sections. The validator checks
that the regions specified by the symbol table are well-aligned and non-overlapping, and uses it to
relate a global variable or procedure in C to its address or implementation in A.
We assume that the OS guarantees the caller-side contract of the ABI calling conventions for

the entry procedure, main(). For 32-bit x86, this means that at the start of program execution, the
stackpointer is available in register esp, and the return address and input parameters (argc,argv)
to main() are available in the stack region just above the stackpointer. For other procedure-calls,
the validator verifies the adherence to calling conventions at a callsite (in the caller) and assumes
adherence at procedure entry (in the callee). Heap allocation procedures like malloc() are left
uninterpreted, and so, the only compiler-visible way to allocate (and deallocate) memory in A is
through the decrement (and increment) of the stackpointer stored in register esp.

2.1.3 Allocation and Deallocation. Allocation and deallocation instructions appear only in C, and
do not appear in A. Let � represent a procedure in program C.

1As we will also see later, lb.E denotes the lower bound of the memory addresses occupied by variable with name E.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:6 Abhishek Rose and Sorav Bansal

An LLVM3 instruction “?0
�
: v ≔ alloc n, g, align” allocates a contiguous region of local

memory with space for n elements of type g aligned by align, and returns its start address in
v. The PC, ?0

�
, of an alloc instruction is also called an allocation site (denoted by I), and let the

set of allocation sites in � be / . During conversion of the C program to LLVM3 , we distinguish
between allocation sites due to the declaration of a local variable (or a procedure-call argument)
and allocation sites due to a call to alloca() — we use /; for the former and /0 for the latter, so
that / = /; ∪ /0 .
The address of an allocated region is non-deterministic, but is subject to twoWell-Formedness

(WF) constraints: (1) the newly allocated memory region should be separate from all currently
allocated memory regions, i.e., there should be no overlap; and (2) the address of the newly allocated
memory region should be aligned by align.
An LLVM3 instruction “?3

�
: dealloc I” deallocates all local memory regions allocated due to

the execution of allocation site I ∈ / .

2.2 Transition Graph Representation

An LLVM3 or assembly instruction may mutate the machine state, transfer control, perform I/O,
or terminate the execution. We represent a C procedure, � , as a transition graph, � = (N� , E�),
with a finite set of nodes N� = {=B = =1, =2, . . . , =<}, and a finite set of labeled directed edges E� .
A unique node =B represents the start node or entry point of � , and every other node = 9 must be
reachable from =B . A node with no outgoing edges is a terminating node. A variable in� is identified
by its scope-resolved unique name. The machine state of � consists of the set of input parameters
#‰~ , set of temporary variables

#‰

C , and an explicit array variable"� denoting the current state of
memory. We use i# to denote a bitvector type of size # > 0."� is of type T("�) = i32 → i8.
An assembly implementation of the C procedure � , identified through the symbol table, is the

assembly procedure �. The machine state of � consists of its hardware registers # ‰A46B and memory
"�. Similarly to � , � = (N�, E�) is also represented as a transition graph.

Let % ∈ {�,�}. In addition to the memory (data) state"% , we also need to track the allocation
state, i.e., the set of intervals of addresses that have been allocated by the procedure. We use
U (potentially with a subscript) to denote a memory address of bitvector type. Let 8 = [U1, U4]
represent an address interval starting at U1 and ending at U4 (both inclusive), such that U1 ≤D U4
(where ≤D is unsigned comparison operator). Let [U]F be a shorthand for the address interval
[U, U +F − 1i32], where =i32 is the two’s complement representation of integer = using 32 bits.

2.2.1 Address Set. Let Σ (potentially with a sub- or superscript) represent a set of addresses, or an
address set. An empty address set is represented by ∅, and an address set of contiguous addresses
is an interval 8 . Two address sets overlap, written ov(Σ1, Σ2), iff Σ1 ∩ Σ2 ≠ ∅. Extended to< ≥ 2

sets, ov(Σ1, Σ2, . . . , Σ<) ⇔ ∃1≤ 91< 92≤<ov(Σ 91 , Σ 92). |Σ| represents the number of distinct addresses
in Σ. For a non-empty address set, lb(Σ) and ub(Σ) represent the smallest and largest address
respectively in Σ. comp(Σ) represents the complement of Σ, so that: ∀U : (U ∈ Σ) ⇔ (U ∉ comp(Σ)).

2.2.2 Memory Regions. To support dynamic (de)allocation, an execution model needs to individ-
ually track regions of memory belonging to each variable, heap, stack, etc. We next describe the
memory regions tracked by our model.

(1) Let � be the set of names of all global variables in C. For each global variable 6 ∈ � , we track
the memory region belonging to that variable. We use the name of a global variable 6 ∈ � as its
region identifier to identify the region belonging to 6 in both � and �.

(2) For a procedure � , let . be the set of names of formal parameters, including the variadic
parameter, if present. We use the special name vrdc for the variadic parameter. The memory
region belonging to a parameter ~ ∈ . is called ~ in both � and �.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:7

(3) The memory region allocated by allocation site I ∈ / is called I in � . In �, our algorithm
potentially annotates allocation instructions corresponding to an allocation site I in � .

(4) ℎ? denotes the region belonging to the program heap (managed by the OS) in both � and �.
(5) Local variables and actual arguments may be allocated by the call chain of a procedure (caller,

caller’s caller, and so on). This is denoted by region 2; , or callers’ locals, in both � and �.
(6) In procedure�, stack memory can be allocated and deallocated through stackpointer decrement

and increment. The addresses belonging to the stack frame of � (but not to a local variable
I ∈ / or a parameter ~ ∈ .) belong to the BC: (stack) region in �. The BC: region is absent in � .

(7) Similarly, in �, we use 2B (callers’ stack) to identify the region that belongs to the stack space
(but not to 2;) of the call-chain of procedure �. 2B is absent in � .

(8) Program A may use more global memory than C, e.g., to store pre-computed constants to
implement vectorizing transformations. Let � be the set of names of all assembly-only global

variables in A. For each 5 ∈ � , its memory region in � is identified by 5 .
(9) The region free denotes the free space, that does not belong to any of the aforementioned

regions, in both � and �,

Let ' = �∪. ∪/∪�∪{ℎ?, 2;, BC:, 2B, free} represent all region identifiers; � = �∪. ∪/∪{ℎ?, 2;}

denote the regions in both � and �; and (= {BC:, 2B} denote the stack regions in �.
Let �A ⊆ � be the set of read-only global variables in C; and, let �F = � \�A denote the set of

read-write global variables. We define �A ⊆ � and �F = � \ �A analogously.
For each non-free region A ∈ (' \ {free}), the machine state of a procedure % includes a unique

variable ΣA
%
that tracks region A ’s address set as % executes. If ΣA

%
is a contiguous non-empty interval,

we also refer to it as 8A
%
. For A ∈ � ∪ . ∪ � ∪ {ℎ?, 2;, 2B}, ΣA

%
remains constant throughout % ’s

execution. For #‰A ⊆ ', we define an expression Σ
#‰A
%

=
⋃

A ∈ #‰A Σ
A
%
. Because � does not have a stack or

an assembly-only global variable, Σ�∪(
�

= ∅ holds throughout �’s execution. At any point in % ’s

execution, the free space can be computed as Σfree
%

= comp(Σ�∪�∪(
%

). Notice that we do not use an

explicit variable to track Σ
free
%

.

2.2.3 Ghost Variables. Our validator introduces ghost variables in a procedure’s execution seman-
tics, i.e., variables that were not originally present in % . We use G to indicate that G is a ghost
variable. For each region A ∈ � ∪ . ∪ / (A ∈ �), we introduce em.A , lb.A , and ub.A in � (�) to
track the emptiness (whether the region is empty), lower bound (smallest address), and upper bound

(largest address) of ΣA
�
(ΣA

�
) respectively; for A ∈ � ∪ . (A ∈ �), sz.A tracks the size of ΣA

�
(ΣA

�
), and

for I ∈ / , lstSz.I tracks the size of last allocation due to allocation-site I. Σ
rd
%

and Σ
wr
%

track the set

of addresses read and written by % respectively. Let + be the set of all ghost variables.

2.2.4 Error Codes. Execution of � or � may terminate successfully, may never terminate, or may
terminate with an error. We support two error codes to distinguish between two categories of
errors:� and�. In �:� represents an occurrence of UB, and� represents a violation of a WF
constraint that needs to be ensured either by the compiler or the OS (both external to the program
itself). In �:� represents UB or a translation error, and� represents occurrence of a condition
that can be assumed to never occur, e.g., if the OS ensures that it never occurs. In summary, for a
procedure % ,� represents an error condition that % can assume to be absent (because the external
environment ensures it), while � represents an error that % must ensure to be absent.

2.2.5 Outside World and Observable Trace. Let Ω% be a state of the outside world (OS/hardware) for
% that supplies external inputs whenever % reads from it, and consumes external outputs generated
by % . Ω% is assumed to mutate arbitrarily but deterministically based on the values consumed or
produced due to the I/O operations performed by % during execution. Let)% be a potentially-infinite
sequence of observable trace events generated by an execution of % .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:8 Abhishek Rose and Sorav Bansal

2.2.6 Expressions. Let variable E and variables #‰E or #‰G be drawn from Vars = (
#‰

C , # ‰A46B, "% , Σ
A
%
,

+) (for all % ∈ {�,�} and for all A ∈ (' \ {free})); 4 (#‰G) be an expression over #‰G , and � (#‰G)

be a list of expressions over #‰G . An expression 4 (#‰G) is a well-formed combination of constants,
variables #‰G , and arithmetic, logical, relational, memory access, and address set operators. For
memory reads and writes, select (sel for short) and store (st for short) operations are used to
access and modify"% at a given address U . Further, the sel and st operators are associated with
a sz parameter: selsz(arr,U) returns a little-endian concatenation of sz bytes starting at U in
the array arr. Similarly, stsz(arr,U,data) returns a new array that has contents identical to arr
except for the sz bytes starting at U which have been replaced by data in little-endian format. To
encode reads/writes to a region of memory, we define projection and updation operations.

Definition 2.1. cΣ ("%) denotes the projection of"% on addresses in Σ, i.e., if" ′% = cΣ ("%), then
∀U ∈ Σ : sel1 ("

′
% , U) = sel1 ("% , U) and ∀U ∉ Σ : sel1 ("

′
% , U) = 0. The sentinel value 0 is used for

the addresses outside Σ. We use"%1 =Σ "%2 as shorthand for (cΣ ("%1) = cΣ ("%2)).

Definition 2.2. updΣ ("% , ") denotes the updation of"% on addresses in Σ using the values in" .
If" ′% = updΣ ("% , "), then" ′% =Σ " and" ′% =comp(Σ) "% hold.

2.2.7 Instructions. Each edge 4% ∈ E% is labeled with one of the following graph instructions:

(1) A simultaneous assignment of the form #‰E ≔ � (#‰G). Because variables #‰E and #‰G may include"% ,
an assignment suffices for encoding memory loads and stores. Similarly, because the variables
may be drawn from Σ

I
%
(for an allocation site I), an assignment is also used to encode the

allocation of an interval 8new (Σ
I
%
≔ Σ

I
%
∪ 8new) and the deallocation of all addresses allocated

due to I (ΣI
%
≔ ∅). Stack allocation and deallocation in � can be similarly represented as

Σ
BC:
�
≔ Σ

BC:
�
∪ 8new and Σ

BC:
�
≔ Σ

BC:
�
\ 8new respectively.

(2) A guard instruction, 4 (#‰G)?, indicates that when execution reaches its head, the edge is taken iff
its edge condition 4 (#‰G) evaluates to true. For every other instruction, the edge is always taken
upon reaching its head, i.e., its edge condition is true. For a non-terminating node =% ∈ N% ,
the guards of all edges departing from =% must be mutually exclusive, and their disjunction
must evaluate to true.

(3) A type-parametric choose instruction \ (#‰g). Instruction #‰E ≔ \ (#‰g) non-deterministically
chooses values of types #‰g and assigns them to variables #‰E , e.g., amemorywith non-deterministic
contents is obtained by using \ (i32 → i8).

(4) A read (rd) or write (wr) I/O instruction. A read instruction #‰E ≔ rd(#‰g) reads values of types
#‰g from the outside world into variables #‰E , e.g., an address set is read using Σ ≔ rd(2i32).
A write instruction wr(+ (� (#‰G))) writes the value constructed by value constructor + using
� (#‰G) to the outside world. A value constructor is defined for each type of observable event. For
a procedure-call, fcall(d, #‰E , #‰A , ") represents value constructed for a procedure-call to callee
with name (or address) d , the actual arguments #‰E , callee-observable regions #‰A , and memory" .
Similarly, ret(� (#‰G)) is a value constructed during procedure return that captures observable
values computed through � (#‰G). Local (de)allocation events have their own value constructors,
allocBegin(I,F), allocEnd(I, 8, "), and dealloc(I), which represent (de)allocation due to
allocation site I with the associated observablesF (size), 8 (interval), and" (memory).
A read or write instruction mutates Ω% arbitrarily based on the read and written values. Further,
the data items read or written are appended to the observable trace)% . Let read #‰g (Ω%) be
an uninterpreted function that reads values of types #‰g from Ω% ; and io(Ω% ,

#‰E , rw) be an
uninterpreted function that returns an updated state of Ω% after an I/O operation of type
rw ∈ {r, w} (read or write) with values #‰E . Thus, in its explicit syntax, #‰E ≔ rd(#‰g) translates to
a sequence of instructions: #‰E ≔ read #‰g (Ω%); Ω% ≔ io(Ω% ,

#‰E , r);)% ≔)% ·
#‰E , where · is the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:9

Table 1. Definitions of operators and predicates used in translations in figs. 3 to 6
Operator Definition

sz(g) Returns the size (in bytes) of type g . For example, sz(i32) = 4, sz(i8∗) = 4, and sz([80 x i8]) = 80.
T(0) Returns the type g of 0 where 0 can be a global variable, a parameter, or a register. For example, T(eax) = i32 .
△g (eax, edx) A macro operator which derives the return value of an assembly procedure with return type g from input registers eax

and edx using the calling conventions, e.g., △i8 (eax, edx) = extract7,0 (eax) , △i32 (eax, edx) = eax, △i64 (eax, edx) =

concat(edx, eax) , where extractℎ,; (0) extracts bitsℎ down to ; from 0 and concat(0,1) returns the bitvector concate-
nation of 0 and 1 where 1 takes the less significant position.

