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Abstract

We present an efficient software implementation to deterministically record and replay a full
multiprocessor virtual machine (VM), including its guest OS kernel and applications. De-
terministically replaying a shared-memory monolithic OS kernel (like Linux) presents a sig-
nificant performance challenge and we demonstrate the use of dynamic binary translation to
achieve this objective.

Dynamic binary translation (DBT) is a powerful technique with several important appli-
cations. System-level binary translators have been used for implementing a Virtual Machine
Monitor [2] and for instrumentation in the OS kernel [28]. In current designs, the perfor-
mance overhead of binary translation on kernel-intensive workloads is high. e.g., over 10x
slowdowns were reported on the syscall nanobenchmark in [2], 2-5x slowdowns were reported
on lmbench microbenchmarks in [28]. These overheads are primarily due to the extra work
required to correctly handle kernel mechanisms like interrupts, exceptions, and physical CPU
concurrency. Since the overhead of DBT is itself very high, we can not use it for improving de-
terministic replay performance. We present a kernel-level binary translation mechanism which
exhibits near-native performance even on applications with large kernel activity. Our trans-
lator relaxes transparency requirements and aggressively takes advantage of kernel invariants
to eliminate sources of slowdown. We have implemented our translator as a loadable module
in unmodified Linux, and present performance and scalability experiments on multiprocessor
hardware. Although our implementation is Linux specific, our mechanisms are quite general;
we only take advantage of typical kernel design patterns, not Linux-specific features.

The biggest challenge in deterministically replaying a multiprocessor system is recording
the order of shared memory reads and writes. A potential approach is to use the CREW
(Concurrent Read Exclusive Write) protocol at page granularity [27] to track the order of
shared memory reads and writes. Page-grained CREW protocol uses hardware page protection
techniques (Extended Page Tables/Shadow Page Tables) to restrict the access privilege of the
CPUs. CREW dictates that multiple CPUs can read from a page by acquiring shared-access
privilege (e.g., reader lock) of that page concurrently, but for writing to a page, they need to
acquire exclusive-access (e.g., writer lock) privilege. Every transfer of privilege is recorded
in order to reproduce the same transition during replay. This page-granular scheme, has been
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demonstrated to work on selected user-level applications, but suffers from false sharing and
huge shuttling between processors for workloads having a large amount of sharing (e.g., the
Linux kernel). In contrast, we demonstrate an implementation of CREW at byte granularity
using DBT to eliminate false sharing and achieve lower tracking overheads. To achieve this,
we insert reader/writer locks before/after every shared memory access. We implement shadow
memory using DBT, to store reader/writer locks (metadata) for each memory byte (data).
This involves CREW-like ownership tracking of memory locations, which involves associating
metadata (in shadow memory) with each memory location to store its ownership status. Our
reader/writer lock implementation is optimized for the common case when one CPU acquires
the same locks repeatedly.

Our implementation exhibits 3-9x recording overhead for several important kernel-intensive
benchmarks on a four-processor machine, compared to 2-41x overheads of the best existing
comparable approach.
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Chapter 1

Introduction

Deterministic execution is an important property that simplifies the task of debugging and
enables instruction-by-instruction debugging. Deterministic execution requires identical be-
havior of multiple executions of an application for the same set of inputs. This can be achieved
in two ways:

• Logging the non-determinism during the original execution to reproduce the execution
during the debug run.

• Enforcing determinism in a parallel application.

For this thesis, I focus on the first approach as it is more generally applicable and can be used
to introduce determinism in existing software stacks. In this setting, the original execution
is recorded by logging all potential non-determinism (also called non-deterministic inputs)
in the system, such that these executions can be replayed by reading the non-deterministic
inputs from the log file to reproduce the recorded execution. Non-deterministic inputs of in-
terest include inputs that may change the logical behavior of the program. For example, inter-
rupts, inter processor communication, shared memory interaction, device interaction, special
instructions (e.g., rdtsc, rdscp), etc., can cause the application to behave differently during
the replayed execution. We call the above set of events, non-deterministic, because they are
external to the program’s execution state, and need to be recorded for faithful replay. The
non-deterministic events, which need to be logged varies, depending on the architecture (e.g.,
uniprocessor vs. multiprocessor), and on the granularity of record/replay (e.g., full system vs.
process).

The machine state is snapshotted at the beginning of the execution, to ensure that the
record and replay start with the same memory and register states. During the recorded exe-
cution, the non-deterministic events are logged for replay. Some non-deterministic events are



2 Introduction

asynchronous, e.g., interrupts. Interrupts can occur at any time, so the timing of interrupts also
needs to be recorded to enforce same behavior during replay. Other non-deterministic events
are synchronous, e.g., device I/O reads (in, ins) and special non-deterministic instructions
(rdtsc, rdscp). In these cases, only recording the input value is sufficient to reproduce the
same execution during replay.

The timing of asynchronous non-deterministic events needs to be based on some logical
behavior of the machine that can be reproduced identically during replay. For example, the
number of retired instructions before an interrupt can be used to decide when to inject inter-
rupts during replay.

For a uniprocessor full system record/replay system, the non-deterministic events are in-
terrupts, device I/O, and special instructions. For a process level record/replay, recording the
order of system calls and their return values are also needed for deterministic replay. These
events can be logged very cheaply as demonstrated in previous work [16, 24, 26, 29, 54, 58, 63]
and exhibit typical runtime overheads of less than 20% and log growth rates of less than 100
KBps (making it practical for use in production systems). However, deterministically replay-
ing a multiprocessor system is harder because multiple cores can access the shared memory
concurrently, which adds another major source of non-determinism. To replay a multipro-
cessor application, we also need to record the order of shared memory accesses. If all shared
memory accesses are protected by a lock, then recording the order of lock acquisitions is suffi-
cient to reproduce the order of shared memory accesses. But, real programs contain data races,
which makes this problem challenging and interesting. Several ideas have been proposed
to record multiprocessor applications efficiently. Some of the hardware based approaches
[6, 31, 32, 43, 44, 46, 60, 62] require significant changes to the hardware. Another category
of previous work assumes rarity of data races: PRES[51] and ODR[3] do not record all the
data races and try to reproduce the data race in multiple replays. Some other approaches like
DoublePlay[59] and ReSpec[41] detect the data races during record by executing and check-
pointing another replica of the application concurrently, and rollback to a previous checkpoint,
if the states of the two executions differ due to a data race. The above systems only support ap-
plication level record/replay. System level record/replay is more challenging than application
level record/replay because of the following reasons.

• Tightly-coupled shared-memory style of programming in the kernel: This results
in a large amount of data-sharing among processors, resulting in more non-determinism
due to concurrent memory accesses. Compared to application-level workloads, memory
sharing in an OS kernel is denser and much more varied. This results in higher overheads
for approaches that involve recording the order of shared memory accesses.
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• Lock-free and hidden synchronization: A mature shared-memory monolithic OS ker-
nel usually involves several types of lock-free primitives and hidden synchronization.
Many previous approaches to deterministically replay a software system, rely on the
ability to identify and interpose on synchronization operations, making them unsuitable
for use in this setting.

SMP-Revirt [27] is perhaps the first system to support full system virtual machine deter-
ministic replay. SMP-Revirt does not assume anything about the synchronization primitives
and works for unmodified virtual machines. The authors of SMP-Revirt rely on hardware-
based page protection techniques to capture the order of shared memory accesses. SMP-Revirt
implements a CREW (concurrent reads exclusive write) protocol using a combination of page-
protection techniques and per-processor shadow page tables [2]. The CREW protocol assigns
an owner to every virtual page that gets accessed during runtime. Multiple CPUs can own a
page in read-only mode, whereas for write access, a CPU needs exclusive access to the page.
If the CPU does not have adequate permission to access a page, the record/replay subsys-
tem logs an ownership transfer (also involves modification of page table entries) event before
transferring the requested permissions to the current CPU. SMP-Revirt works well for appli-
cations having little sharing but suffers from huge performance degradation for applications
having more sharing, due to a large number of ownership conflicts. Our work is based on the
following observations:

• Tightly-coupled shared-memory style of programming in the kernel causes a lot of own-
ership conflicts and is unavoidable.