▽g (E) Inverse of △g (eax, edx) . Distributes the packed bitvector E of type g into two bitvectors of 32 bit-width each, setting the
bits not covered by E to some non-deterministic value.

ROMA
%
(8) Returns a memory array containing the contents of read-only global variable named A in % . The contents are mapped at

the addresses in the provided interval 8 .
addrSets� () Returns the address sets of the assembly-only global variables � using the symbol table in A.

Predicate Definition

aligned= (0) Bitvector 0 is at least = bytes aligned. Equivalent to: 0%= = 0, where % is remainder operator.
isAlignedIntrvl0 (?, F) A F-sized sequence of addresses starting at ? is aligned by 0 and does not wraparound. Equivalent to:

aligned0 (?) ∧ (? ≤D ? + F − 1i32) .

accessIsSafeCg,0 (?, Σ) Equivalent to: isAlignedIntrvlalign(0) (?, sz(g)) ∧ ([?]sz(g) ⊆ Σ) .

addrSetsAreWF(Σ
ℎ?

%
, Σ2;

%
,

. . . , 8
6

%
, . . . , Σ

5

%
, . . . , 8

~

%
,

. . . , Σvrdc
%
)

The address sets passed as parameter are well-formed with respect to C semantics. Equivalent to:

(0i32 ∉ Σ
�∪�∪.∪{ℎ?,2; }

%
) ∧ ¬ov(Σ

ℎ?

%
, Σ2;

%
, . . . , 8

6

%
, . . . , Σ

5

%
, . . . , 8

~

%
, . . . , Σvrdc

%
) ∧ (Σvrdc

%
≠ ∅ ⇒

isInterval(Σvrdc
%
)) ∧ ∀A∈�∪(. \vrdc)∪� (|8

A
%
| = sz(T(A)) ∧ alignedalgnmnt(A) (lb(8

A
%
))) , where

isInterval(Σvrdc
%
) holds iff the address set Σvrdc

%
is an interval, algnmnt(A) returns the alignment of

variable A .
intrvlInSet(U1 , U4 , Σ) The pair (U1 , U4) forms a valid interval inside the address set Σ. Equivalent to: (U1 ≠ 0i32) ∧ (U1 ≤D

U4) ∧ ([U1 , U4] ⊆ Σ)

intrvlInSet0 (U1 , U4 , Σ) Equivalent to: aligned0 (U1) ∧ intrvlInSet(U1 , U4 , Σ)
obeyCC(4esp,

#‰g , #‰G) Pointers #‰G match the expected addresses of arguments for a procedure-call in assembly. Based on the calling
conventions, obeyCC uses the value of the current stackpointer (4esp) and parameter types (#‰g) to obtain the
expected addresses of the arguments. For example, obeyCC(esp, (i8, i32), (esp, esp + 4i32)) holds.

overflow<D; (0,1) Signed multiplication of bitvectors 0, 1 overflows. E.g., overflow<D; (2147483647i32 , 2i32) holds.

stkIsWF(esp, stk4 , cs4 , #‰g ,

Σ
ℎ?

�
, Σ2;

�
, Σ�∪�

�
, . . . , 8

~

�
, . . . ,

Σ
vrdc
�
)

The pairs (esp, stk4) , (stk4 , cs4) represent well-formed intervals for initial BC: and 2B regions with

respect to parameter types #‰g and other (input) address sets in �. Equivalent to: aligned16 (esp + 4i32)

∧ (esp ≤D esp + 4i32) ∧ ¬ov([esp]4i32
, Σ

�∪�∪.∪{ℎ?,2; }

�
) ∧ obeyCC(esp + 4i32 ,

#‰g , . . . , lb(8
~

�
), . . .) ∧

(stk4 <D cs4) ∧ ¬ov([stk4 + 1i32 , cs4], Σ
�∪�∪{ℎ?}

�
) ∧ Σ

2;
�
⊆ [stk4 + 1i32 , cs4]

UB% (op,
#‰G) Application of operation op of procedure% on arguments #‰G triggers UB. E.g., UB� (udiv, (1i32 , 0i32)) holds.

trace concatenation operator. Similarly, wr(+ (� (#‰G))) translates to: Ω% ≔ io(Ω% ,+ (� (
#‰G)), w);

)% ≔)% ·+ (� (
#‰G)). Henceforth, we only use the implicit syntax for brevity.

(5) An error-free and error-indicating halt instruction that terminates execution. halt(∅) indicates
termination without error, and halt(+) indicates termination with error code + ∈ {�,�}.
Upon termination without error, a special exit event is appended to observable trace)% . Upon
termination with error, the error code is appended to)% . Thus, the destination of an edge with
a halt instruction is a terminating node. We create a unique terminating node for an error-free
exit. We also create a unique terminating node for each error code, also called an error node; an
edge terminating at an error node is called an error edge. �% and �% represent error nodes in %

for error� and� respectively. Execution transfers to an error node upon encountering the

corresponding error. Let N
❍❍*,
%

= N% \ {�% ,�% } be the set of non-error nodes in % .

In addition to the observable trace events generated by rd, wr, and halt instructions, the execution
of every instruction in % also appends an observable silent trace event, denoted ⊥, to)% . Silent trace
events count the number of executed instructions as a proxy for observing the passage of time.

2.3 Translations of � and � to Their Graph Representations

Figures 3 and 4 (and figs. 5 and 6 later) present the key translation rules from LLVM3 and (abstracted)
assembly instructions to graph instructions. Each rule is composed of three parts separated by
a horizontal line segment: on the left is the name of the rule, above the line segment is the
LLVM3 /assembly instruction, and below the line segment is the graph instructions listing. We
describe the operators and predicates used in the rules in table 1. As an example, the top right

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:10 Abhishek Rose and Sorav Bansal

(Entry�)
?
9
�
: def� (#‰g)

Σ
ℎ?

�
, Σ2;� , . . . , 8

6

�
, . . . , 8

~

�
, . . . , Σvrdc� ≔ rd(2i32 , 2i32 , . . . , 2i32) ;

Σ
BC:
� , Σ2B� , . . . , Σ

5

�
, . . . , ΣI� , . . . , Σ

rd
�

, Σ
wr
�
≔ ∅, ∅, . . . , ∅;

if (¬addrSetsAreWF(Σ
ℎ?

�
, Σ2;� , . . . , 8

6

�
, . . . , Σ

5

�
, . . . , 8

~

�
, . . . , Σvrdc�))

halt(�);

"� ≔ \ (i32 → i8) ; "� ≔ upd
Σ
�
�
("� , rd(i32 → i8)) ;

for 6 in�A { "� ≔ upd
8
6
�
("� , ROM

6

�
(8
6

�
)) ; }

for I in / { em.I ≔ true; V" (I) ≔ ∅; }
for A in� ∪. ∪ {ℎ?, 2; } { V" (A) ≔ � ∪ {ℎ?, 2; }; }
for A in� ∪. { sz.A , em.A ≔ |ΣA� |, (|Σ

A
� | = 0i32) ;

if(¬ em.A) { lb.A , ub.A ≔ lb(ΣA�), ub(Σ
A
�) ; } V (lb.A) ≔ {A };

}

(Alloc)
I : E ≔ alloc =, g, 0

IF{I ∈ /; }{ if (= ≤B 0i32 ∨ overflow<D; (=, sz(g))) halt(�); }

wr(allocBegin(I,=∗sz(g))) ;
U1 ≔ \ (i32) ; U4 ≔ U1 + =∗sz(g) − 1i32 ;

if (¬intrvlInSet0 (U1 , U4 , Σ
free
�)) halt(�);

Σ
I
� ≔ Σ

I
� ∪ [U1 , U4]; "� ≔ upd[U1,U4]

("� , \ (i32 → i8)) ;

lb.I ≔ em.I ? U1 : min(lb.I , U1) ; lstSz.I ≔ =∗sz(g) ;
ub.I ≔ em.I ? U4 : max(ub.I , U4) ; em.I ≔ false;

E ≔ U1 ; V (E) ≔ {I };

wr(allocEnd(I, [U1 , U4], c [U1,U4] ("�))) ;

(Op)
?
9
�
: E ≔ op(#‰G)

if (UB� (op,
#‰G)) halt(�);

E ≔ op(#‰G) ; V (E) ≔ Vop (V (#‰G)) ;

(RetV)
?
9
�
: ret void

wr(ret(c
Σ
�
�
("�))) ;

halt(∅);

(Ret�)
?
9
�
: ret E

wr(ret(E, c
Σ
�
�
("�))) ;

halt(∅);

(AssignConst)
?
9
�
: E ≔ 2

E ≔ 2 ; V (E) ≔ ∅;

(Dealloc)
?
9
�
: dealloc I

Σ
I
� ≔ ∅; em.I ≔ true;

wr(dealloc(I)) ;

(VaStartPtr)
?
9
�
: ? ≔ va_start_ptr

if (Σvrdc� = ∅) {
? ≔ 0i32 ; V (?) ≔ ∅;
} else {
? ≔ lb.vrdc ; V (?) ≔ {vrdc};
}

(Load�)
?
9
�
: E ≔ load g, 0, ?

if (¬accessIsSafeCg,0 (?, Σ
V (?)

�
)) halt(�);

E ≔ selsz(g) ("� , ?) ;

V (E) ≔ V" (V (?)) ; Σ
rd
�
≔ Σ

rd
�
∪ [?]sz(g) ;

(Store�)
?
9
�
: store g, 0, E, ?

if (¬accessIsSafeCg,0 (?, Σ
V (?)\�A
�

)) halt(�);

"� ≔ stsz(g) ("� , ?, E) ;

V" (V (?)) ≔ V" (V (?)) ∪ V (E) ; Σ
wr
�
≔ Σ

wr
�
∪ [?]sz(g) ;

(CallV)
?
9
�
: call void d (#‰g #‰G)

V∗ ≔ V∗" (
⋃

G∈ #‰G

V (G) ∪� ∪ {ℎ? }) ;

wr(fcall(d, #‰G , V∗, c
Σ
V∗

�

("�))) ;

"� ≔ upd
Σ
V∗\�A
�

("� , rd(i32 → i8)) ;

V" (V
∗ \�A) ≔ V∗;

(Call�)
?
9
�
: E ≔ callW d (#‰g #‰G) W ≠ void

V∗ ≔ V∗" (
⋃

G∈ #‰G

V (G) ∪� ∪ {ℎ? }) ;

wr(fcall(d, #‰G , V∗, c
Σ
V∗

�

("�))) ;

"� ≔ upd
Σ
V∗\�A
�

("� , rd(i32 → i8)) ;

E ≔ rd(W) ; V (E), V" (V
∗ \�A) ≔ V∗, V∗;

Fig. 3. Translation rules for converting LLVM3 instructions to graph instructions.

corner of fig. 3 shows the parametric (Op) rule which gives the translation of an operation using
arithmetic/logical/relational operator op in LLVM3 to corresponding graph instructions. We use
C-like constructs in graph instructions as syntactic sugar for brevity, e.g. ‘;’ is used for sequencing,
‘?:’ is used for conditional assignment, and if, else, and for are used for control flow transfer. We
highlight the read and write I/O instructions with a shaded background, and use bold, colored
fonts for halt instructions. We use macros IF and ELSE to choose translations based on a boolean
condition on the input syntax.

2.3.1 Translation of � . Figure 3 shows the translation rules for converting LLVM3 instructions
to graph instructions. The (Entry�) rule presents the initialization performed at the entry of a
procedure � . The address sets and memory state of � are initialized using reads from the outside
world Ω� . The address sets that are read are checked for well-formedness with respect to C
semantics, or else error� is triggered. The ghost variables are also appropriately initialized.
The (Alloc) and (Dealloc) rules provide semantics for the allocation and deallocation of

local memory at allocation site I — if I ∈ /; , = (the number of elements allocated) has additional
constraints for a UB-free execution. A (de)allocation instruction generates observable traces using
the wr instruction at the beginning and end of each execution of that instruction. We will later use

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:11

these traces to identify a lockstep correlation of (de)allocation events between � and �, towards
validating a translation.

In (Op), an application of op may trigger UB for certain inputs, as abstracted through the
UB� (op,

#‰G) operation. While there are many UBs in the C standard, we model only the ones that
we have seen getting exploited by the compiler for optimization. These include the UB associated
with a logical or arithmetic shift operation (second operand should be bounded by a limit which
is determined by the size of the first operand), address computation (no over- and under-flow),
and division operation (second operand should be non-zero). In (Load�) and (Store�), a UB-free
execution requires the dereferenced pointer ? to be non-NULL (≠ 0i32 in our modeling), aligned by
0, and have its access interval belong to the regions which ? may point to, or ? may be based on
(§6.5.6?8 of the C17 standard).

To identify the regions a pointer ? may point to, we define two maps: (1) V : Vars→ 2' , so that
for a (pointer) variable G ∈ Vars, V (G) returns the set of regions G may point to; and (2) V" : ' → 2' ,
so that for a region A ∈ ', V" (A) returns the set of regions that some (pointer) value stored in
cΣA

�
("�) may point to. V (#‰G) is equivalent to

⋃
G ∈ #‰G V (G), and V" (

#‰A) is equivalent to
⋃

A ∈ #‰A V" (A).

Similarly, V" (
#‰A1) ≔

#‰A2 is equivalent to ‘for A1 in
#‰A1 { V" (A1) ≔

#‰A2 ; }’. The initialization and
updation of V and V" due to each LLVM3 instruction can be seen in fig. 3. For an operation op,
Vop : 2' → 2' represents the over-approximate abstract transfer function for E ≔ op(#‰G), that
takes as input V (#‰G) and returns V (E). We use Vop (#‰A) = #‰A if op is bitwise complement and unary
negation. We use Vop (#‰A1, . . . ,

‰A<) =
⋃

1≤ 9≤<
#‰A 9 if op is bitvector addition, subtraction, shift, bitwise-

{and,or}, extraction, or concatenation. We use Vop (#‰A) = ∅ if op is bitvector multiplication, division,
logical, relational or any other remaining operator.
The translation of an LLVM3 procedure-call is given by the rules (CallV) and (Call�) and

involves producing non-silent observable trace events using the wr instruction for the callee
name/address, arguments, and callee-accessible regions and memory state. To model return values
and side-effects to the memory state due to a callee, rd instructions are used. A callee may access a
memory region iff it is transitively reachable from a global variable 6 ∈ � , the heap ℎ? , or one of the
arguments G ∈ #‰G . The transitively reachable memory regions are over-approximately computed
through a reflexive-transitive closure of V" , denoted V∗" .

A rd instruction clobbers the callee-observable state elements arbitrarily. Thus, if a callee proce-
dure terminates, wr and rd instructions over-approximately model the execution of a procedure-call.
Later, our definition of refinement (section 2.4) caters to the case when a callee procedure may not
terminate.

2.3.2 Translation of �. The translation rules for converting assembly instructions to graph in-
structions are shown in fig. 4. The assembly opcodes are abstracted to an IR-like syntax for ease of
exposition. For example, in (Load�), a memory read operation is represented by a load instruction
which is annotated with address ? , access size F (in bytes), and required alignment 0 (in bytes).
Similarly, in (Store�), a memory write operation is represented by a store instruction with similar
operands. Both (Load�) and (Store�) translations update the ghost address sets Σ

rd
�

and Σ
wr
�
,

in the same manner as done in � . Exceptions like division-by-zero or memory-access errors are
modeled as UB in A through UB� (rules (Op-esp) and (Op-Nesp))
(Op-esp) shows the translation of an instruction that updates the stackpointer. Assignment to

the stackpointer register esp may indicate allocation (push) or deallocation (pop) of stack space. A
stackpointer assignment which corresponds to a stackpointer decrement (push) is identified through

predicate isPush(?
9
�
,]1,]0) where]1 and]0 are the values of esp before and after the execution of

the instruction. We use isPush(?
9
�
,]1,]0) ⇔ (]1 >D]0). While this choice of isPush suffices for

most TV settings, we show in our technical report [Rose and Bansal 2024b] that if the translation is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:12 Abhishek Rose and Sorav Bansal

(Op-esp)
?
9
�
: esp ≔ op(#‰G)

if (UB� (op,
#‰G)) halt(�);

C ≔ op(#‰G) ;

if (isPush(?
9
�
, esp, C)) {

if (¬intrvlInSet(C, esp − 1i32 , Σ
free
�)) halt(�);

Σ
BC:
� ≔ Σ

BC:
� ∪ [C, esp − 1i32];

"� ≔ upd[C,esp−1i32
] ("�, \ (i32 → i8)) ;

} else if (C ≠ esp) {

if (¬intrvlInSet(esp, C − 1i32 , Σ
BC:
�)) halt(�);

Σ
BC:
� ≔ Σ

BC:
� \ [esp, C − 1i32];

}

esp ≔ C ; sp.?
9
�
≔ C ;

(Load�)
?
9
�
: E ≔ load F, 0, ?

if (¬isAlignedIntrvl0 (?, F)

∨ ov([?]F , Σ
free
�)) halt(�);

E ≔ selF ("�, ?) ;

Σ
rd
�
≔ Σ

rd
�
∪ [?]F ;

(Store�)
?
9
�
: store F, 0, ?, E

if (¬isAlignedIntrvl0 (?, F)

∨ ov([?]F , Σ
{free}∪�A ∪�A
�

))
halt(�);

"� ≔ stF ("�, ?, E) ;

Σ
wr
�
≔ Σ

wr
�
∪ [?]F ;

(Entry�)
?
9
�
: def�(#‰g)

Σ
ℎ?

�
, Σ2;� , . . . , 8

6

�
, . . . , 8

~

�
, . . . , Σvrdc� ≔ rd(2i32 , 2i32 , . . . , 2i32) ;

. . . , Σ
5

�
, . . . ≔ addrSets� () ; . . . , ΣI�, . . . ≔ . . . , ∅, . . . ;

if (¬addrSetsAreWF(Σ
ℎ?

�
, Σ2;� , . . . , 8

6

�
, . . . , Σ

5

�
, . . . , 8

~

�
, . . . , Σvrdc�))

halt(�);

"� ≔ \ (i32 → i8) ; "� ≔ upd
Σ
�
�
("�, rd(i32 → i8)) ;

for A in�A ∪ �A { "� ≔ upd8A
�
("�, ROM

A
� (8

A
�)) ; }

for A in # ‰A46B { A ≔ \ (T(A)) ; }

stk4 ≔ Σ
.
� ≠ ∅ ? ub(Σ.�) : esp + 3i32 ; cs4 ≔ \ (i32) ;

if (¬stkIsWF(esp, stk4 , cs4 , #‰g , Σ
ℎ?

�
, Σ2;� , Σ�∪�� , . . . , 8

~

�
, . . . , Σvrdc�))

halt(�);

Σ
BC:
� ≔ [esp, stk4] \ Σ

.
� ; Σ

2B
� ≔ [stk4 + 1i32 , cs4] \ Σ

2;
� ;

sp.4=CA~ ≔ esp; "2B
≔ cΣ

2B
�
("�) ; Σ

rd
�

, Σ
wr
�
≔ ∅, ∅;

41? , 4B8 , 438 , 41G , 48? ≔ ebp, esi, edi, ebx, sel4 ("�, esp) ;

for 5 in � { sz.5 , em.5 , lb.5 , ub.5 ≔ |Σ
5

�
|, |Σ

5

�
| = 0i32 , lb(Σ

5

�
), ub(Σ

5

�
) ; }

(Op-Nesp)
?
9
�
: A ≔ op(#‰G) A ≠ esp

if (UB� (op,
#‰G)) halt(�);

A ≔ op(#‰G) ;

(Ret�)
?
9
�
: ret g

if (sp.4=CA~ ≠ esp

∨ 41? ≠ ebp ∨ 4B8 ≠ esi

∨ 438 ≠ edi ∨ 41G ≠ ebx

∨ 48? ≠ sel4 ("�, esp)

∨ ¬("2B =Σ
2B
�

"�)) halt(�);

IF{g = void}{ wr(c
Σ
�
�
("�)) ; }

ELSE{

wr(ret(△g (eax, edx), c
Σ
�
�
("�))) ;

}
halt(∅);

Fig. 4. Translation rules for converting pseudo-assembly instructions to graph instructions.

performed by an adversarial compiler, discriminating a stack push from a pop is trickier and may
require external trusted guidance from the user. For a stackpointer decrement, a failure to allocate
stack space, either due to wraparound or overlap with other allocated space, triggers�, i.e., we
expect the environment (e.g., OS) to ensure that the required stack space is available to �. For a
stackpointer increment, it is a translation error if the stackpointer moves out of stack frame bounds
(captured by error code�). The stackpointer value at the end of an assignment instruction at PC

?
9
�
is saved in a ghost variable named sp.?

9
�
. These ghost variables help with inference of invariants

that relate a local variable’s address with stack addresses (discussed in section 4.1). During push,
the initial contents of the newly allocated stack region are chosen non-deterministically using
\ — this admits the possibility of arbitrary clobbering of the unallocated stack region below the
stackpointer due to asynchronous external interrupts, before it is allocated again.
(Entry�) shows the initialization of state elements of procedure �. For region A ∈ �, the

initialization of ΣA
�
and cΣA

�
(" ¥�) is similar to (Entry�). The address sets of all assembly-only

regions 5 ∈ � are initialized using A’s symbol table (addrSets� ()). The memory contents of
a read-only global variable A ∈ �A ∪ �A are initialized using ROMA

�
(8A
�
) (defined in table 1). The

machine registers are initialized with arbitrary contents (\) — the constraints on the esp register
are checked later, and � is generated if a constraint is violated. The x86 stack of an assembly
procedure includes the stack frame ΣBC:

�
of the currently executing procedure �, the parameters Σ.

�

of �, and the remaining space which includes caller-stack Σ
2B
�
and, possibly, the locals Σ2;

�
defined

in the call chain of �. Ghost variable sp.4=CA~ holds the esp value at entry of �. stk4 represents the

largest address in Σ
.∪{BC: }
�

so that at entry, ΣBC:
�

= [sp.4=CA~ , stk4] \ Σ
.
�
. If there are no parameters,

stk4 = esp + 3i32 represents the end of the region that holds the return address. Ghost variable

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:13

cs4 holds the largest address in Σ
{BC:,2B,2; }∪.
�

. At entry, due to the calling conventions, we assume
(through stkIsWF()) that: (1) the parameters are laid out at addresses above the stackpointer as
per calling conventions (obeyCC); (2) the value esp + 4i32 is 16-byte aligned; and (3) the caller stack

is above �’s stack frame ΣBC:
�

. A violation of these conditions trigger �.
Upon return (rule (Ret�)), we require that the callee-save registers, caller stack, and the return

address remain preserved — a violation of these conditions trigger�. For simplicity, we only tackle
scalar return values, and ignore aggregate return values that need to be passed in memory.

2.4 Observable Traces and Refinement Definition

Recall that a procedure execution yields an observable trace containing silent and non-silent events.
The error code of a trace) , written 4 ()), is either ∅ (indicating either non-termination or error-free
termination), or one of + ∈ {�,�} (indicating termination with error code +). The non-error part
of a trace) , written 4̃ ()), is) when 4 ()) = ∅, and) ′ such that) =) ′ · 4 ()) otherwise.

Definition 2.3. % ↓Ω) denotes the condition that for an initial outside world Ω , the execution of
a procedure % may produce an observable trace) (for some sequence of non-deterministic choices).

Definition 2.4. Traces) and) ′ are stuttering equivalent, written) =BC)
′, iff they differ only by

finite sequences of silent events ⊥. A trace) is a stuttering prefix of trace) ′, written) ≤BC)
′, iff

() ′ =BC)) ∨ (∃)
r :) ′ =BC () ·)

r)).

Definition 2.5. * Ω,)�
pre (�) denotes the condition: ∃)� : (� ↓Ω)� ·�) ∧ ()� ≤BC)�).

Definition 2.6. , Ω,)�
pre (�) denotes the condition: 4 ()�) = �∧(∃)� : (� ↓Ω)�) ∧ (4̃ ()�) ≤BC)�))

Definition 2.7. � ⊒ �, read � refines � (or � is refined by �), iff:

∀Ω : (� ↓Ω)�) ⇒ (,
Ω,)�
pre (�) ∨*

Ω,)�
pre (�) ∨ (∃)� : (� ↓Ω)�) ∧ ()� =BC)�)))

The, Ω,)�
pre (�) and *

Ω,)�
pre (�) conditions cater to the cases where � triggers � and � triggers

� respectively; the constituent ≤BC conditions ensure that a procedure call in � has identical
termination behaviour to a procedure-call in � before an error is triggered. If neither � triggers
� nor � triggers �,)� =BC)� ensures that � and � produce identical non-silent events at similar
speeds. In the absence of local variables and procedure-calls in� ,� ⊒ � implies a correct translation
from � to �.

2.4.1 Refinement Definition in the Presence of Local Variables and Procedure-Calls When All Lo-

cal Variables Are Allocated on the Stack in �. For each local variable (de)allocation and for each
procedure-call, our execution semantics generate a wr trace event in � (fig. 3). Thus, to reason
about refinement, we require correlated and equivalent trace events to be generated in �. For this,
we annotate � with two types of annotations to obtain ¤�:

(1) allocB and deallocB instructions are added to explicitly indicate the (de)allocation of a local
variable I ∈ / , e.g., a stack region may be marked as belonging to I through these annotations.

(2) A procedure-call, direct or indirect, is annotated with the types and addresses of the arguments
and the set of memory regions observable by the callee.

These annotations are intended to encode the correlations with the corresponding allocation,
deallocation, and procedure-call events in the source procedure � . For now, we assume that the
locations and values of these annotations in ¤� are coming from an oracle — later in section 4, we
present an algorithm to identify these annotations automatically in a best-effort manner.

Figure 5 presents three new instructions in ¤� — allocB , deallocB , and call — and their transla-
tions to graph instructions.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:14 Abhishek Rose and Sorav Bansal

(AllocS)
?
9
¤�
: allocB 4E , 4F , 0, I

wr(allocBegin(I, 4F)) ; E, F ≔ 4E , 4F ;

if (¬intrvlInSet0 (E, E + F − 1i32 , Σ
BC:
¤�
)) halt(�);

Σ
BC:
¤�
, ΣI¤� ≔ Σ

BC:
¤�
\ [E]F , Σ

I
¤�
∪ [E]F ;

wr(allocEnd(I, [E]F , c [E]F (" ¤�))) ;

(DeallocS)
?
9
¤�
: deallocB I

Σ
I
¤�
, ΣBC:¤� ≔ ∅, ΣBC:¤� ∪ Σ

I
¤�
;

wr(dealloc(I)) ;

(Call ¤�)
?
9
¤�
: call W d (#‰g #‰G) V∗

if (¬aligned16 (esp) ∨ ¬obeyCC(esp,
#‰g , #‰G))

halt(�);

wr(fcall(d, #‰G , V∗, c
Σ
V∗

¤�

(" ¤�))) ;

" ¤� ≔ upd
Σ
V∗\�A
¤�

(" ¤�, rd(i32 → i8)) ;

ecx ≔ \ (i32) ;
IF{W = void}{ eax, edx ≔ \ (i32, i32) ; }

ELSE{ eax, edx ≔ ▽W (rd(W)) ; }

Fig. 5. Additional translation rules for converting pseudo-assembly instructions to graph instructions for

procedures with only stack-allocated locals.

An instruction ‘?
9
¤�
: allocB 4E, 4F, 0, I’ represents the stack allocation of a local variable

identified by allocation site I. 4E is the expression for start address, 4F is the expression for allocation
size, and 0 is the required alignment of the start address. During stack allocation of a local variable
(AllocS), the allocated address must satisfy the required alignment and separation constraints, or
else � is triggered. An allocation removes an address interval from Σ

BC:
¤�

and adds it to Σ
I
¤�
.

A ‘?
9
¤�
: deallocB I’ instruction represents the deallocation of I and empties the address set ΣI¤�,

adding the removed addresses to Σ
BC:
¤�
(DeallocS).

For procedure-calls (Call ¤�), we annotate the call instruction in assembly to explicitly specify
the start addresses of the address regions belonging to the arguments (shown as #‰G in fig. 5). The
address region of an argument should have previously been demarcated using an allocB instruction.
Additionally, these address regions should satisfy the constraints imposed by the calling conventions
(obeyCC). The calling conventions also require the esp value to be 16-byte aligned. A procedure-call
is recorded as an observable event, along with the observation of the callee name (or address), the
addresses of the arguments, callee-observable regions and their memory contents. The returned
values, modeled through rd(i32 → i8) and rd(W), include the contents of the callee-observable
memory regions and the scalar values returned by the callee (in registers eax, edx). The callee
additionally clobbers the caller-save registers using \ .