• A large number of ownership conflicts are due to false sharing because of the page-
granularity limitation. If multiple cores try to access the same page at different indexes
and at least one of them is a write operation, then the page-grained CREW protocol
causes an ownership conflict even though there is no actual conflict in the real program.

• The cost of ownership transfer is very high. An ownership conflict causes a trap inside
the hypervisor followed by more traps by other conflicting cores. A hypervisor trap is
much more expensive than a system call, as it causes a world switch[18].

To address these issues, we propose a different recording scheme for the kernel. To elimi-
nate false sharing, we maintain the ownership information for each byte, instead of each page
(i.e., page granularity). Instead of relying on the hardware page protection technique, we take
an instrumentation based approach. Every instruction, which accesses a shared memory loca-
tion, is instrumented to check the ownership of the current access. If the current CPU does not
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own the memory byte, then it executes a slowpath to acquire the ownership from the owner
of that byte. Our instrumentation does not require any trap to the hypervisor, and thus the
ownership conflict is also much faster than the page-protection based CREW.

To instrument unmodified binary code, we rely on Dynamic Binary Translation (DBT).
DBT is an effective way to dynamically instrument an unmodified binary with lower over-
heads [17]. DBT is a technique which transforms the code as it executes. Thus the code can
be dynamically instrumented before it executes. The main component of DBT is a dispatcher.
The dispatcher translates one basic block at a time and transfers control to it. It then instru-
ments the basic block to regain control after termination of the basic block. It then computes
the address of the next basic block and jumps to it. The translate and execute loop contin-
ues until the program terminates. Several optimization techniques are introduced to do this
efficiently (discussed in Chapter 3).

DBT requires different mechanisms for user-level applications and OS kernels. The ex-
isting system level DBT exhibits higher overheads, 2-5x slowdown for kernel intensive work-
loads. For example, VMware’s binary translator in a Virtual Machine Monitor (VMM) shows
10x slowdowns for the syscall nanobenchmark [2]; corresponding overheads are also ob-
served in macrobenchmarks. VMware’s DBT low performance also includes the costs of
other virtualization mechanisms, like memory virtualization through shadow page tables, etc.
Another kernel-level binary translator, DRK [28], reports 2-5x slowdowns on kernel inten-
sive workloads. Applications requiring high kernel activity (like high-performance fileservers,
databases, webservers, software routers, etc.) exhibit prohibitive DBT slowdowns and are thus
seldom used with DBT frameworks. Since the overhead of DBT is itself very high, we cannot
use it for any optimization. We implemented a kernel-level dynamic binary translator with
near-native performance. Our optimizations result in a very different translator design from
both VMware and DRK. We are more aggressive about assumptions on typical kernel behav-
ior. In doing so, we sometimes relax “transparency” 1; for us, ensuring correctness is enough.
Essentially, we show that many transparency requirements are unnecessary and can be relaxed
for better performance. Like DRK [28], our translator works for the entire kernel including
arbitrary devices and their drivers.

Our design differs from VMware and DRK in the following important ways:

• On an interrupt or exception, the current program counter (PC) value is pushed on the
stack by the hardware. To maintain transparency, the translated code should store the
original PC on the stack. VMware and DRK replace the kernel entry points with a call to
the dispatcher, which jumps to the translated handler after restoring the original PC on

1Transparency means that a translated code should never observe a different state from its native execution.
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the stack. In our design, we replace the kernel entry points with the translated address
of their handlers. In doing so, we allow the translated code to observe non-native state.

• Both VMware and DRK emulate precise exceptions2 in software by rolling back execu-
tion to the start of the translation of the current native instruction, and handle interrupts
by delaying them till the beginning of the translation of the next native instruction. In
our design, we allow imprecise exceptions and interrupts.

• The translator’s code and data structures need to be reentrant to allow interrupts and
exceptions to occur at arbitrary program points. Similarly, physical CPU concurrency
needs to be handled carefully. DBT requires maintenance of CPU-private data struc-
tures, and migration of a thread from one CPU to another should not cause unsafe con-
current access to common state. In our design, the presence of imprecise exceptions
and interrupts introduces more reentrancy and concurrency challenges. We present an
efficient mechanism to provide correct translated execution.

We used our DBT framework to instrument the Linux kernel for efficient deterministic
replay. We assign an owner to every byte in the main memory. All instructions that can
potentially access a shared memory are instrumented to check ownership before accessing the
memory. If the current CPU does not own the memory location, it automatically acquires the
ownership from remote CPU(s) and logs this event to reproduce the same effect during replay.
The ownership information corresponding to a memory byte is stored in the shadow byte,
which is kept at a constant offset from the original byte. We achieve significant performance
improvement over our SMP-Revirt[26]-like implementation of page-grained CREW, through
this DBT-based scheme.

The thesis is organized as follows. Chapter 2 discusses related work. Chapter 3 discusses
our DBT algorithm, implementation and results. Chapter 4 describes our byte-grained CREW
algorithm. It also discusses our implementation and results. Finally, we conclude this thesis
in Chapter 5.

2A precise exception means that before execution of an exception handler, all instructions up to the executing
(emulated) instruction have been executed, and the excepting instruction and everything afterwards have not
been executed. Previous DBT implementations have preserved precise exception behavior for architectures that
support precise exceptions (e.g., x86).





Chapter 2

Related Work

Several hardware and software approaches for deterministic replay have been proposed in
the past. Deterministic replay can be implemented for a process, or for the full system (an
entire operating system with applications). In a uniprocessor environment, to deterministically
replay a process we need to snapshot the process’s address space at the beginning, the return
values of system calls (including kernel writes to application memory), and the values returned
by special instructions like rdtsc, rdscp, etc. For a full system uniprocessor deterministic
replay, we need to additionally record the I/O-port reads, interrupts and their timings, and
DMA-based I/O activity (e.g., network packets). The overhead of recording these events is
typically less than 20% as demonstrated by several previous studies [16, 24, 26, 29, 54, 58, 63].
However, multiprocessor deterministic replay is much harder due to the need to record the
order of shared memory reads and writes. Many software-only approaches have been proposed
to capture this type of shared-memory non-determinism, and we discuss them in this chapter.