Definition 2.8 (Refinement in the presence of only stack-allocated locals). � ⋗� iff: ∃ ¤� : � ⊒ ¤�

� ⋗� encodes the property that it is possible to annotate � to obtain ¤� so that the local variable
(de)allocation and procedure-call events of � and the annotated ¤� can be correlated in lockstep.
In the presence of stack-allocated local variables and procedure-calls, � ⋗ � implies a correct
translation from � to �. In the absence of local variables and procedure calls, � ⋗ � reduces to
� ⊒ � with ¤� = �.

2.4.2 Capabilities and Limitations of � ⋗ �. � ⋗ � requires that for allocations and procedure
calls that reuse the same stack space, their relative order remains preserved. This requirement is
sound but may be too strict for certain (arguably rare) compiler transformations that may reorder
the (de)allocation instructions that reuse the same stack space. Our refinement definition admits
intermittent register-allocation of (parts of) a local variable.
� ⋗� supports merging of multiple allocations into a single stackpointer decrement instruction.

Let ?B
�
be the PC of a single stackpointer decrement instruction that implements multiple allocations.

Merging can be encoded by adding multiple allocB instructions to �, in the same order as they
appear in� , to obtain ¤�, so that these allocB instructions execute only after ?B

�
executes; similarly,

the corresponding deallocB instructions must execute before a stackpointer increment instruction
deallocates this stack space.

CompCert’s preallocation is a special case of merging where stack space for all local variables is
allocated in the assembly procedure’s prologue and deallocated in the epilogue (with no reuse of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:15

(AllocV)
?
9
¥�
: E ≔ allocE 4F , 0, I;

wr(allocBegin(I;, 4F)) ; E, F ≔ \ (i32), 4F ;

if (¬intrvlInSet0 (E, E + F − 1i32 , comp(Σ
�
¥�
))) halt(�);

Σ
I;
¥�
|E ≔ Σ

I;
¥�
|E ∪ [E]F ;

wr(allocEnd(I;, [E]F , c [E]F (" ¥�))) ;

(AllocS’)
?
9
¥�
: allocB 4E , 4F , 0, I

. . .

if (ov([E]F , Σ
/;
¥�
|E)) halt(�);

if (¬intrvlInSet0 (E, E + F − 1i32 , Σ
BC:
¤�
)) halt(�);

Σ
BC:
¤�
, ΣI¤� ≔ Σ

BC:
¤�
\ [E]F , Σ

I
¤�
∪ [E]F ;

IF{I ∈ /; } { Σ
BC:
¥�
, ΣI¥� |

B
≔ Σ

BC:
¥�
\ [E]F , Σ

I
¥�
|B ∪ [E]F ; }

ELSE { ΣBC:¥� , ΣI¥� ≔ Σ
BC:
¥�
\ [E]F , Σ

I
¥�
∪ [E]F ; }

. . .

(Op-esp’)
?
9
¥�
: esp ≔ op(#‰G)

. . .

intrvlInSet(C, esp − 1i32 , Σ
free
¥�
∪Σ

/;
¥�
|E)

. . .

(DeallocV)
?
9
¥�
: deallocE I;

Σ
I;
¥�
|E ≔ ∅; wr(dealloc(I;)) ;

(Entry ¥�)
?
9
¥�
: def ¥�(#‰g)

. . . (same as fig. 4) . . .

for I in /; { Σ
I
¥�
|B , ΣI¥� |

E
≔ ∅, ∅; }

(Load ¥�)
?
9
¥�
: E ≔ load F 0 ?

. . .

ov([?]F , Σ
free
¥�
∪((Σ

/;
¥�
|E) \ Σ�∪(¥�))

. . .

(Store ¥�)
?
9
¥�
: store F 0 ? E

. . .

ov([?]F , Σ
{free}∪�A ∪�A
¥�

∪((Σ
/;
¥�
|E) \ Σ

�F∪(
¥�
))

. . .

(DeallocS’)
?
9
¥�
: deallocB I

Σ
I
¤�
, ΣBC:¤� ≔ ∅, ΣBC:¤� ∪ Σ

I
¤�
;

IF{I ∈ /; }{Σ
I
¥�
|B , ΣBC:¥� ≔ ∅, ΣBC:¥� ∪ Σ

I
¥�
|B ; }

ELSE {ΣI¥�, Σ
BC:
¥�
≔ ∅, ΣBC:¥� ∪ Σ

I
¥�
; } . . .

Fig. 6. Additional and revised translation rules for converting pseudo-assembly instructions to graph instruc-

tions for procedures with both stack and register allocated (or eliminated) locals.

stack space). In this case, our approach annotates � with (de)allocB instructions, potentially in
the middle of the procedure body, such that they execute in lockstep with the (de)allocations in � .
A compiler may reallocate stack space by reusing the same space for two or more local vari-

ables with non-overlapping lifetimes (potentially without an intervening stackpointer increment
instruction). If the relative order of (de)allocations is preserved, reallocation can be encoded by
annotating ¤� with a deallocB instruction (for deallocating the first variable) immediately followed
by an allocB instruction, such that the allocated region potentially overlaps with the previously
deallocated region. Our refinement definition may not be able to cater to a translation that changes
the relative order of (de)allocation instructions during reallocation.
Because our execution model observes each (de)allocation event (due to the wr instruction), a

successful refinement check ensures that the allocation states of ¤� and � are identical at every
correlated callsite. An inductive argument over C and A is thus used to show that the address set
for region identifier 2; is identical at the beginning of each correlated pair of procedures� and� (as
modeled through identical reads from the outside world in (Entry%) (% ∈ {�,�}) of figs. 3 and 4).

2.4.3 Refinement Definition in the Presence of Potentially Register-Allocated or Eliminated Local

Variables in�. If a local variable I; ∈ /; is either register-allocated or eliminated in�, there exists no
stack region in � that can be associated with I; . However, recall that our execution model observes
each allocation event in � through the wr instruction. Thus, for a successful refinement check, a
correlated allocation event still needs to be annotated in �. We pretend that a correlated allocation
occurs in� by introducing the notion of a virtual allocation instruction, called allocE , in�. Figure 6
shows the virtual (de)allocation instructions, allocE and deallocE , and the revised translations
of procedure-entry and allocB , deallocB , load, store, and esp-modifying instructions. Instead
of reproducing the full translations, we only show the changes with appropriate context. The
additions have a highlighted background and deletions are striked out. We update and annotate �

with the translations and instructions in figs. 5 and 6 to obtain ¥�.

A ‘?
9
¥�
: v ≔ allocE 4F, 0, I’ instruction non-deterministically chooses the start address (using

\ (i32)) of a local variable I of size 4F and alignment 0, performs a virtual allocation, and returns
the start address in v. The chosen start address is assumed to satisfy the desired WF constraints,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:16 Abhishek Rose and Sorav Bansal

such as separation (non-overlap) and alignment; error� is triggered otherwise. Notice that this
is in contrast to allocB where error � is triggered on WF violation to indicate that it is the
compiler’s responsibility to ensure the satisfaction of WF constraints. Unlike a stack allocation
where the compiler chooses the allocated region (and the validator identifies it through an allocB
annotation), a virtual allocation is only a validation construct (the compiler is not involved) that is
used only to enforce a lockstep correlation of allocation events. By triggering� on a failure during
a virtual allocation, we effectively assume that allocation through allocE satisfies the required WF
conditions.
For simplicity, we support virtual allocations only for a variable declaration I; ∈ /; . Thus, we

expect a call to alloca() at I0 ∈ /0 to always be stack-allocated in ¥�. In ¥�, we replace the single
variable ΣI;¥� with two variables ΣI;¥� |

B and Σ
I;
¥�
|E that represent the address sets corresponding to the

stack and virtual-allocations due to allocation-site I; respectively. We compute ΣI;¥� = Σ
I;
¥�
|B ∪ Σ

I;
¥�
|E

(but we do not maintain a separate variable ΣI;¥�). We also assume that a single variable declaration

I; in� may either correlate with only stack-allocations (through allocB) or only virtual-allocations
(through allocE) in ¥�

2, i.e., ΣI;¥� |
B ∩ Σ

I;
¥�
|E = ∅ holds at all times. For convenience, we define

Σ
/;

¥�
|E =

⋃
I; ∈/;
(ΣI;¥�
|E).

Importantly, a virtual allocation must be separate from other � allocated regions (�) but may
overlap with assembly-only regions (� ∪ (). Thus, in the revised semantics of (Op-esp’), a stack
push is allowed to overstep a virtually-allocated region.
The revised semantics of the allocB instruction (AllocS’) assume that stack-allocated local

memory is separate from virtually-allocated regions. The revised semantics of memory access
instructions ((Load ¥�) and (Store ¥�)) enforce that a virtually-allocated region must never be
accessed in ¥�, unless it also happens to belong to the assembly-only regions (� ∪ ().
Effectively, a lockstep correlation of virtual allocations in ¥� with allocations in � ensures that

the allocation states of both procedures always agree for regions A ∈ �.

Definition 2.9 (Refinement with stack and virtually-allocated locals). � ⋑ � iff: ∃ ¥� : � ⊒ ¥�

Recall that � ⊒ ¥� requires that for all non-deterministic choices of a virtually allocated local
variable address in ¥� (E in (AllocV)), there exists a non-deterministic choice for the correlated
local variable address in � (E in (Alloc) in fig. 3) such that: if ¥�’s execution is well-formed (does
not trigger �), and �’s execution is UB-free (does not trigger �), then the two allocated intervals
are identical (the observable values created through allocBegin and allocEnd must be equal).

In the presence of potentially register-allocated and eliminated local variables, � ⋑ � implies a
correct translation from � to �. If all local variables are allocated in stack, � ⋑ � reduces to � ⋗�
with ¥� = ¤�. Figure 1c is an example of an annotated ¥�.

3 WITNESSING REFINEMENT THROUGH A DETERMINIZED CROSS-PRODUCT ¥�⊠�

We first introduce program paths and their properties. Let % ∈ {�, ¥�}. Let 4% = (=% → =C
%
) ∈ E%

represent an edge from node =% to node =C
%
, both drawn fromN% . A path b% from =% to =C

%
, written

b% = =% ↠ =C
%
, is a sequence of< ≥ 0 edges (41

%
, 42

%
, . . . , 4<

%
) with ∀1≤ 9≤< : 4

9
%
= (=

5 , 9

%
→ =

C, 9
%
) ∈ E% ,

such that =
5 ,1

%
= =% , =

C,<
%

= =C
%
, and

<−1∧
9=1
(=

C, 9
%

= =
5 , 9+1

%
). Nodes =% and =C

%
are called the source and

sink nodes of b% respectively. Edge 4
9
%
(for some 1 ≤ 9 ≤ <) is said to be present in b% , written

4
9
%
∈ b% . An empty sequence, written n , represents the empty path. The path condition of a path

2For simplicity, we do not tackle path-specializing transformations that may require, for a single variable declaration I; , a

stack-allocation on one assembly path and a virtual-allocation on another. Such transformations are arguably rare.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:17

b% = =% ↠ =C
%
, written ?0Cℎ2>=3 (b%), is a conjunction of the edge conditions of the constituent

edges. Starting at =% , ?0Cℎ2>=3 (b%) represents the condition that b% executes to completion.
A sequence of edges corresponding to a shaded statement in the translations (figs. 3 to 6) is

distinguished and identified as an I/O path. An I/O path must contain either a single rd or a single wr
instruction. For example, the sequence of edges corresponding to “wr(fcall(d, #‰G , V∗, c

(Σ
V∗

�

("�)))”

and “"� ≔ upd
Σ
V∗\�A
�

("� , rd(i32 → i8))” in (Call�) (fig. 3) refer to two separate I/O paths. A

path without any rd or wr instructions is called an I/O-free path.

3.1 Determinized Product Graph as a Transition Graph

A product program, represented as a determinized product graph, also called a comparison graph or a
cross-product,- = ¥�⊠� = (N- , E- ,D-), is a directed multigraph with finite sets of nodesN- and
edges E- , and a deterministic choice map D- . - is used to encode a lockstep execution of ¥� and � ,
such thatN- ⊆ N ¥�×N� . The start node of- is=B

-
= (=B¥�

, =B
�
) and all nodes inN- must be reachable

from =B
-
. A node =- = (= ¥�, =�) is an error node iff either = ¥� or =� is an error node. N

❍❍*,
-

denotes

the set of non-error nodes in - , such that =- = (= ¥�, =�) ∈ N
❍❍*,
-
⇔ (= ¥� ∈ N

❍❍*,
¥�
∧ =� ∈ N

❍❍*,
�
).

Let =- = (= ¥�, =�) and =C
-
= (=C¥�

, =C
�
) be nodes in N- ; let b ¥� = = ¥� ↠ =C¥�

be a finite path in ¥�;

and let b� = =� ↠ =C
�
be a finite path in � . Each edge, 4- = (=-

b ¥� ; b�
−−−−→=C

-
) ∈ E- , is defined as a

sequential execution of b ¥� followed by b� . The execution of 4- thus transfers control of - from =-
to =C

-
. The machine state of - is the concatenation of the machine states of ¥� and � . The outside

world of - , written Ω- , is a pair of the outside worlds of ¥� and � , i.e., Ω- = (Ω ¥�,Ω�). Similarly,
the trace generated by - , written)- , is a pair of the traces generated by ¥� and� , i.e.,)- = () ¥�,)�).

During an execution of 4- = (=-
b ¥� ; b�
−−−−→=C

-
) ∈ E- , let

#‰G ¥� be variables in ¥� just at the end of
the execution of path b ¥� (at =C¥�) but before the execution of path b� (recall, b ¥� executes before b�).

D- : ((E- × E� × N) → ExprList), called a deterministic choice map, is a partial function that
maps edge 4- ∈ E- , and the =

Cℎ (for = ∈ N) occurrence of an edge ‘4\
�
∈ b� ’ labeled with instruction

#‰E ≔ \ (#‰g) to a list of expressions � (#‰G ¥�). The semantics of D- are such that, if D- (4- , 4
\
�
, =) is

defined, then during an execution of 4- , an execution of the =Cℎ occurrence of edge 4\
�
∈ b� labeled

with #‰E ≔ \ (#‰g) is semantically equivalent to an execution of #‰E ≔ D- (4- , 4
\
�
, =); otherwise, the

original non-deterministic semantics of \ are used.
D- determinizes (or refines) the non-deterministic choices in� . For example, in a product graph

- that correlates the programs in fig. 1b and fig. 1c, let 42
-
∈ E- correlate single instructions I2

and A4.2. Let 4I2,\0
�

represent the edge labeled with U1 ≔ \ (i32) as a part of the translation of

the alloc instruction at I2, as seen in (Alloc). Then, D- (4
2
-
, 4I2,\0

�
, 1) = esp is identified by the

first operand of the annotated allocB instruction at A4.2. Similarly, if another edge 4I2,\<
�

(in the
translation of alloc at I2) is labeled with \ (i32 → i8) (due to"� ≔ upd[U1 ,U4] ("� , \ (i32 → i8))),

then D- (4
2
-
, 4I2,\<

�
, 1) = " ¥�, i.e., the initial contents of the newly-allocated region in � are based

on the contents of the correlated uninitialized stack region in ¥�. Similarly, let 41
-
∈ E- correlate

single instructions I1 and A4.1 so that D- (4
1
-
, 4I1,\0

�
, 1) = vI1 and D- (4

1
-
, 4I1,\<

�
, 1) = " ¥�.

For a path b� in � , [b�]
4-
D-

denotes a determinized path that is identical to b� except that: if

D- (4- , 4
\
�
, =) is defined, then the =Cℎ occurrence of edge 4\

�
∈ b� , labeled with #‰E ≔ \ (#‰g), is

replaced with a new edge 4
\ ′=
�

labeled with #‰E ≔ D- (4- , 4
\
�
, =).

Execution of a product graph- must begin at node =B
-
in an initial machine state where Ω ¥� = Ω�

and) ¥� =BC)� hold. Thus, - is a transition graph with its execution semantics derived from the
semantics of ¥� and � , and the map D- .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:18 Abhishek Rose and Sorav Bansal

3.2 Analysis of the Determinized Product Graph

Let - = ¥� ⊠� = (N- , E- ,D-) be a determinized product graph. At each non-error node =- ∈

N
❍❍*,
-

, we infer a node invariant, q=- , which is a first-order logic predicate over state elements of
- at node =- that holds for all possible executions of - . A node invariant q=- relates the values of
state elements of � and ¥� that can be observed at =- .

Definition 3.1 (Hoare Triple). Let =- = (= ¥�, =�) ∈ N
❍❍*,
-

. Let b ¥� = = ¥� ↠ =C¥�
and b� = =� ↠ =C

�

be paths in ¥� and� . A Hoare triple, written {?A4}(b ¥�; b�){?>BC}, denotes the statement: if execution
starts at node =- in state f such that predicate ?A4 (f) holds, and if paths b ¥�; b� are executed in
sequence to completion finishing in state f ′, then predicate ?>BC (f ′) holds.

Definition 3.2 (Path cover). At a node =- = (= ¥�, =�) ∈ N- , for a path b ¥� = = ¥� ↠ =C¥�
, let ∀1≤ 9≤< :

4
9
-

= =-
b ¥� ; b

9
�

−−−−→=
C 9
-
be all edges in E- , such that =

C 9
-

= (=C¥�
, =

C 9
�
). The set of edges {41

-
, 42

-
, . . . , 4<

-
}

covers path b ¥�, written {4
1
-
, 42

-
, . . . , 4<

-
}⟨D- , b ¥�⟩, iff {q=- }(b ¥�; n){

<∨
9=1

?0Cℎ2>=3 ([b
9
�
]
4
9
-

D-
)} holds.

Definition 3.3 (Path infeasibility). At a node =- = (= ¥�, =�) ∈ N- , a path b ¥� = = ¥� ↠ =C¥�
is

infeasible at =- iff {q=- }(b ¥�; n){false} holds.

Definition 3.4 (Mutually exclusive paths). Two paths, b1
%
= =% ↠ =C1

%
and b2

%
= =% ↠ =C2

%
, both

originating at node =% are mutually-exclusive, written b1
%
≎ b2

%
, iff neither is a prefix of the other.

Definition 3.5. A pathset ⟨b⟩% is a set of pairwise mutually-exclusive paths ⟨b⟩% = {b1
%
, b2

%
, . . . , b<

%
}

originating at the same node =% , i.e., ∀1≤ 9≤< : b
9
%
= =% ↠ =

9
%
and ∀1≤ 91< 92≤< : (b

91
%
≎ b

92
%
).

3.2.1 - Requirements. The following requirements on - help witness � ⊒ ¥�:

1. (Mutex ¥�): For each node=- with all outgoing edges {41
-
, 42

-
, . . . , 4<

-
} such that 4

9
-
= (=-

b
9
¥�
; b

9
�

−−−−→=
9
-
)

(for 1 ≤ 9 ≤ <), the following holds: ∀1≤ 91, 92≤< : ((b
91
¥�
= b

92
¥�
) ∨ (b

91
¥�
≎ b

92
¥�
)).

2. (Mutex�): At each node =- , for a path b ¥�, let {4
1
-
, 42

-
, . . . , 4<

-
} be a set of all outgoing edges such

that 4
9
-
= =-

b ¥� ; b
9
�

−−−−→=C
-
(for 1 ≤ 9 ≤ <). Then, the set {b1

�
, b2

�
, . . . , b<

�
} must be a pathset.

3. (Termination) For each non-error node =- = (= ¥�, =�) ∈ N
❍❍*,
-

, = ¥� is a terminating node iff =�
is a terminating node.

4. (SingleIO): For each edge 4- = (=-
b ¥� ; b�
−−−−→=C

-
) ∈ E- , either both b ¥� and b� are I/O paths, or both

b ¥� and b� are I/O-free.
5. (Well-formedness): If a node of the form =- = (_,��) exists inN- , then =- must be (�¥�,��).
6. (Safety): If a node of the form =- = (� ¥�, _) exists in N- , then =- must be (� ¥�,��).

7. (Similar-speed): Let (41
-
, 42

-
, . . . , 4<

-
) be a cyclic path, so that∀1≤ 9≤< : 4

9
-
= (=

5 , 9

-

b
9
¥�
; b

9
�

−−−−→=
C, 9
-
) ∈ E- ;

=
5 ,1

-
= =C,<

-
; and

<−1∧
9=1
(=

C, 9
-

= =
5 , 9+1

-
). For each cyclic path, (¬

<∧
9=1
(b

9
¥�
= n)) ∧ (¬

<∧
9=1
(b

9
�
= n)) holds.

8. (Coverage ¥�): For each non-error node =- = (= ¥�, =�) ∈ N
❍❍*,
-

and for each possible outgoing

path b>¥�
= = ¥� ↠ =>¥�

, either b>¥� is infeasible at =- , or there exists 4- = (=-
b ¥� ; b�
−−−−→=C

-
) ∈ E- such

that either b ¥� is a prefix of b>¥� or b>¥� is a prefix of b ¥�.

9. (Coverage�): At node =- , for some b ¥�, let {4
1
-
, 42

-
, . . . , 4<

-
} be the set of all outgoing edges such

that 4
9
-
= =-

b ¥� ; b
9
�

−−−−→(=
C
¥�
, =

C 9
�
) (for 1 ≤ 9 ≤ <). Then, {41

-
, 42

-
, . . . , 4<

-
}⟨D- , b ¥�⟩ holds.

10. (Inductive): For each non-error edge 4- = (=-
b ¥� ; b�
−−−−→=C

-
) ∈ E- , {q=- }(b ¥�; [b�]

4-
D-
){q=C

-
} holds.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:19

11. (Equivalence): For each non-error node =- = (= ¥�, =�) ∈ N
❍❍*,
-

, Ω ¥� = Ω� must belong to q=- .

12. (Memory Access Correspondence) or (MAC): For each edge 4- = (=-
b ¥� ; b�
−−−−→=C

-
) ∈ E- , such that

=C
-
≠ (_,��), {q=- ∧ (Σ

rd
¥�
= Σ

rd
�

= ∅)}(b ¥�; [b�]
4-
D-
){(Σrd¥� \ Σ

rd
�
) ⊆ Σ

�∪�
¥�
∪ [esp, stk4]} and

{q=- ∧ (Σ
wr
¥�
= Σ

wr
�

= ∅)}(b ¥�; [b�]
4-
D-
){(Σwr¥� \ Σ

wr
�
) ⊆ Σ

�F∪�F
¥�

∪ [esp, stk4]} hold.

13. (MemEq): For each non-error node =- ∈ N
❍❍*,
-

," ¥� =
Σ
�
¥�
\(Σ

/;
¥�
|E)

"� must belong to q=- .

(MAC) effectively requires that for every access on path b ¥� to an address U belonging to region
A ∈ {ℎ?, 2;}, there exists an access toU of the same read/write type on path [b�]

4-
D-

. This requirement

allows us to soundly over-approximate the set of addresses belonging to ℎ? and 2; for a faster SMT
encoding (theorem 3.7 and section 4.2.3). For (MAC) to be meaningful, Σ

rd
¥�,�

and Σ
wr
¥�,�

must not be

included in - ’s state elements over which a node invariant q=- is inferred.
The first seven are structural requirements (constraints on the graph structure of -) and the

remaining six are semantic requirements (require discharge of proof obligations). The first eleven are
soundness requirements (required for theorem 3.6), the first twelve are fast-encoding requirements,
and all thirteen are search-algorithm requirements (required for search optimizations). Excluding
(Coverage ¥�) and (Coverage�), the remaining eleven are called non-coverage requirements.

Theorem 3.6. If there exists - = ¥� ⊠� that satisfies the soundness requirements, then� ⊒ ¥� holds.

Proof sketch. (Coverage ¥�) and (Coverage�) ensure the coverage of ¥�’s and �’s traces in - .
For an error-free execution of - , (Equivalence) and (Similar-speed) ensure that the generated traces
are stuttering equivalent; for executions terminating in an error, (SingleIO), (Well-formedness), and
(Safety) ensure that� ⊒ ¥� holds by definition. See our technical report [Rose and Bansal 2024b] for
the coinductive proof. □

3.2.2 Safety-Relaxed Semantics. Construct�′ from� by using new safety-relaxed semantics for the

assembly procedure such that: (1) a i; = ov([?]F, Σ
free
¥�
∪ ((Σ

/;

¥�
|E) \Σ�∪(

¥�
)) check in (Load ¥�) in� is

replaced with i ′
;
= ov([?]F, (Σ

/;

¥�
|E) \ (Σ�

¥�
∪ [esp, cs4])) in �′; (2) a iB = ov([?]F, Σ

{free}∪�A∪�A
¥�

∪

((Σ
/;

¥�
|E) \ Σ

�F∪(
¥�
)) check in (Store ¥�) in � is replaced with i ′B = ov([?]F, (Σ

/;

¥�
|E) \ (Σ

�F
¥�
∪

[esp, cs4])) in�′; and (3) aiA = ¬("2B =Σ
2B
�
"�) check in (Ret�) in� is replaced withi ′A = false

in �′. Let ¥�′ be obtained by annotating �′ using instructions described in section 2.4.3. Let ¥� be
the annotated version of �, such that the annotations made in ¥� and ¥�′ are identical.

Theorem 3.7. Given - ′ = ¥�′ ⊠ � that satisfies the fast-encoding requirements, it is possible to

construct - = ¥� ⊠� that also satisfies the fast-encoding requirements.

Proof sketch. Start by constructing - = - ′. Because i ′
;,B,A
⇒ i;,B,A , ¥� may include more

executions of a path of form b ¥� = = ¥� ↠ � ¥�. Add new edges to E- , where each new edge correlates
b ¥� with some b� = =� ↠ �� . Because -

′ satisfies (MAC), the addition of such new edges will
ensure that - satisfies (Coverage�). See our technical report [Rose and Bansal 2024b] for the
proof. □

Using theorem 3.7, hereafter, we will use only the safety-relaxed semantics of the assembly
procedure. We will continue to refer to the assembly procedure with the safety-relaxed semantics
as �, and the corresponding annotated procedure ¥�.

4 AUTOMATIC CONSTRUCTION OF A CROSS-PRODUCT

We now describe Dynamo, an algorithm that takes as input, the transition graphs corresponding
to procedures � and �, and an unroll factor `, and returns as output, annotated ¥� and product

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:20 Abhishek Rose and Sorav Bansal

graph - = ¥� ⊠� = (N- , E- ,D-), such that all thirteen search-algorithm requirements are met.

It identifies an inductive invariant network q- that maps each non-error node =- ∈ N
❍❍*,
-

to
its node invariant q=- . Given enough computational time, Dynamo is guaranteed to find the
required (¥�,-) if: (a) � is a translation of � through bisimilar transformations up to a maximum
unrolling of `; (b) for two or more allocations or procedure calls that reuse stack space in �, their
relative order in � is preserved in �; (c) the desired annotation to ¥� is identifiable either through
search heuristics or through compiler hints; and (d) our invariant inference procedure is able to
identify the required invariant network q- that captures the compiler transformations across
� and �. Dynamo constructs the solution incrementally, by relying on the property that for a
non-coverage requirement to hold for fully-annotated ¥� and fully-constructed - , it must also hold
for partially-annotated ¥� and a partially-constructed subgraph of - rooted at its entry node =B

-
.

Dynamo is presented in algorithm 1. It assumes the availability of a chooseFrom operator, such
that d ← [�ooseFrom

#‰d chooses a quantity d from a finite set #‰d , such that Dynamo is able to
complete the refinement proof, if such a choice exists. If the search space is limited, an exhaustive
search could be used to implement chooseFrom. Otherwise, a counterexample-guided best-first
search procedure (described later) is employed to approximate chooseFrom.

io(=%) evaluates to true iff =% is either a source or sink node of an I/O path. term(=%) evaluates
to true iff =% is a terminating node. Dynamo first identifies an ordered set of nodes &% ⊆ N% ,
called the cut points in procedure % (getCutPointsInRPO), such that &% ⊇ {=% : =% ∈ N% ∧ (=% =

=B
%
∨ io(=%) ∨ term(=%))} and the maximum length of a path between two nodes in &% (not

containing any other intermediate node that belongs to &%) is finite.
The algorithm to identify &% first initializes &% ≔ {=% : =% ∈ N% ∧ (=% = =B

%
∨ io(=%) ∨

term(=%))}, and then identifies all cycles in the transition graph that do not already contain a cut
point; for each such cycle, the first node belonging to that cycle in reverse postorder is added to&% .
In fig. 1c, & ¥� includes constituent nodes of assembly instructions at A1, A9, A14, and exit, where
exit is the destination node of the error-free halt instruction due to the procedure return at A17.