Instant Replay [40] logs the order of all shared memory accessed during the program ex-
ecution. Instant replay implements a CREW-like (concurrent read, exclusive write) protocol
to record the order of shared accesses. The CREW protocol allows concurrent reads to a
shared object, but writes to a shared object are restricted to a single thread at any time. To im-
plement CREW, Instant Replay acquires a reader/writer lock before every read/write access.
Instant Replay maintains a version number corresponding to each shared object. Whenever
a process writes to a shared object, the version number of the shared object is incremented.
For every shared access, the version number of the shared object is recorded, so that dur-
ing replay, the same version number of the shared object gets accessed. Instant replay in-
serts reader_entry, reader_exit routines around every read access and writer_entry,
writer_exit routines around every write access as shown in Figure 2.1. Every object
contains additional fields: version_number, total_readers, active_readers, and sema
(semaphore). During record, semaphore acts as a writer lock. Before writing to an object,
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reader_entry(object, process):
1 if (record) {
2 down(object.sema);
3 atomic_add(object.active_readers, 1); /* writer waits if readers are active */
4 up(object.sema);
5 write_log(process, object.version); /* record the object version */
6 }
7 else if (replay) {
8 recorded_version = read_log(process);
9 /* during replay wait for writers to update this version to the logged version */
10 while(object.version != recorded_version);
11 }

reader_exit(object):
1 if (record || replay) {
2 /* update the total number of readers for current version of object */
3 atomic_add(object.total_readers, 1);
4 if (record)
5 atomic_dec(object.active_readers, 1);
6 }

writer_entry(object, process):
1 if (record) {
2 down(object.sema);
3 while (object.active_readers != 0); /* wait until all the readers finish */
4 write_log(process, object.version); /* record the current object version */
5 write_log(process, object.total_readers); /* record total reads for this version */
6 }
7 else if (replay) {
8 recorded_version = read_log(process);
9 /* during replay wait for writers to update this version to the logged version */
10 while(object.version != recorded_version);
11 total_readers = read_log(process);
12 /* during replay wait for all the readers to read this version of object */
13 while(object.total_readers < total_readers);
14 }

writer_exit(object):
1 if (record || replay) {
2 object.total_readers = 0; /* reset the total reads on version update */
3 if (record) {
4 object.version++; /* update the object version */
5 up(object.sema);
6 }
7 else
8 atomic_add(object.version, 1);
9 }

Fig. 2.1 Instant replay implementation of reader/writer locks.
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the writer acquires the semaphore (line-2 in writer_entry) and releases it after the completion
of the write (line-5 writer_exit). The active_readers variable acts as a reader lock. Ev-
ery reader increments the active_reader count when it enters the read critical section. The
writer waits until the active_readers count is zero before writing to the object. Before in-
crementing active_readers, the readers wait for all the writers to finish. This is ensured by
acquiring semaphore at line-2 in readers entry. The above mechanism guarantees mutual ex-
clusion between the readers and writers and also prevents the starvation of the writer (if some
readers are active all the time). The reader releases its reader lock at line-5 in reader_exit
by decreasing the active_reader count. total_readers counts the total number of reads
of an object for a particular version number. During record, in the read critical section, the
readers log the current version number of the object. During replay, the readers wait until the
version number of the object is same as it was during record. During record, in addition to
the version number, the writer also logs the current value of total_readers. During replay,
before writing to the object the writer first waits for the version number of the object to reach
its recorded version, and then it waits for all the readers to access the current version of the
object as it was during record. After writing to the object, the writer_exit routine updates
the version number of the object. The above mechanism ensures that all readers and writers
access the same version of the object during record and replay. The instrumentation over-
head of Instant Replay is high — the amount of instrumentation code inserted around every
shared-memory access is large, and the frequency of the execution of these shared memory
accesses can impair performance. Our scheme is similar to Instant Replay, except that we have
drastically reduced the amount of instrumentation code required around each memory access.

iDNA [12] logs the value returned by every load instruction. Because the frequency of
load instructions is very high, it is impractical to record every load value. iDNA maintains a
per-thread cache of load values. Whenever the thread accesses a memory location, the cache
is also updated. On every load to a memory location iDNA first checks the cached value with
the current value, if they are not the same – possible if it is the first load, a kernel mediated
control flow or DMA overwrites the memory location, another thread overwrites the memory
location – it logs the load value, otherwise it increments the hit counter. In the case of cache
conflict, before logging the load value, it also logs the value of the hit counter to correctly
identify the load during replay. Recording the load values is sufficient to accurately replay the
recorded sequence, even if the ordering of threads may vary during replay. This property is
also called value-determinism.

SMP-Revirt [27] maintains and logs page-grained read/write ownership for processors.
Inspired by the CREW (concurrent read, exclusive write) protocol [22, 40], every page is as-
signed an owner for exclusive access, or a set of owners for shared read accesses. SMP-Revirt
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records CREW conflicts by using hardware page protection support. Through page table ma-
nipulations, a page is mapped only in the address space of its owners. The accesses by a pro-
cessor to a page that it owns execute at full speed. If a processor tries to access a page that it
does not currently own, a page fault is generated; the fault handler transfers ownership, creates
the new page table mappings, and records this ownership transfer event. This log of owner-
ship transfers is enough to deterministically reproduce the execution. SMP-Revirt implements
deterministic replay for the virtual machine. It uses hardware page protection techniques on
shadow page tables to implement CREW. For a virtual machine, CPUs are virtualized (called
virtual CPUs). The hypervisor maintains one shadow page table corresponding to each page
table inside the guest OS. SMP-Revirt modifies the shadow page table implementation, to cre-
ate one copy of shadow page table corresponding to every virtual CPU. To implement CREW,
the hypervisor maps a physical page with different privileges in per-CPU shadow page tables.
The SMP-Revirt approach treats the target program as a black-box, and therefore it is possible
to use this scheme on any target program, including an OS kernel. However, every recorded
event involves an expensive page fault and a page table update, making the approach perform
very poorly on programs which involve more sharing, especially false sharing. For example, in
our experiments running the Apache webserver, using the SMP-Revirt approach on the Linux
kernel slows execution by around 19x on four processors. Further, as also discussed in [27],
this scheme scales very poorly with increasing number of processors.

Scribe [38] implements CREW in the kernel to do process-level deterministic replay us-
ing thread-private page tables. In UNIX-like kernels, one page-table is created for every
process. To record/replay a process, Scribe creates one copy of page tables corresponding to
every thread of the process. Pages in the thread-private page tables are mapped and unmapped
based on the CREW protocol. The difference between Scribe and SMP-Revirt is: SMP-Revirt
does the whole system record/replay, whereas, Scribe does record/replay for a process. To
record/replay, a process kernel-mode execution is not recorded; instead, recording the order of
system calls and process interaction between kernel through memory is enough to reproduce
the same execution. This means that, unlike SMP-Revirt, overheads of recording shared mem-
ory access are not included in Scribe overheads. The Scribe authors evaluate their scheme on
a variety of benchmarks like Apache webserver, Linux build, etc. Compared to SPLASH2
benchmarks [61] (used in other work on user-level deterministic replay), the benchmarks used
in this work exhibit relatively less sharing at the user-mode. Also, some of these benchmarks
spend a large amount of execution time in the kernel, which is not getting recorded. Our work
records and replays both process-level and kernel-level execution. While Scribe imposes less
than 2.5% overhead for Apache on four processors, our SMP-Revirt implementation for a vir-
tual machine (full-system) imposes 19x overhead on four processors! Almost all overhead in
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this benchmark is observed in kernel-mode execution. We present a more efficient scheme to
record and replay such workloads.

Instant replay [40], SMP-Revirt [27], and Scribe [38] are order-based replay systems be-
cause they record the order of shared memory accesses.

Subsequent work has addressed the performance limitations of SMP-Revirt in several
ways. One way is to limit the scope of the programs being recorded; for example, RecPlay
[53] assumes data-race free programs and works by recording only explicit synchronization
operations. Kendo [49] also assumes data-race free programs, but it makes the implementa-
tion of locks deterministic such that there is no need to record the order of lock acquisitions.
In practice, real programs contain data races and hence these techniques can not be applied to
them.

Another way to improve performance is to relax the definition of replay, so that a replayed
run need not mimic the recorded run precisely, but should reproduce its interesting behavior.
Probabilistic Replay with Execution Sketching (PRES) [51] and Output-Deterministic Replay
(ODR) [3] are examples of such systems, where the behavior of the recorded run (e.g., failure
due to a bug) is reproduced in the replayed run, even though the replayed run may not be
identical to the recorded run. Such systems model replay as a “guided search” over the space
of possible schedules that match the behavior of the recorded run. These systems also rely
on the ability to identify and interpose on all synchronization operations — for performance,
if not for correctness. For example, the search space during replay increases exponentially
with the number of data races in both these systems. For systems like OS kernels involving a
wide variety of hidden synchronizations (which will appear as data races to these tools), these
schemes become impractical.