A simple path @% ↠ @C
%
is a path connecting two cut points @% , @

C
%
∈ &% , and not containing any

other cut point as an intermediate node; @C
%
is called a cut-point successor of @% . By definition, a

simple path must be finite. The cutPointSuccessors() function takes a cut point @% and returns all its
cut-point successors in reverse postorder. In our example, the cut-point successors of a node at in-
struction A9 are (constituent nodes of) A9, A14,� ¥�, and�¥�. getAllSimplePathsBetweenCutPoints(@% ,

@C
%
, %) returns all simple paths of the form @% ↠ @C

%
, for @% , @

C
%
∈ &% . Given a simple path b ¥�,

pathIsInfeasible(b ¥�, @ ¥�,N- , q-) returns true iff b ¥� is infeasible at every node =- = (@ ¥�, _) ∈ N- ;
our algorithm ensures there can be at most one =- = (@ ¥�, _) ∈ N- for each @ ¥� ∈ & ¥�.

correlatedPathsInCOptions(). correlatedPathsInCOptions(b ¥�, . . .) identifies options for candidate
pathsets [⟨b⟩�], that can potentially be correlated with b ¥� = @ ¥� ↠ @C¥�

, and the chooseFrom

operator chooses a pathset ⟨b⟩� from it. A path b� ∈ ⟨b⟩� need not be a simple path, and can visit
any node =� ∈ N� up to ` times. All paths in ⟨b⟩� must originate at a unique cut-point @� such
that (@ ¥�, @�) ∈ N- . By construction, there will be exactly one such (@ ¥�, @�) in N- . Paths in ⟨b⟩�
may have different end points however. For example, ⟨b⟩� = {n} and ⟨b⟩� = {I3→I4→I7, I3→

�� , I3→I4→�� } may be potential candidates for b ¥�=A9→A10→A11→A9 in fig. 1.
If @C¥� ∉ {� ¥�,�¥�}, correlatedPathsInCOptions() returns candidates, where a candidate pathset

⟨b⟩� is a maximal set such that each path b� ∈ ⟨b⟩� either (a) ends at a unique non-error destination
cut-point node, say @C

�
(i.e., all paths b� ∈ ⟨b⟩� ending at a non-error node end at @C

�
), or (b) ends

at error node�� . This path enumeration strategy is the same as the one used in Counter [Gupta
et al. 2020]; this strategy supports path specializing compiler transformations like loop peeling,
unrolling, splitting, unswitching, etc., but does not support a path de-specializing transformation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:21

Algorithm 1: Automatic construction of - .

1 Function Dynamo(�,� , `)

2 ¥�←[�; N- ←[{(=B¥�
, =B

�
) }; E- ←[{}; D- ←[∅;

3 q- ←[{(=B¥�
, =B

�
) ↦→ (Ω ¥� = Ω�) }; & ¥� ←[getCutPointsInRPO(¥�);

4 foreach @ ¥� in & ¥� do

5 foreach @C¥�
in cutPointSuccessors(@ ¥�,& ¥�,

¥�) do

6 foreach b ¥� in getAllSimplePathsBetweenCutPoints(@ ¥�, @
C
¥�
, ¥�) do

7 if pathIsInfeasible(b ¥�, @ ¥�,N- , q-) then

8 continue

9 end

10 foreach b� in chooseFrom correlatedPathsInCOptions(b ¥�, `,N- , E- ,D- , q- , ¥�,�) do

11 (¥�,
#‰

b ′¥�
) ←[chooseFrom asmAnnotOptions(b ¥� , b� , N- , E- , D- , q- , ¥�,�);

12
#‰

b ′
�
←[breakIntoSingleIOPaths(b�);

13 if ¬haveSimilarStructure(
#‰

b ′¥�
,

#‰

b ′
�
) then

14 return Failure

15 end

16 foreach (b′¥�
= (= ¥� ↠ =C¥�

)), (b′
�

= (=� ↠ =C
�
)) in zip(

#‰

b ′¥�
,

#‰

b ′
�
) do

17 N- ←[N- ∪ {(=
C
¥�
, =C

�
) }; //unlike E- , N- may not grow on each iteration

18 4- ← [(b′¥�
; b′

�
) ; E- ← [E- ∪ {4- }; D- ←[addDetMappings (4-);

19 q- ←[inferInvariantsAndCounterexamples(N- , E- , D- , q- , ¥�,�);

20 if ¬checkSemanticRequirementsExceptCoverage(N- , E- ,D- , q- , ¥�,�) then

21 return Failure

22 end

23 end

24 end

25 end

26 end

27 end

28 if ¬checkCoverageRequirements(N- , E- , D- , q- , ¥�,�) then

29 return Failure

30 end

31 return Success(¥�,N- , E- ,D- , q-)

32 end

like loop re-rolling. If @C¥� = � ¥�, correlatedPathsInCOptions() returns candidates, where a candidate

pathset ⟨b⟩� is a maximal set such that each path b� ∈ ⟨b⟩� ends at�� . The algorithm identifies
a correlation for a path b ¥� = @ ¥� ↠ �¥� only after correlations for all other paths of the form

b✚✚�¥�
= @ ¥� ↠ @✚✚�¥�

(for @✚✚�¥� ≠ �¥�) have been identified: a pathset candidate ⟨b⟩� that has already

been correlated with some other path b✚✚�¥�
is then prioritized for correlation with b ¥�.

For example, in fig. 1c, for a cyclic path b ¥� from a node at A9 to itself, one of the candidate
pathsets, ⟨b⟩� , returned by this procedure (at ` = 1) contains eleven paths originating at I4 in
fig. 1b: one that cycles back to I4 and ten that terminate at�� (for each of the ten memory accesses
in the path). For example, to evaluate the expression v[*i], two memory loads are required, one at
address i and another at &v[*i], and each such load may potentially transition to�� due to the
accessIsSafeCg,0 check evaluating to false in (Load�). A path that terminates at�� represents
correlated transitions from node (A9,I4) in - such that ¥� remains error-free (to end at A9) but
� triggers �, e.g., if the memory access mem4[esi+4*eax] in ¥� (corresponding to v[*i] in �)
overshoots the stack space corresponding to variable v but still lies within the stack region BC: .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:22 Abhishek Rose and Sorav Bansal

asmAnnotOptions(). For each simple path b ¥�, and each (potentially non-simple) path b� in ⟨b⟩�
3,

asmAnnotOptions() enumerates the options for annotating b ¥� with allocB,E , deallocB,E instructions
and operands for call instructions, and the chooseFrom operator chooses one.

An annotation option includes the positions and the operands of the (de)allocation instructions
(allocation site, alignment, address, and size). For a procedure-call, an annotation option also
includes the arguments’ types and values, and the set of callee-observable regions. The annotations
for the callee name/address and the (de)allocations of procedure-call arguments in b ¥� are uniquely
identified using the number and type of arguments in the candidate correlated path b� using the
calling conventions. Similarly, the annotation of callee-observable regions follows from the regions
observable by the correlated procedure call in b� .
These annotations thus update � to incrementally construct ¥�. If untrusted compiler hints are

available, they are used to precisely identify these annotations. In a blackbox setting, where no
compiler hints are available, we reduce the search space for annotations (at the cost of reduced
generality) using the following three restrictions: (1) An allocB,E (deallocB,E) annotation is an-
notated in b ¥� only if an alloc (dealloc) instruction is present in b� ; (2) an allocB,E (deallocB,E)
annotation is added only after (before) an instruction that updates esp; moreover, for allocB , esp
is used as the local variable’s address expression; (3) for a single allocation site in � , at most one
allocB,E instruction (but potentially multiple deallocB,E instructions) is added to ¥�. Thus, in a
blackbox setting, due to the third restriction, a refinement proof may fail if the compiler specializes
a path containing a local variable allocation. Due to the second restriction, a refinement proof
may fail for certain (arguably rare) types of order-preserving stack reallocation and stack merging
performed by the compiler. Note that these limitations hold only for the blackbox setting.

After annotations, b ¥� may become a non-simple path due to the extra I/O instructions introduced

by the annotations. asmAnnotOptions therefore additionally returns
#‰

b ′¥�
, which is a sequence of the

simple paths constituting b ¥�. The (potentially non-simple) path b� is then broken into a sequence

of constituent paths
#‰

b ′� (breakIntoSingleIOPaths) so that each I/O path appears by itself (and not

as a sub-path of a longer constituent path) in
#‰

b ′� — this caters to the (SingleIO) requirement. A

failure is returned if the sequences
#‰

b ′¥�
and

#‰

b ′� do not have similar structures (haveSimilarStructure).

Let pos(b,
#‰

b) represent the position of path b in a sequence of paths
#‰

b . haveSimilarStructure(
#‰

b ′¥�
,

#‰

b ′�) returns true iff
#‰

b ′¥�
and

#‰

b ′� are of the same size, and for paths b ′� ∈
#‰

b ′� and b ′¥�
∈

#‰

b ′¥�
, if

pos(b ′� ,
#‰

b ′�) = pos(b ′¥�
,

#‰

b ′¥�
), then either both b ′� and b ′¥� are I/O paths of same structure (i.e., they

are either both reads or both writes for the same type of value) or both are I/O free.

Incremental Construction of (¥�,-). For each simple path b ′¥�
in

#‰

b ′¥�
enumerated in execution

order, Dynamo correlates it with b ′� , such that pos(b ′� ,
#‰

b ′�) = pos(b ′¥�
,

#‰

b ′¥�
) (through zip in algo-

rithm 1). This candidate correlation (b ′¥�; b
′
�) is added as an edge 4- to E- , adding the destination

node to N- if not already present.
If b ′� represents a path between wr(allocBegin(. . .)) and wr(allocEnd(. . .)) for an alloc

instruction in � , and b ′¥� is a corresponding path due to an allocB,E instruction, and edges 4\0
�

and

4\<
�

in b ′� are labeled with instructions U1 ≔ \ (i32) and \ (i32 → i8) respectively due to (Alloc),

we add mappings D- (4- , 4
\0 , 1) = E and D- (4- , 4

\< , 1) = " ¥�, where E is the address defined in
b ′¥�

due to either (AllocS) or (AllocV) (addDetMappings (4-)). Notice that our algorithm only

populates D- (4- , 4
\
�
, =) for = = 1, even though section 3.1 defines D- more generally.

3The number of paths can be exponential in procedure size, and so our implementation represents a pathset using a

series-parallel digraph [Gupta et al. 2020] and annotates a pathset in ¥� in a single step. Similarly, a pathset in ¥� is correlated

with a pathset in� in a single step. For easier exposition, the presented algorithm correlates each path individually.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:23

affine
∑

8 28 E8 = 2 ineqC ±E ≤B 22 ineq E1 ⊙ E2 spOrd sp.?
91
¥�
≤D (sp.?

92
¥�
− E)

AllocEq ∀A∈�Σ
A
�

= Σ
A
¥�

MemEq "� =
Σ
�
¥�
\(Σ

/;
¥�
|E)

" ¥�
zEmpty {ΣI

�
, ΣI¥�
|B , ΣI¥�

|E } {=,≠} ∅

spzBd em.I ∨ (sp.? 9
¥�
⊙ { lb.I , ub.I }) spzBd’ em.I ∨ (sp.? 9

¥�
≤D (lb.I − lstSz.I))

gfySz ∀A∈�∪�∪. \{vrdc} (sz.A = sz(T(A))) vrdcSz (em.vrdc ⇔ sz.vrdc = 0) Empty ∀A∈�∪�∪.∪/ (Σ
A
�

= ∅ ⇔ em.A)

gfyIntvl ∀A∈�∪�∪. ((sz.A = 0) ∨ ((lb.A ≤D ub.A) ∧ (ub.A = lb.A + sz.A − 1i32) ∧ ([lb.A , ub.A] = Σ
A
¥�
)))

zlIntvl em.I; ∨ ((lb.I; ≤D ub.I;) ∧ (lb.I; + lstSz.I; − 1i32 = ub.I;) ∧ ([lb.I; , lb.I;] = Σ
I;
�
)))

zaBd em.I0 ∨ ((lb.I0 ≤D ub.I0) ∧ (lb.I0 + lstSz.I0 − 1i32 ≤D ub.I0) ∧ (lb.I0 = lb(ΣI0
�
) ∧ ub.I0 = ub(ΣI0

�
)))

StkBd Σ
{BC:}∪.
¥�

∪ (Σ/¥�
\ (Σ

/;
¥�
|E)) = [esp, stk4] 2BBd Σ

{2B,2; }
¥�

= [stk4 + 1, cs4]

NoOverlap� ¬ov(Σ
ℎ?
¥�
, Σ2;¥�

, Σvrdc¥�
, . . . , 8

6
¥�
, . . . , 8

~
¥�
, . . . , ΣI¥�

) ROM� ∀A∈�A"� =8A
�
ROMA

�
(8A
�
)

NoOverlap� ¬ov(Σ
{ℎ?,2; }∪�∪.
¥�

, . . . , ΣI¥�
|B , . . . , ΣBC:¥�

, Σ2B¥�
, Σ�¥�
) ROM� ∀A∈�A" ¥� =8A

¥�
ROMA¥�

(8A¥�
)

Fig. 7. Predicate grammar for constructing candidate invariants. E represents a bitvector variable (registers,

stack slots, and ghost variables), 2 represents a bitvector constant. ⊙ ∈ {≤B,D , <B,D , >B,D , ≥B,D }.

If the destination node is not an error node, then the inferInvariantsAndCounterexamples()

procedure updates the invariant network q- due to the addition of this new edge. The non-coverage
requirements are checked after invariant inference (checkSemanticRequirementsExceptCoverage)
and a candidate is discarded if the check fails.

When all simple paths between the cut points of ¥� are exhausted, the (Coverage ¥�) requirement
must be satisfied by construction. checkCoverageRequirements() further checks the satisfaction of
(Coverage�) before returning Success. Dynamo is sound because it returns Success only if all the
thirteen search-algorithm requirements are satisfied.

The chooseFrom operator must attempt to maximize the chances of returning Success, even if
only a fraction of the search space has been explored. Dynamo uses the counterexamples generated
when a proof obligation is falsified (e.g., during invariant inference) to guide the search towards the
more promising options. A counterexample is a proxy for the machine states of � and ¥� that may
appear at a node =- during the lockstep execution encoded by - . Thus, if at any step during the
construction of - , the execution of a counterexample for a candidate partial solution (¥�,-) results
in the violation of a non-coverage requirement, that candidate is discarded. Further, counterexample
execution opportunistically weakens the node invariants in - . Like Counter, we use the number
of live registers in ¥� related through the current invariants in q- to rank the enumerated partial
candidate solutions to implement a best-first search.

4.1 Invariant Inference

We use a counterexample-guided inference algorithm to identify node invariants [Gupta et al. 2020].
Candidate invariants at a node =- of a partial product-graph are formed by conjuncting predicates

drawn from the grammar shown in fig. 7. Apart from affine (affine) and inequality relations (ineq

and ineqC) for relating values across � and ¥�, the guesses attempt to equate the allocation and

memory state of common regions across the two procedures (AllocEq and MemEq).
Recall that we save stackpointer value at the boundary of a stackpointer updating instruction

at PC ?
9
¥�
in ghost variable sp.?

9
¥�
((Op-esp) in fig. 4). To prove separation between different local

variables, we require invariants that lower-bound the gap between two ghost variables, say sp.?
91
¥�

and sp.?
92
¥�
, by some value E that depends on the allocation size operand of an allocB instruction

(spOrd). To capture the various relations between lower bounds, upper bounds, region sizes, and

sp.?
9
¥�
, the guessing grammar includes shapes spzBd and spzBd’ that are of the form: “either a local

variable region is empty or its bounds are related to sp.?
9
¥�
in these possible ways”. zEmpty tracks

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:24 Abhishek Rose and Sorav Bansal

the emptiness of the address-set of a local region. Together, these predicate shapes (along with
affine and ineq relations between sp.?

9
¥�
) enable disambiguation between stack writes involving

spilled pseudo-registers and stack-allocated locals.
The predicate shapes listed below the dividing line segment in fig. 7 encode the global invariants

that hold by construction (due to our execution semantics) at every non-error product-graph node

=- . gfySz , vrdcSz , and gfyIntvl together encode the fact that the ghost variables associated with

a region A ∈ � ∪ � ∪ . track its bounds, size, and that the address set of A is an interval. Empty

encodes that the ghost variable em.A for A ∈ � ∪ � ∪ . ∪ / tracks the emptiness of the region A .
zlIntvl captures the property that a local variable region I; , if non-empty, must be an interval of

size lstSz.I; . zaBd captures a weaker property for a local region I0 (allocated using alloca()):
if non-empty, this region must be bounded by its ghost variables and the region must be at least

lstSz.I0 bytes large. StkBd encodes the invariant that the interval [esp, stk4] represents the union

of the address sets of BC: , regions in . , and stack-allocated local regions (Σ/¥� \ (Σ
/;

¥�
|E)); 2BBd is

similarly shaped and encodes that the interval [stk4 + 1, cs4] represents the union of the address

sets of regions 2B and 2; . NoOverlap� encodes the disjointedness of all regions A ∈ �. NoOverlap�

encodes the disjointedness of all regions in ¥� except virtually-allocated regions. Finally, ROM� and
ROM� encode the preservation of memory contents of read-only regions in � and ¥�.
A dataflow analysis [Andersen 1994] computes the possible states of V () and V" () maps at each

=� ∈ N� , and the over-approximate solution is added to q=- for each =- = (_, =�).

4.2 SMT Encoding

At a non-error node =- , a proof obligation is represented as a first-order logic predicate over
the state elements at =- and discharged using an SMT solver. The machine states of � and ¥�
are represented using bitvectors (for a register/variable), arrays (for memory), and uninterpreted
functions (for read #‰g (Ω%) and io(Ω% ,

#‰E , rw)). For address sets, we encode the set-membership
predicate U ∈ ΣA

%
for an arbitrary address U , region identifier A , and procedure % ∈ {�, ¥�}. All other

address set operations can be expressed in terms of the set-membership predicate. To simplify the
encodings, we rely on the correct-by-construction invariants in fig. 7 and assume that q=- satisfies

the (Equivalence), (MAC), and (MemEq) requirements. Notice that (Equivalence) implies AllocEq .
Recall that for I ∈ /; , at a node =- ∈ N- , Σ

I
¥�
|B and ΣI¥� |

E represent the address sets corresponding

to the stack and virtual allocations performed in ¥� for I. Let /;B = {I | I ∈ /; ∧ Σ
I
¥�
|B ≠ ∅} and

/;E = {I | I ∈ /; ∧ Σ
I
¥�
|E ≠ ∅} represent the set of stack-allocated locals and virtually-allocated

at =- respectively. Recall that we restrict ourselves to only those compiler transformations that
ensure the validity of /;B ∩ /;E = ∅ at each =- (section 2.4.3).

4.2.1 Representing Address-Sets Using Allocation State Array. Let L% : i32 → ' be an allocation

state array that maps an address to a region identifier in procedure % . For A ∉ /;E , U ∈ Σ
A
%
is

encoded as sel1 (L% , U) = A . Allocation of an address U to region A (ΣA
%
≔ Σ

A
%
∪ {U}) is encoded as

L% ≔ st1 (L% , U, A). Similarly, deallocation (ΣA
%
≔ Σ

A
%
\ {U}) is encoded as L% ≔ st1 (L% , U, free).

For I;E ∈ /;E , both U ∈ Σ
I;E
�

and U ∈ Σ
I;E
¥�

are encoded as sel1 (L� , U) = I;E , i.e., the set-

membership encodings for both procedures use L� for virtually-allocated locals (by relying on
the AllocEq invariant at =-). In other words, L ¥� is not used to track the virtually-allocated locals;
instead, an address belonging to a virtually allocated-region maps to one of {free, BC:, 2B} ∪ �

regions in L ¥�. Consequently, the (de)allocation instructions ΣI;E¥� |
E
≔ Σ

I;E
¥�
|E ∪ [E]F and Σ

I;E
¥�
|E ≔ ∅

are vacuous in ¥�, i.e., they do not change any state element in ¥� (fig. 6).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:25

Table 2. SMT encoding of U ∈ ΣA
%
for Dynamo’s proof obligation $ with outgoing assembly path b ¥� .

U ∈ ΣA
%

Full-array encoding
Partial-interval encoding (Σ

/0
%

≠ ∅) Full-interval encoding (Σ
/0
%

= ∅)
% = � % = �

A = ℎ? U ∉ (Σ�∪�¥�
∪ /;E* (b ¥�) ∪ [(%<8= (b ¥�), cs4])

A = 2; sel1 (L� , U) = A U ∈ [stk4 + 1, cs4] ∧ U ∉ /;E* (b ¥�)

A ∈ � ∪ /;E

A ∈ . ∪/0∪/;B ¬ em.A ∧ (lb.A ≤D U ≤D ub.A)

A ∈ �

A = 2B false U ∈ [stk4 + 1, cs4] ∧ U ∈ /;E* (b ¥�)

A = BC: sel1 (L ¥�, U) = A U ∈ [(%<8= (b ¥�), stk4] ∧
∧

A∈.∪/;B (U ∉ Σ
A
¥�
)

This encoding, based on allocation state arrays L� and L ¥�, is called the full-array encod-

ing. The second and third columns of table 2 describe the full-array encoding for % = � and
% = ¥�. In the table, we use AllocEq to replace sel1 (L ¥�, U) with sel1 (L� , U) for A ∈ �. For
example, in the full-array encoding, the (MemEq) requirement "� =

Σ
�
¥�
\(Σ

/;
¥�
|E)

" ¥� becomes

∀U : ((sel1 (L� , U) ∈ � ∪ {ℎ?, 2;} ∪ . ∪ /;B ∪ /0) ⇒ (sel1 ("� , U) = sel1 (" ¥�, U))).

4.2.2 Interval Encodings for A ∈ � ∪ � ∪ . ∪ /; ∪ {BC:}. We use gfyIntvl , zlIntvl , and AllocEq

invariants for a more efficient interval encoding: for A ∈ � ∪ � ∪ . ∪ /; , we encode U ∈ Σ
A
%
as

¬ em.A ∧ (lb.A ≤D U ≤D ub.A). Moreover, if there are no local variables allocated due to the alloca()

operator (i.e., Σ/0

%
= ∅), then all local variables are contiguous, and so, due to StkBd , the BC: region

can be identified as [esp, stk4] \ Σ
.∪/;B
¥�

— the corresponding interval encoding is shown in the

right-most cell of A = BC: row in table 2.

4.2.3 Interval Encodings for A ∈ {ℎ?, 2;, 2B}. Even though ℎ?, 2;, 2B can be discontiguous regions
in general, we over-approximate these regions to their contiguous covers to be able to soundly
encode them using intervals. At a node =- = (= ¥�, =�), Dynamo may generate a proof obligation $
of the form {?A4}(b ¥�; [b�]

4-
D-
){?>BC} — recall that path-cover and path-infeasibility conditions are

also represented as Hoare triples with b� = n . If b ¥� is an I/O path, its execution interacts with the
outside world, and so an over-approximation of an externally-visible address set is unsound. We
thus restrict our attention to an I/O-free b ¥� for interval encoding.
Let =1¥�, =

2
¥�
, . . . , =<¥�

be the nodes on path b ¥� = (= ¥� ↠ =C¥�
), such that =1¥� = = ¥� and =<¥� = =C¥�

. Let

(%<8= (b ¥�) represent the the minimum value of esp observed at any node =
9
¥�
(1 ≤ 9 ≤ <) visited

during the execution of path b ¥�. Similarly, let /;E* (b ¥�) be the union of the values of set Σ/;E¥�
observed at any =

9
¥�
(1 ≤ 9 ≤ <) visited during b ¥�’s execution.

Let�% (b ¥�) = comp(Σ�∪�¥�
∪/;E* (b ¥�)∪ [(%<8= (b ¥�), cs4]),�!(b ¥�) = [stk4 +1i32 , cs4] \/;E* (b ¥�),

and �((b ¥�) = [stk4 + 1i32 , cs4] ∩ /;E* (b ¥�).

Theorem 4.1. Let $ = {?A4}(b ¥�; [b�]
4-
D-
){?>BC} be a proof obligation generated by Dynamo. Let

$ ′ be obtained from$ by strengthening precondition ?A4 to ?A4 ′ = (?A4 ∧ ((Σ
ℎ?
¥�
= �% (b ¥�)) ∧ (Σ

2;
¥�
=

�!(b ¥�)) ∧ (Σ
2B
¥�
= �((b ¥�))). If b ¥� is I/O-free, $ ⇔ $ ′ holds.

Proof sketch. $ ⇒ $ ′ is trivial. The proof for $ ′⇒ $, available in [Rose and Bansal 2024b],
relies on the limited shapes of predicates that may appear in ?A4 , ?>BC — for I/O-free b ¥�, these
shapes are limited by our invariant grammar (fig. 7), and the edge conditions appearing in our
execution semantics (figs. 3 to 6). The proof holds only if the safety-relaxed semantics are used. □

Using theorem 4.1, we rewrite U ∈ Σ
ℎ?

%
to U ∈ �% (b ¥�), U ∈ Σ

2;
%
to U ∈ �!(b ¥�), and U ∈ Σ

2B
%
to

U ∈ �((b ¥�) in proof obligation$. As shown in table 2, if Σ/0

%
= ∅ holds at=- , we encode all non-free

regions using intervals (called full-interval encoding); else, we encode regions in. ∪/0∪/;B∪{BC:}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:26 Abhishek Rose and Sorav Bansal

Table 3. Benchmarks and their programming pa�erns. # in vil# is substituted to obtain vil1, vil2, and

vil3. Program listings available in [Rose and Bansal 2024b].
Name Programming pattern

ats Address-taken local scalar int ats() { int ret; foo(&ret); return ret; }

atc Address taken conditionally int atc(int* p) { int x; if (!p) p = &x; foo(p); return *p }

ata Local array int ata() { char ret[8]; foo(ret); return bar(ret, 0, 16); }

vwl Variadic procedure int vwl(int n, ...) { va_list a; va_start(a, n); for(...){ va_arg(a,int) ... } }

as GCC alloca() int as(int n){...int* p=alloca(n*sizeof(n)); for(...){/*write to p*/}...}

vsl VLA with loop int vsl(int n){... int v[n]; for(...){/*write to v*/}...}

vcu VLA conditional use int vcu(int n,int k){ int a[n]; if (...) { /*rd/wr to a*/}...}

min minprintf procedure from K&R [Kernighan and Ritchie 1988]

ac alloca() conditional use int ac(char*a) {..if (!a) a=alloca(n); for(...)/*r/w to a*/}

all
alloca() in a loop

to form a linked list

all(){..hd=NULL; for(...){..n=alloca(..);..n->nxt=hd; hd=n;}

while(...){/* traverse the list starting at hd */}}

atail Local array alloc. in loop int atail(..){..for(..){ char a[4096]; f(a..); b(a..);...}...}

vil# # VLA(s) in a loop int vil# (..){..for(i=1;i<n;++i){ int v1[4*i], ... v# [4*i]; foo# (...); ..}.. }

vilcc VLA in loop with continue int vilcc(..){..while(i<n){ char v[i];...if(..) continue;..}..}

fib Program from fig. 1

vilce VLA in loop with break int vilce(..){..while(i<n){ char v[i];...if(..) break;..}..}

rod A local char array initialized using string; a VLA; a for loop Available in [Rose and Bansal 2024b].

using an allocation state array, and� ∪ � ∪ /;E ∪ {ℎ?, 2;, 2B} using intervals (called partial-interval

encoding).

5 EXPERIMENTS

Dynamo uses four SMT solvers running in parallel for discharging proof obligations: z3-4.8.7,
z3-4.8.14, Yices2-45e38fc, and cvc4-1.7. Unless otherwise specified, we use ` = 64, a timeout
of ten minutes for an SMT query, and a timeout of eight hours for a refinement check.

Before checking refinement, if the address of a local variable ; is never taken in� , we transform�

to register-allocate ; (LLVM’s mem2reg). This reduces the proof effort, at the cost of having to trust
the pseudo-register allocation logic. mem2reg does not register-allocate local arrays and structs
in LLVM3 , even though an optimizing compiler may register-allocate them in assembly — virtual
allocations help validate such translations.