ODR [3] satisfies the output-determinism property in which inputs during the replay may
vary from the recorded run but the output remains the same during replay. For example, if the
visible outputs are assertion failures, segmentation faults, crashes, etc.; then ODR ensures that
they must be visible during the replay even if the sequence of inputs or instructions are not the
same as the recorded run. This relaxes the need to reproduce the same data race values during
the replay, which improves record performance.

In both PRES and ODR, there is a trade-off between record and replay performance. The
less information you record, the search space during replay will increase accordingly. For
example, if the PRES only records the order of synchronization operations and system calls, it
is not able to successfully replay all benchmarks. However, it can replay all the benchmarks if
it records the order of function calls. The overhead of recording function calls varies between
7%-779%. Similarly, if ODR only records the lock order, the overhead lies between 10%-60%
for two processors. If it also records the branches, the overhead varies between 250%-450%
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for two processors. Notice that for the low overhead recorded run ODR is not able to replay
all benchmarks.

In subsequent work, researchers have combined these ideas. For example, ReSpec [41]
combines selective logging with output-deterministic replay in an online manner. Here, exe-
cution is sliced into time intervals, and only explicit synchronization operations are recorded
and replayed. At the end of a time interval, the execution states of the recorded and replayed
executions are compared, and a rollback is triggered in case of a mismatch — a mismatch
can occur if the replay failed due to non-determinism caused by data-races, for example. On
a rollback, the execution of that time interval is serialized, and the serial order is recorded.
Assuming data-races are rare, ReSpec presents a fast deterministic replay system. Respec
supports only “online” replay, i.e., the replayed and recorded processes must execute concur-
rently.

Subsequent work, DoublePlay [59], extends ReSpec to support offline replaying. Double-
Play assumes the presence of an online replaying session — the recording session executes in
a “thread-parallel” fashion while the replaying session executes in an “epoch-parallel” fash-
ion. The epoch parallel execution serializes the thread executions within a time interval, and
yet provides throughput comparable to thread-parallel executions. Like ReSpec, DoublePlay
compares the execution states at the end of every time interval and rolls back in case of a
mismatch. If the states match at the end of a time interval, the serial execution order of the
epoch-parallel execution and the recorded order of synchronization operations is sufficient to
guarantee correct offline replay. It is possible that the number of rollbacks for an epoch is very
high due to a large number of data races in that epoch; in that case, if the divergence check
fails at the end of the epoch, DoublePlay copies the epoch parallel state to the thread parallel
state and start execution from the new state. If the divergence is detected in the middle of an
epoch — for example, the arguments of a system call did not match — then it rolls back to
the point of divergence and then copies the state of the epoch-parallel execution to the state of
the thread-parallel execution (called forward recovery in their paper). One problem with this
Respec [41] and DoublePlay [59] is they don’t record any arbitrary kind of execution. Double-
Play can record only those sequences within an epoch which can be achieved by running those
threads sequentially. ReSpec can omit some record sequences, where a data-race may result
in a divergence of state in the recorded and replayed execution during a time interval. Due to
this limitation, some bugs may remain hidden during record that were otherwise possible in
the native run.

While ReSpec and DoublePlay present low overheads on the application-level benchmarks
they evaluated, there are shortcomings to these approaches that make them impractical for use
in recording and replaying full systems:
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1. They rely on the ability to rollback an execution, which requires maintaining multiple
versions of the same state, and extra copying which is quite expensive. Respec and Dou-
bleplay implement page-grained copy-on-write optimizations; while such optimizations
may work for applications with relatively small memory footprints, they are impractical
for workloads like a full guest kernel, whose memory footprint is much larger.

2. They rely on being able to understand and accordingly interpose on all synchronization
operations. As we have discussed before, this is quite hard to do correctly for an OS
kernel. Also, this requires the ability to modify the target program.

3. Most importantly, these techniques rely on the rarity of data races. If data races are
common, rollbacks are triggered frequently which severely impairs performance. For
example, in all the experiments reported in the DoublePlay paper [59], only at most two
rollbacks are triggered per program execution; even with the forward recovery, rollbacks
were not avoided for some benchmarks; for an OS kernel which deliberately uses data
races to implement many types of implicit synchronization, the expected number of
rollbacks will be several orders of magnitude higher.

The overhead of ReSpec and DoublePlay varies between 4-100% for SPLASH2 bench-
marks on two processors. Interestingly, on the benchmarks used by ReSpec and DoublePlay,
SMP-Revirt also exhibits less than 100% overheads on two processors. The two benchmarks
on which SMP-Revirt performs badly (7-9x overheads on dbench and radiosity) have not
been evaluated in ReSpec and DoublePlay. Previous work on RecPlay [53] reported that
dbench and radiosity contain data races, and so their scheme could not handle them. We
believe that these benchmarks are unlikely to perform well on ReSpec and DoublePlay for this
reason.

Neither DoublePlay nor ReSpec records the execution of the OS kernel; they simply log
the outputs of the system calls. Thus these systems cannot help in debugging the OS kernel.
On the other hand, we record the entire software stack, including the applications and the OS
kernel.

Related work on determinizing executions of a non-deterministic program [9, 10, 23, 25,
42], or enforcing determinism at the system level [5] are competing approaches to determinis-
tic replay. Given that current systems are deliberately non-deterministic, deterministic replay
is often the most practical and immediate solution.

Another work on scalable deterministic replay in a parallel full-system emulator achieves
performance overheads of around 70% for an emulator running on 16 processors [19] —
because a full-system emulator already has large overheads due to the use of a software MMU,
the overheads of supporting deterministic replay seem small in comparison. However, the
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ideas presented in [19] do not translate directly to supporting efficient deterministic replay
on bare-metal executions. While several hardware optimizations have also been proposed for
deterministic replay [6, 31, 32, 43, 44, 46, 60, 62], we restrict our attention to software-only
approaches in this thesis.

SMP-Revirt [27] comes closest to our goals of recording a full multi-core virtual machine
(including the OS and its applications), towards a faithful replay, without making stronger as-
sumptions on the absence or rarity of data-races in software. We re-implemented SMP-Revirt
[27], using nested-page-tables [13] (the original implementation used shadow page tables),
and found that one of the main reasons for the slowdown is false-sharing. Because SMP-Revirt
works at page-granularity, it is possible that two threads that are accessing disjoint locations
on the same page, result in unnecessary ownership transfers. We employ an instrumentation-
based approach like [40] in an attempt to minimize recording overheads. We use dynamic
rewriting techniques on unmodified binary code, to be able to instrument the code running
inside a VM, for efficient recording. However, existing binary rewriting tools for instrumen-
tation impose very high overheads for kernel-intensive workloads. Towards this, we propose
a novel system-level binary instrumentation technique that significantly outperforms existing
methods. In the rest of this section, we discuss existing dynamic binary translation (DBT)
frameworks.

A DBT framework transforms the code as it executes. Both, user-mode and kernel-mode
DBT framework exist today. DBT has several applications, including, but not limited to,
profiling, debugging, cross-architecture translation, security, etc. QEMU [8] is a full system
emulator that can emulate an entire operating system with applications and uses DBT. QEMU
provides a hardware abstraction to the target operating system (guest OS). The interactions
between guest device drivers and hardware are emulated in software. From the guest’s per-
spective, it talks to the real device but in reality, QEMU proxies for the device. Similarly, the
memory management unit (MMU) is also emulated in software to provide portability across
all architectures. The high-level goal of QEMU is to provide a common platform for cross ar-
chitecture translation. QEMU generates intermediate code (in its intermediate representation)
from the input instruction set and then generates the target code for the host instruction set
from this intermediate code. The intermediate code is optimized through custom optimization
passes implemented within QEMU. However, this multi-layer translation imposes significant
overheads, even if the input and the target architectures are the same. For example, QEMU
imposes 5-20x slowdown for regular applications for x86-to-x86 translation.

VMWare’s paper on comparing hardware and software techniques for virtualization [2]
shows that full system emulation is possible at a small cost if the input and target instruc-
tion sets are largely same. For example, VMWare’s virtual machine monitor (VMM) reports
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only 2.9 % overheads for compute intensive SPECInt benchmarks. The primary insight be-
tween VMWare’s software-based virtualization is that if the input and target instruction sets
are largely same, most instructions can be run natively, without any extra DBT overhead.
In fact, VMWare runs the entire user-mode code natively without any instrumentation. The
only part that needs to be instrumented is the guest kernel. The guest kernel interacts with
the hardware through privileged instructions and memory mapped I/O. These privileged in-
structions need to be emulated. Typically, the DBT dispatcher (the component of the DBT
software that orchestrates the whole translation) maintains shadow state corresponding to the
guest OS’s privileged state (e.g., interrupt flags), in VMM’s memory. Instructions that read-
/write the privileged state in the guest OS are translated to instead emulate the functionality
by reading/writing to the shadow state. Another important component of an OS is its mem-
ory management unit (MMU), which also needs to be virtualized. VMWare’s VMM creates
a shadow page table corresponding to each page table in the guest. The VMM identifies a
page table load, by tracking the mov_to_cr3 instruction. Modifications to the page-table are
tracked through write-protecting the pages corresponding to guest page tables. The VMM also
interposes on the kernel entries to emulate the corresponding hardware behavior, enabling ac-
cess to the kernel pages, and running the system in translated mode afterward. The VMM also
ensures precise exceptions and interrupts. Precise interrupts and exceptions are the property of
the hardware that ensures the delivery of exceptions and interrupts at a valid instruction bound-
ary. For an exception, the valid instruction boundary is the start of the excepting (and partially
executed) instruction, whereas, in the case of interrupts, it is the next instruction boundary.
In a typical DBT environment, an instruction can be translated into multiple instructions –
to ensure the precise exception property, the changes made by previous instructions in the
translated set must be rolled-back before injecting the exception. In the case of precise in-
terrupts, the delivery of interrupts must be delayed until all the instructions in the translation
set have finished their execution. These mechanisms are costly and discussed in details in
VMWare’s paper [2] that compares the software virtualization approach based on DBT, with
hardware-assisted virtualization.

Figure 2.2 shows the data from the VMWare’s paper[2]. The nano-benchmarks repeatedly
execute the same opcode in a loop. The two nano-benchmarks, divzero and syscall incur
the overheads of 262% and 853%. These overheads confirm that the kernel entries and exits
are very expensive. Other micro-benchmarks that do a lot of paging activities – incur high
overheads due to MMU virtualization. On the other hand, SPEC-Int and kernel-compile
spend most of the time in user-mode and has smaller overheads. The webserver, apache is
slow due to network activities that involve a lot of interrupts. These results confirm that the
kernel-level DBT has very high overheads and not suitable for kernel intensive workloads.
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VMware’s Software Virtualization Overheads
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Fig. 2.2 VMware’s software virtualization overheads.

However, VMware VMM does a lot of extra work to virtualize a guest OS, that is not needed,
if we only want to translate the kernel.

Another work, DRK[28], implements the DBT framework for the kernel as a loadable
module inside the guest OS. Unlike VMWare, the goal of DRK is not virtualization but instru-
mentation. DRK also emulates precise exceptions and interrupts similar to VMWare, but does
not emulate privileged instructions. Similarly, DRK does not implement MMU virtualization
(i.e., no shadow page tables). Figure 2.3 shows overheads of DRK for several kernel intensive
benchmarks. DRK authors report overheads up to 350% for workloads like fileserver, web-
server, webproxy, varmail, and apache. These overheads are primarily due to the additional
mechanism needed to ensure transparency. Recall that, by transparency, we mean that a trans-
lated code should never observe a different state from what it would have observed during the
native run.

Ideally, a translated system must run at near-native speed. Low-overhead user-level DBT
is well understood (e.g., [17]). For this thesis, we focus on kernel-level DBT. We find that
some of the transparency requirements, enforced by previous DBT systems, are unnecessary
and the Linux kernel, for example, does not depend on such guarantees. With slightly-more
relaxed transparency, we achieve near-native performance for kernel-intensive benchmarks.
We discuss our optimizations for efficient dynamic binary translation in Chapter 3. Our de-
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Fig. 2.3 Dynamo-Rio kernel (DRK) overheads.

terministic replay scheme implemented on top of DBT-based instrumentation is discussed in
Chapter 4.





Chapter 3

Fast Dynamic Binary Translation for the
kernel

3.1 Background

Dynamic binary translation (DBT) is a mechanism that allows transformation of code as it
executes. Translation is done at the granularity of basic blocks. A basic block is a sequence
of assembly instructions with only one branch instruction at the exit. A branch instruction
jumps to a target basic block (the address could be in memory, register, and in the instruction
itself). Translation at the basic block granularity allows the dispatcher to translate only those
instructions that are going to execute. In x86 assembly, it is possible that after executing
a branch instruction the execution never executes the subsequent instruction, therefore the
translation stops at a branch instruction. On the other hand, all the instructions within a basic-
block are guaranteed to execute and hence they are translated all at once. Interestingly, a basic
block may not be the most-efficient granularity for translation (explained later in this chapter).

For comparison with VMMs, we also use the term guest for the native code (i.e., the code
which is going to transformed dynamically). We use tx-pc to denote the translated address
corresponding to the native address pc. Figure 3.1 shows the various components of a DBT
framework.

• Dispatcher: The dispatcher is the main component of a DBT framework. The dis-
patcher executes in the same address space as its guest, and yet it hides from the guest.
The dispatcher implements two important functionalities.

– Disassemble: The dispatcher takes a program counter as input and disassembles
the basic block starting at the the program counter.
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Fig. 3.1 A DBT framework

– Code-gen: After disassembling, the dispatcher generates the output code corre-
sponding to the input basic block. The output code is produced in a way that the
dispatcher regains control after the execution of the translated basic block. The
translation of the last branch instruction sets the next program counter value be-
fore jumping back to the dispatcher. The dispatcher then translates the basic block
starting at the next program counter and jumps to it. This translate and execute
loop continues until the program terminates.

• Code-cache: Another component of a DBT framework is the code-cache. A typical
guest executes the same basic block multiple times. Already translated basic blocks are
cached into a code-cache to reduce translation overheads. Before translation, the dis-
patcher first looks in the code-cache for an existing translation. If a translation already
exists, the dispatcher jumps to the target block; otherwise, it translates and caches the
basic block in the code-cache.

To understand the working of a dispatcher let’s look at a simple program as shown in
Figure 3.2a. This program computes the sum of all natural numbers which are less than 100.
After, the computation the routine checks whether the sum is equal to 100 and sets the result
to zero if the equality check succeeds. Notice, this will never happen, and we will see that this
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main() {
int i, sum = 0;
for (i = 0; i < 100; i++)

sum += i;
if (sum == 100)

sum = 0
return sum;

}

(a) A sample program with loops.
push %ebp
mov %esp, %ebp
mov $0, -4(%ebp)
mov $0, -8(%ebp)
jmp BB2

cmp $99, -8(%ebp)
jle BB3

mov -4(%ebp), %eax
pop %ebp
ret

mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)
jle BB3

BB-1

BB-6

BB-3

BB-2

100

1

cmp $100, %eax
jne BB6 BB-4

mov $0, %eax BB-5

1

1

1

0

(b) A control flow graph of basic-blocks corresponding
to the main routine.