We first evaluate the efficacy of our implementation to handle the diverse programming patterns
seen with local allocations (table 3). These include variadic procedures, VLAs allocated in loops,
alloca() in loops, etc. Figure 8a shows the results of our experiments for these 18 programming
patterns from table 3 and three compilers, namely Clang/LLVM v12.0.0, GCC v8.4.0, and ICC
v2021.8.0, to generate 32-bit x86 executables at -O3 optimization with inter-procedural analyses
disabled using the compilers’ command-line flags. The X-axis lists the benchmarks and the Y-
axis represents the total time taken in seconds (log scale) for a refinement check — to study the
performance implications, we run a check with all three encodings for these benchmarks. The filled
and empty bars represent the time taken with full-interval and partial-interval SMT encodings
respectively. The figure does not show the results for the full-array encoding. A missing bar
represents a failure to compute the proof. Of 54 procedure pairs, our implementation is able to
check refinement for 45, 43, and 37 pairs while using full-interval, partial-interval, and full-array
encodings respectively. For benchmarks where a refinement check succeeds for all encodings, the
full-interval encoding performs 1.7-2.2x and 3.5-4.9x faster on average (for each compiler) than
the partial-interval and full-array encodings respectively. The reasons for nine failures are: (a)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:27

ats atc ata vw
l
min vcuata

il vsl as all vilc
c fib vil1vilc

e ac vil2 vil3 rod
100

101

102

103

104

EQ
 ti

m
e

in
 se

cs

CLANG
GCC
ICC

(a) Comparison of running times with full- (filled

bars) and partial- (empty bars) interval encoding.

s12
2
s25

1
s12

21s12
1
s00

0vp
v
s11

2
s45

3
s11

12s24
3
s22

44s12
7vtvs17

3
vp

vts
vp

vp
v

s12
81
s12

51
vp

vtvs45
2
vtv

tv
s13

51
vd

otr
100

101

102

103

EQ
 ti

m
e

in
 se

cs

with locals
with globals

(b) Comparison of running times of benchmarks with

exactly same code modulo allocation.

Fig. 8. Experiments with procedures in table 3 and TSVC. Y-axis is logarithmically scaled.

Table 4. Statistics obtained by running Dynamo on procedures in the bzip2 program.

Name SLOC ALOC #0; #;>>? #5 20;; D eqT Nodes Edges EXP BT #@ Avg. qT

generateMTFValues 76 144 1 6 1 2 4k 14 30 60 16 3860 0.56
recvDecodingTables 70 199 2 14 10 3 3k 38 66 102 15 5611 0.21
undoReversible-

Transformation_fast

116 221 1 7 6 2 2k 21 34 43 6 2998 0.23

limitation of the blackbox annotation algorithm for one procedure-pair; (b) incompleteness of
invariant inference for six procedure-pairs (e.g., requirement of non-affine invariants, choice of
program variables); and (c) SMT solver timeouts for two procedure-pairs. vilcc and vilce require
multiple deallocB instructions to be added to � for a single dealloc in � . An allocE annotation
is required for the ‘va_list a’ variable in the GCC and ICC compilations of vwl (see table 3) —
while GCC and ICC register-allocate a, it is allocated in memory using alloc in LLVM3 (even after
mem2reg). The average number of best-first search backtrackings across all benchmarks is 2.8. The
time spent in constructing the correct product graph forms around 70-80% of the total search time.

We next evaluate Dynamo on the TSVC suite of vectorization benchmarks with arrays and loops
[Maleki et al. 2011], also used in previous work [Churchill et al. 2019; Gupta et al. 2020]. We use two
versions of these benchmarks: (1) ‘globals’ where global variables are used for storing the output
array values, and (2) ‘locals’ where local array variables are used for storing the output values
and a procedure call is added at the end of the procedure body to print the contents of the local
array variables. The compiler performs the same vectorizing transformations on both versions.
Unlike globals, locals additionally requires the automatic identification of required annotations.
Figure 8b shows the execution times of Dynamo for validating the compilations produced

by Clang/LLVM v12.0.0 (at -O3) for these two versions of the TSVC benchmarks. Dynamo can
successfully validate these compilations. Compared to globals, refinement checks are 2.5x slower
for locals (on average) due to the extra overhead of identifying the required annotations.
Our third experiment is on SPEC CPU2000’s bzip2[Henning 2000] program compiled using

Clang/LLVM v12.0.0 at three optimization levels: O1, O2, and O1-. O1- is a custom optimization level
configured by us that enables all optimizations at O1 except (a) merging of multiple procedure calls
on different paths into a single call, (b) early-CSE (common subexpression elimination), (c) loop-
invariant code motion at both LLVM IR and Machine IR, (d) dead-argument elimination, (e) inter-
procedural sparse conditional constant propagation, and (f) dead-code elimination of procedure
calls. bzip2 runs 2% slower with O1- than with O1; this is still 5% faster than the executable

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

146:28 Abhishek Rose and Sorav Bansal

produced by CompCert, for example. Of all 72 procedures in bzip2, Dynamo successfully validates
the translations for 64, 60, and 54 procedures at O1-, O1, and O2 respectively at ` = 1. At O1-,
Dynamo takes around six CPU hours to compute refinement proofs for the 64 procedures. Dynamo
times out for the remaining eight procedures, all of which are bigger than 190 ALOC.
Three of bzip2’s procedures for which refinement proofs are successfully computed at both

O1- and O1 contain at least one local array, and table 4 presents statistics for the O1- validation
experiments for these procedures. For each procedure, we show the number of source lines of
code in � (SLOC), the number of assembly instructions in � (ALOC), the number of local variables
(#0;), the number of loops (#;>>?), the number of procedure calls (#5 20;;), and the maximum loop
nest depth (D). The eqT column shows the validation times (in seconds). The Nodes and Edges
columns show the number of nodes and edges in the final product graph, and BT and EXP is the
number of backtrackings and the number of (partial) candidate product graphs explored by Dynamo
respectively. #@ is the total number of SMT queries discharged, and Avg. qT is the average time
taken by an SMT query in seconds for the refinement check.
In a separate experiment, we split the large procedures in bzip2 into smaller procedures, so

that Dynamo successfully validates the O1- compilation of the full modified bzip2 program: the
splitting disables some compiler transformations and also reduces the correlation search space.

Through our experiments, we uncovered and reported a bug in recent versions of z3, including
z3-4.8.14 and z3-4.12.5, where for an input satisfiability query Ψ, the SMT solver returns an
unsound model (counterexample) that evaluates Ψ to false [z3b 2024]. When a modern SMT solver
is used to validate compilations produced by a mature compiler, a bug may be found on either side.

6 RELATED WORK AND CONCLUSIONS

CoVaC [Zaks and Pnueli 2008] automatically identifies a product program that demonstrates
observable equivalence for deterministic programs. Counter [Gupta et al. 2020] extends CoVaC to
support path-specializing transformations, such as loop unrolling, through counterexample-guided
search heuristics. We extend these prior works to support refinement between programs performing
dynamic allocations with non-deterministic addresses for local variables and stack.
Recent work on bounded TV [Lee et al. 2021] models allocations through separate blocks, so

a pointer is represented as a combination of a block-ID and an offset into a block. While this
suffices for the bounded TV setting, our problem setting requires a more general representation of
a dynamically-allocated variable (e.g., allocation-site) and a more general SMT encoding.

CompCert provides axiomatic semantics for memory (de)allocation in the source Clight program,
and proves their preservation along the compilation pipeline [Leroy and Blazy 2008]. They restrict
their proof method to CompCert’s preallocation strategy for local variables, possibly to avoid
the manual effort required to write mechanized proofs for a more general allocation strategy.
Preallocation of local variables has also been used in prior work on TV for a verified OS kernel
[Sewell et al. 2013]. Preallocation can be space inefficient and cannot support VLAs and alloca().
Further, TV for a third-party compiler cannot assume a particular allocation strategy.

We provide a semantic model, refinement definition, and an algorithm to determine the correct-
ness of a third-party translation from an unoptimized high-level representation of a C program
to an optimized assembly program in the presence of dynamically-allocated local memory. Our
semantic model and definition of refinement require that for allocations and procedure calls that
reuse stack space, their relative order is preserved in both programs. While our experiments show
that this suffices in practice, a more general definition of refinement, that admits transformations
that may reorder (de)allocations while reusing stack space, is perhaps a good candidate for future
work.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

Modeling Dynamic (De)Allocations of Local Memory for Translation Validation 146:29

DATA-AVAILABILITY STATEMENT

The Dynamo tool that supports section 5 is available on Zenodo [Rose and Bansal 2024a] with
instructions for complete reproducibility of the presented results.

ACKNOWLEDGMENTS

We thank Shubhani Gupta for contributing towards scalability improvements of the translation
validation tool. We thank Abhishek Dang for carefully reading previous drafts of the paper, and
pointing out several errors, and making important suggestions that improved the paper significantly.

REFERENCES

2024. Z3 bug report for an unsound model. https://github.com/Z3Prover/z3/issues/7132.

Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Programming Language. Technical Report.

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic Program Alignment for Equivalence

Checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 1027–1040. https://doi.org/10.1145/3314221.3314596

Shubhani Gupta, Abhishek Rose, and Sorav Bansal. 2020. Counterexample-Guided Correlation Algorithm for Translation

Validation. Proc. ACM Program. Lang. 4, OOPSLA, Article 221 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428289

John L. Henning. 2000. SPEC CPU2000: Measuring CPU performance in the new millenium. IEEE Computer 33, 7 (July

2000), 28–35.

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim,

Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm: Verified Credible Compilation for

LLVM. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 631–645. https://doi.org/10.1145/3192366.3192377

Theodoros Kasampalis, Daejun Park, Zhengyao Lin, Vikram S. Adve, and Grigore Roşu. 2021. Language-Parametric Compiler

Validation with Application to LLVM. In Proceedings of the 26th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). Association for Computing Machinery,

New York, NY, USA, 1004–1019.

Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language (2nd ed.). Prentice Hall Professional

Technical Reference.

Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes. 2021. An SMT Encoding of LLVM’s Memory Model for

Bounded Translation Validation. In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer

International Publishing, Cham, 752–776.

Xavier Leroy. 2006. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In

33rd ACM symposium on Principles of Programming Languages. ACM Press, 42–54. http://gallium.inria.fr/~xleroy/publi/

compiler-certif.pdf

Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like Memory Model and Its Uses for Verifying Program

Transformations. J. Autom. Reason. 41, 1 (2008), 1–31. https://doi.org/10.1007/s10817-008-9099-0

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation

Validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 65–79.

https://doi.org/10.1145/3453483.3454030

Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A. Padua. 2011. An Evaluation of Vectorizing

Compilers. In Proceedings of the 2011 International Conference on Parallel Architectures and Compilation Techniques (PACT

’11). IEEE Computer Society, Washington, DC, USA, 372–382. https://doi.org/10.1109/PACT.2011.68

David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-FP: Automated Verification of Floating Point Based

Peephole Optimizations in LLVM. 317–337. https://doi.org/10.1007/978-3-662-53413-7_16

KedarS. Namjoshi and LenoreD. Zuck. 2013. Witnessing Program Transformations. In Static Analysis, Francesco Logozzo

and Manuel Fähndrich (Eds.). Lecture Notes in Computer Science, Vol. 7935. Springer Berlin Heidelberg, 304–323.

https://doi.org/10.1007/978-3-642-38856-9_17

George C. Necula. 2000. Translation Validation for an Optimizing Compiler. In Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and Implementation (Vancouver, British Columbia, Canada) (PLDI ’00).

ACM, New York, NY, USA, 83–94. https://doi.org/10.1145/349299.349314

Abhishek Rose and Sorav Bansal. 2024a. Artifact for paper "Modeling Dynamic (De)Allocations of Local Memory for Translation

Validation". https://doi.org/10.5281/zenodo.10797459

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

https://github.com/Z3Prover/z3/issues/7132
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3192366.3192377
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1145/349299.349314
https://doi.org/10.5281/zenodo.10797459

146:30 Abhishek Rose and Sorav Bansal

Abhishek Rose and Sorav Bansal. 2024b. Modeling Dynamic (De)Allocations of Local Memory for Translation Validation.

Technical Report. IIT Delhi. https://arxiv.org/abs/2403.05302

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation Validation for a Verified OS

Kernel. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 471–482. https:

//doi.org/10.1145/2491956.2462183

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-driven Equivalence Checking. In Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications

(Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 391–406. https://doi.org/10.1145/2509136.2509509

Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. 32–41.

Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-based Translation Validator for LLVM. In Proceedings of the 23rd

International Conference on Computer Aided Verification (Snowbird, UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg,

737–742. http://dl.acm.org/citation.cfm?id=2032305.2032364

Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evaluating Value-graph Translation Validation for LLVM.

In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose,

California, USA) (PLDI ’11). ACM, New York, NY, USA, 295–305. https://doi.org/10.1145/1993498.1993533

Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by Program Analysis of the Cross-Product. In Proceedings

of the 15th International Symposium on Formal Methods (Turku, Finland) (FM ’08). Springer-Verlag, Berlin, Heidelberg,

35–51. https://doi.org/10.1007/978-3-540-68237-0_5

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12). ACM, New York, NY, USA, 427–440.

https://doi.org/10.1145/2103656.2103709

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. 2013. Formal Verification of SSA-based

Optimizations for LLVM. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Seattle, Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 175–186. https://doi.org/10.1145/

2491956.2462164

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 146. Publication date: April 2024.

https://arxiv.org/abs/2403.05302
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2509136.2509509
http://dl.acm.org/citation.cfm?id=2032305.2032364
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164

	Abstract
	1 Introduction
	2 Execution Semantics and Notion of Correct Translation
	2.1 Intermediate and Assembly Representations
	2.2 Transition Graph Representation
	2.3 Translations of C and A to Their Graph Representations
	2.4 Observable Traces and Refinement Definition

	3 Witnessing Refinement through a Determinized Cross-Product C
	3.1 Determinized Product Graph as a Transition Graph
	3.2 Analysis of the Determinized Product Graph

	4 Automatic Construction of a Cross-Product
	4.1 Invariant Inference
	4.2 SMT Encoding

	5 Experiments
	6 Related Work and Conclusions
	Acknowledgments
	References