BB1
push %ebp
mov %esp, %ebp
mov $0, -4(%ebp)
mov $0, -8(%ebp)
jmp BB2

BB3
mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)

BB2
cmp $99, -8(%ebp)
jle BB3

BB4
cmp $100, %eax
jne BB6

BB5
mov $0, %eax

BB6
mov -4(%ebp), %eax
pop %ebp
ret

(c) Assembly code corresponding to the main routine.

Fig. 3.2 An illustrative example of dynamic binary translation.

piece of code is never going to be translated.

The output assembly is shown in Figure 3.2c. The control flow graph(CFG) of the basic
blocks are shown in Figure 3.2b. The numbers in the basic blocks represent the total number
of executions of the given basic-block throughout the execution of the program. BB1 is the
entry basic block which branches to BB2 after execution. BB2 branches to the loop body (BB3)
after checking the loop condition. Because this condition is true, the program executes the
loop body (BB3) until the loop condition is met (100 times), and finally branches to BB4. BB4
checks for another condition on the computed sum (which is not true) and jumps to BB6. BB5
never gets a chance to run during the lifetime of the program.

Let’s see how the dispatcher executes this program in Figure 3.3. The dispatcher takes
an entry basic block (BB1) as input for dynamic execution. This example shows a simple use
case of a DBT framework, where it does nothing special but generates the identical behavior
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for every instruction. We will see that, even in this simple use case, the translation of a single
instruction may contain multiple instructions. BB1(Figure 3.3a) terminates at a direct branch
instruction whose target is BB2. Notice that the dispatcher cannot create an identical translation
for the jmp instruction, because otherwise it will start executing original code. Therefore, the
dispatcher emits translation code to store the jump target in a variable called nextpc. The
nextpc variable resides in the dispatcher address space. A branch instruction is emitted to
regain control after the execution of the basic block. After regaining control, the dispatcher
reads the target basic block using nextpc, translates, and executes it.

The next basic block BB2(Figure 3.3b) contains a conditional jump instruction. A condi-
tional jump instruction has two potential targets. If the condition is met during runtime the
control flow goes to the jump target, i.e., BB3, in this example, otherwise, the next instruction
(BB4) is executed. To handle two different targets, in the translation of a conditional jump in-
struction, we add an extra jump instruction to jump to the next basic block, for the case when
the condition is not met during runtime. In this example, after the execution of BB2, BB3 is
going to execute next.

BB3 contains the main body of the loop. Notice, that BB3 also contains a fragment of
already translated code (BB2), but we have no way to reuse that translation because the first in-
struction in these basic blocks is different. Because of the sharing of code among basic blocks,
some translated code is duplicated in the code cache. While duplications can be avoided by
inserting more branches in the translated code, most DBT frameworks avoid this to reduce
runtime overheads. In the example, the loop body in BB3 will execute 100 times. After the
first execution, subsequent executions of the same basic block reuse the existing translation
from the code-cache (assuming enough space in code-cache to store all the translations) 1.

When the loop condition is not true anymore, the dispatcher is asked to execute BB4. In this
program, BB4 never sets the nextpc to BB5, and therefore, BB5 remains untranslated during
the lifetime of the program. Finally, the dispatcher translates the last basic block (BB6). This
basic block contains an indirect jump instruction ret, whose target is determined at runtime.
We explain indirect branch handling mechanism later in this chapter.

The dispatcher and guest code executes in the same address space but the invocation of
dispatcher is completely transparent to the guest. To facilitate this, guest state must be saved
before a jump to the dispatcher and the dispatcher must restore this guest state before returning
to the translated code. Also, the dispatcher and guest codes must execute on different stacks.

Figure 3.4 shows the pseudo code of the dispatcher. The guest state is stored in the dis-
patcher memory and then the dispatcher switches to its own stack. If the translation corre-

1In case of memory pressure, a replacement policy is enforced to evict translated basic blocks from the code
cache. In this case, a cache miss of already translated basic block causes retranslation of the basic block
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push %ebp
mov %esp, %ebp
mov $0, -4(%ebp)
mov $0, -8(%ebp)
jmp BB2

push %ebp
mov %esp, %ebp
mov $0, -4(%ebp)
mov $0, -8(%ebp)
set nextpc to BB2
jmp dispatcher

(a) Input and output assembly generated by the dispatcher for the entry basic block. Before, jumping to the dispatcher, the output code sets
the nextpc to BB2, which is used by the dispatcher to translate and execute BB2.

cmp $99, -8(%ebp)
jle BB3

cmp $99, -8(%ebp)
set nextpc to BB3
jle dispatcher
set nextpc to BB4
jmp dispatcher

(b) Dispatcher reads BB2 from nextpc and generate output code. Notice, that this basic block contains a conditional jump instruction which
has two targets. The output code includes an additional jump instruction to handle the case when the conditions were not met during the
actual execution.

mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)
jle BB3

mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)
set nextpc to BB3
jle dispatcher
set nextpc to BB4
jmp dispatcher

(c) This basic block is the main body of the loop. This loop body executes 100 times. After the first execution, the output code is reused
from the code-cache in subsequent executions.

cmp $100, %eax
jne BB6

cmp $100, %eax
set nextpc to BB6
jne dispatcher
set nextpc to BB5
jmp dispatcher

(d) The interesting property about this basic block that it never sets the nextpc to BB5. As a result, the dispatcher never translates BB5.

mov -4(%ebp), %eax
pop %ebp
ret

mov -4(%ebp), %eax
pop %ebp
tx-ret /* discussed later */

(e) This is the final basic block. Notice, the translation of the ret instruction is somewhat complicated, as the return target is stored in the
stack that is only known at runtime. We are deferring this discussion for now.

Fig. 3.3 Dispatcher orchestrating the dynamic execution of the loop example.



24 Fast Dynamic Binary Translation for the kernel

dispatcher()
{

save guest registers in dispatcher memory
switch to dispatcher stack
tx_pc = lookup_code_cache(nextpc, found)
if (!found)

tx_pc = translate(nextpc)
restore guest registers from dispatcher memory
jmp *tx_pc

}

Fig. 3.4 Dispatcher: Dispatcher first saves the guest registers in its memory and then switch to
its own stack. It then searches for nextpc in the code cache. On cache miss, dispatcher does
the actual translation, restore guest registers, before making an indirect jump to the translated
basic block.

sponding to nextpc does not exist in the code cache, the dispatcher translates the basic block
starting at nextpc, adds this basic block to the code cache, and jumps to the target code after
restoring the guest state.

Even with the code cache, calls to the dispatcher are not cheap. In Figure 3.3, BB3 makes
100 calls to dispatcher, and this can be prevented by dynamically linking the translated ba-
sic blocks. An alternate translation for BB3 is shown in Figure 3.5, and is called direct
branch chaining. The central idea is to modify the jump to dispatcher instruction, to jump
to tx-nextpc, when the dispatcher is called. Because jumping to the dispatcher is not a sin-
gle jmp instruction (e.g., setting nextpc is also required), we put the jump to dispatcher stub
in a separate location (also called an edge), and use the original branch instruction (conditional
or direct jump) to jump to edge. Now, when the dispatcher is invoked through the edge, the
dispatcher patches the target of the jump to edge instruction with tx-nextpc. To patch the
target, the dispatcher also needs to know the address of the instruction, which needs patching.
For this, the dispatcher keeps an additional variable prevpc to store the address of jump to
edge instruction as shown in Figure 3.5. prevpc is also stored in the dispatcher address space.

In Figure 3.5, after the first execution of BB3, the conditional jump instruction branches
to edge1. The dispatcher finds BB3 in the code cache, and subsequently checks if prevpc is
set. In this case, prevpc is set to P1. The dispatcher replaces the target of the instruction at
location P1 (i.e., edge1) with tx-BB3. On the subsequent execution of BB3, if the condition is
met, BB3 will directly jump to itself, without making any call to the dispatcher. After the 100
iterations, the dispatcher will get called again through edge2. This time, the dispatcher would
translate BB4 and patch edge2 at P2 with tx-BB4.

The translation of a conditional branch instruction contains one extra jump instruction
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mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)
jle BB3

mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)

P1: jle edge1
P2: jmp edge2

edge1: set nextpc to BB3
set prevpc to P1
jmp dispatcher

edge2: set nextpc to BB4
set prevpc to P2
jmp dispatcher

Fig. 3.5 Direct branch chaining: Translated basic blocks are linked together for efficiency. The
dispatcher overwrites the target addresses edge1 and edge2 with tx-BB3 and tx-BB2 after translating
the respective basic blocks.

(Figure 3.5), which adds extra overheads as compared to native execution. To eliminate the
cost of this additional jmp, the dispatcher may translate a code block (also called trace) instead
of a basic block. A code block does not terminate on a conditional branch instruction. Due
to this, the translation of a code block may contain multiple edges. One drawback of this
approach is: spurious instructions (which are never going to execute) are also translated and
added to the code-cache. Let’s see what happens if we translate a code block instead of a basic
block in our loop example in Figure 3.3. In Figure 3.6, we translate a code block starting at
BB3. It turns out that this code block only terminates at function return. In Figure 3.5, we need
edge2 because tx-BB4 and tx-BB3 could be at different locations in the guest address space,
and hence an extra jump is required to execute them in sequential order. In a code block,
we allocate them consecutively to eliminate the extra jump. One drawback, as you can see in
Figure 3.6, is that we also translate BB5, even though it is never going to execute. Interestingly,
due to this optimization, the output code block looks similar to input code block. We use code
blocks instead of basic blocks, to minimize runtime overheads due to extra branches.

We next discuss how other branch instructions, e.g., call, ret, and indirect jumps and
calls are translated.

A direct call instruction is translated to push the next program counter value on the stack
followed by a jmp to the target procedure. A direct call instruction is also chained with the
target procedure using direct branch chaining (Figure 3.7).

However, a ret instruction is tricky as the return address is known only at runtime. The
ret instruction is translated similar to an indirect branch instruction. An indirect branch in-
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mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)
jle BB3
cmp $100, %eax
jne BB6
/* BB5: redundant */
mov $0, %eax
mov -4(%ebp), %eax
pop %ebp
ret

mov -8(%ebp), %eax
mov %eax, -4(%ebp)
add $1, -8(%ebp)
cmp $99, -8(%ebp)

P1: jle edge1
cmp $100, %eax

P2: jne edge2
mov $0, %eax /* redundant */
mov -4(%ebp), %eax
pop %ebp
tx-ret

edge1: set nextpc to BB3
set prevpc to P1
jmp dispatcher

edge2: set nextpc to BB6
set prevpc to P2
jmp dispatcher

Fig. 3.6 Code block: does not terminate at a conditional branch instruction. e.g., a code block starting
at BB3 in loop example only terminates on function return.

call target

(a) Input: A call instruction pushes the next pc on the
stack before jumping to target pc.

push nextpc
P1: jmp edge

edge:
set prevpc to P1
set nextpc to target
jmp dispatcher

(b) Output: Instead of using the call instruction (because it will push the
translated address; lose transparency) next pc is pushed using a different in-
struction.

Fig. 3.7 Translation of a function-call instruction. The native code is a single instruction, shown in
Figure 3.7a. The translated code is shown in the Figure 3.7b. The translated code saves the value of
the PC of the next instruction (in the instruction stream) on stack, just as the hardware would do for the
call instruction. The edge block transfers control to the dispatcher.
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Fig. 3.8 At runtime, a hash function is applied to the target pc to index into the jumptable. The
jumptable is a hash-table storing the mapping between a native PC value (pc) and its translated code-
cache address (tx-pc).

struction target is only known at runtime. The target jump address is available in either a
register or a memory location. The x86 architecture supports several indirect branch instruc-
tions, e.g., call *reg, call *MEM, jmp *reg, and jmp *MEM. reg and MEM operands store
the target in a register and memory location respectively. One way to handle this is to call
the dispatcher every time an indirect branch instruction is encountered. The dispatcher can
look into the code cache to find the corresponding translation and directly jump to it. How-
ever, dispatcher calls are very slow. For efficiency, the dispatcher maintains a jumptable (see
Figure 3.8): the jumptable contains mappings from pc to tx-pc, and is simple enough to be
indexed through a few lines of assembly code. The indirect branch instruction in Figure 3.9 is
translated to perform a fast lookup in the jumptable first and jump directly to the code-cache
address if a match is found; otherwise, it calls the dispatcher. If the dispatcher is invoked due
to an indirect branch, then the dispatcher adds the corresponding mapping to the jumptable to
avoid future calls to the dispatcher. In other words, the jumptable acts as a cache for the most
frequently seen jump targets at that jump instruction. Because the jump table is small, a hash
collision may evict an existing entry to make space for a new entry. Dispatcher calls occur on
jumptable misses.

The translation of an indirect call instruction is similar to the indirect jmp instruction, ex-
cept that it additionally pushes the next native program counter on the stack, before computing
and branching to the target address.

A ret instruction is also an indirect branch instruction. The target return address value
is obtained from the stack at runtime and handled similarly to the indirect instruction. For
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Input:
/* jump target of an indirect jump is stored
* in memory, which is only known at runtime
*/
jmp *MEM

Output:
/* A small cache of original and translated pc is maintained
* in memory for faster lookup during runtime. On a cache
* miss a somewhat slower jump to dispatcher is made
*/
save temporary registers and flags
jtarget = lookup_hash(MEM)
if (found)
{
restore registers and flags
jmp *jtarget

}
set nextpc
restore registers and flags
jmp dispatcher

Dispatcher:
save guest state
tx_pc = disassemble_and_code_gen(nextpc)
add nextpc, tx_pc to the jumptable
restore guest state
jmp *tx_pc

Fig. 3.9 The translation of an example indirect instruction, jmp *MEM. The native code is shown
in the Input block. The translated code is shown in the Output block. The translated code looks
up the jumptable (call to lookup_hash()); if found, it jumps to the corresponding translated code
address (jtarget); if not found, it jumps to the dispatcher. The dispatcher does a complete lookup
to determine the translated address for nextpc. If not already translated, the dispatcher translates the
code block starting nextpc before restoring the guest state, and jumping to the translated address.
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a user-mode DBT framework, apart from these instructions, the syscall and signals also
needed to be handled correctly to run translated code, when the CPU re-enters the user-mode
[17].

3.2 Kernel-mode DBT

Unlike user-mode DBT, kernel-mode DBT imposes new transparency requirements, and cor-
rect handling of them incurs high-performance overheads. VMware’s Virtual Machine Mon-
itor (VMM) [2] translates the kernel mode execution of a guest virtual machine to safely
execute multiple untrusted virtual machines on commodity hardware without hardware virtu-
alization support (this was required when hardware support for virtualization was not avail-
able). VMWare’s paper[2] reports 10x slowdowns for the syscall benchmark. Another
related work, DRK [28], implements a kernel-mode DBT framework as a loadable module
inside the Linux kernel, and reports 2-5x slowdowns on kernel intensive benchmarks. A typ-
ical VMM requires more mechanisms than a kernel module DBT framework. For example,
unlike a kernel module, a VMM has to implement shadow page tables and emulate privileged
instructions in software to precisely emulate correct behavior. However, DBT is useful for
many other applications (apart from virtualization), such as debugging [57, 65], profiling [64],
monitoring [37], and several applications in security [47, 56]. We intend to employ DBT for
the implementation of an efficient record/replay system.

One of the problems with both the approaches is – they can not be used for any optimiza-
tions because of their high overheads. In this section, we discuss the different transparency
requirements for kernel-mode execution and the mechanism required to handle them correctly.

The transition from user-mode to kernel-mode happens due to interrupts, exceptions, and
system calls. DBT framework for the kernel needs to take control at these entry points to
run the kernel in translated mode. The interrupts and exceptions push the current program
counter value on the stack and jump to the corresponding handler as specified in the interrupt
descriptor table (IDT). If an interrupt or exception occurs during the execution of the translated
code, the hardware pushes the code-cache address on the stack. For transparency, the code-
cache address needs to be replaced with the native address before jumping to the translated
handler. DRK [28] replaces the entries in the IDT with the address of the dispatcher, to invoke
the dispatcher on kernel entry points. The dispatcher then substitutes the code-cache address
with its native counterpart before branching to the target code. Similarly, iret must return
to a code-cache address possibly by treating it as an indirect control transfer or calling the
dispatcher before iret.

The x86 hardware ensures precise exceptions and interrupts. If an exception triggers dur-
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ing the execution of an instruction, then the precise exception property ensures that the changes
made by the partially executed instruction are rolled back. Similarly, the precise interrupt
property delays the delivery of the interrupt to the next instruction boundary when an instruc-
tion is interrupted midway. These properties need careful consideration while implementing
DBT for the kernel. Both these properties do not affect the guest behavior if the translated
instruction is identical to the original instruction (because in this case, the hardware would
obey the properties anyways). However, in a typical DBT framework, an instruction may be
translated into several instructions (we call this the translated set of instructions); in this case,
it becomes the responsibility of the DBT framework to ensure that the preciseness properties
of exceptions and interrupts are obeyed.

If an exception triggers during the execution of the translated set, then the corresponding
changes made by the previous instructions in the translated set must be rolled back before
injecting the exception (to emulate precise exceptions). For precise interrupts, the delivery of
interrupts must be delayed until all the instructions in the translated set have executed. The
rolling-back and delayed injection of exceptions and interrupts are expensive. This is because
of a direct cost involved in rolling back, and an indirect cost of maintaining the data structures
to support rollback. One way of implementing late injection is to dynamically insert a software
interrupt instruction after the last instruction in the target set [28].

Another transparency requirement is, the system should not miss any interrupts. Apart
from the translated code, the dispatcher is also invoked frequently for various reasons. If an
interrupt triggers during the execution of the dispatcher, then it must be queued for reinjection.

Overall, these techniques are complex and expensive and discussed in detail in [2, 28]. In
our experience with the Linux kernel, we find that the OS does not depend on most of these
transparency requirements in the common case. However, there are some special cases where
it does, and these cases can be handled specially. Relaxing these requirements simplifies the
design of the DBT framework with huge performance benefits. However, it imposes new
reentrancy and concurrency issues as discussed in the next section.

3.3 A faster design

At the high level, we relax precise exceptions and interrupts requirements, allow code-cache
addresses to live in the guest stack, and identity translate call and ret instructions to achieve
performance improvements over previous work. Identity translation of call and ret instruc-
tions avoids the need to translate the ret instruction into an indirect-branch jumptable-lookup.
Because, the ret instruction is quite commonly executed, this results in significant performance
savings. However, this implies that code-cache addresses can now live on the guest stacks, and
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can persist across context-switches. Further, code-cache addresses can live in the guest stack
due to our different handling of interrupts and exceptions, as we discuss below.

Relaxing these properties allows the guest code to observe some state that it would never
have observed during native execution. If the guest kernel depends on any of these properties,
then the translated execution will behave incorrectly. In our experiments with modern OSes,
we find that an OS rarely depends on some of these invariants, barring a few special patterns.
Fortunately, such special patterns can be handled specially, through constructs provided by
these modern operating systems. We list below some correctness issues that may arise due to
our DBT scheme:

• The first correctness issue arises due to the presence of code-cache addresses on the
guest stack. If the guest code depends on the original program counter values on the
stack, then the guest code will behave incorrectly. One example in the Linux kernel
where it happens is the page-fault handler, which reads the program counter value from
the interrupt frame pushed on the stack and takes a decision based on the virtual address
of the program counter2. We discuss this special case and a study of other such cases
for different operating systems in Section 3.5.

• The second correctness issue also involves code-cache addresses living in kernel data
structures. A typical DBT system invalidates code-cache addresses for a number of
reasons (e.g., memory pressure, adaptive optimization etc.). Because our design allows
code-cache addresses to be present in guest stacks, the invalidation of a code-cache ad-
dress would require replacing all of them with the fresh translation of the corresponding
code block. This requires an atomic walk through the scheduler thread list, followed
by unwinding and fixing the return addresses. In our design, we disallow cache in-
validation. In our experiments with the Linux kernel, we found that 10 MB memory
suffices for all the kernel code executing a various range of kernel intensive workloads
and normal desktop applications. In cases where we indeed require cache invalidation,
we propose a novel scheme discussed in Section 3.7.

• The third correctness concern arises due to the precise exception and interrupts require-
ment. We do not emulate precise exception and interrupts. We also disable interrupts
during the execution of the dispatcher. Interestingly, OS code rarely (if ever) relies on
these hardware properties. This allows significant simplification of the DBT framework,
resulting in better performance. By ensuring bounded running times of the dispatcher,
we can ensure that an interrupt is not lost, even if it occurs during dispatcher execution.

2For example, the Linux kernel allows certain regions of its code to trigger a page-fault, but panics otherwise.
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Fig. 3.10 DBT framework for the kernel.

Notice that the NMI (non-maskable interrupt) interrupt cannot be masked, and hence it
can occur in the middle of the dispatcher. NMI interrupts are usually used for debugging
purposes. We have tested our implementation with the NMI handler running natively,
and it does not affect Linux kernel execution with regular applications. It is possible to
disable NMI for the full system 3 if it is not required by the guest OS.

Figure 3.10 shows a complete diagram of our DBT framework for the kernel. Notice that
we replace the kernel entry points in the IDT table directly with its translated counterpart. This
allows direct execution of the translation block on interrupts, exceptions, and system calls.

3.4 Design subtleties

Various reentrancy and concurrency issues can arise due to our design, and we discuss them
in this section. Consider the dispatcher code in Figure 3.11, where it translates a code block
and jumps to the target block. For simplicity let us assume uniprocessor execution.

The first problem is, where to save the guest state. Recall that a part of the guest state
is emulated by storing it in memory, and instructions accessing this emulated state are trans-
lated accordingly. If we store this emulated guest state in a shared location, then an interrupt

3NMI can be disabled by setting NMI bit (13) at the local vector table(LINT0) address in local APIC register.
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1. save guest state and flags
2. disable interrupts
3. switch to dispatcher stack
4. jtarget = lookup_code_cache(nextpc)
5. restore guest state and flags
6. jmp *jtarget

Fig. 3.11 The dispatcher code uses a shared variable (jtarget) to store the translated PC, before
restoring the guest state and indirectly jumping to the address stored in jtarget. Between lines 5 and
6, the interrupts may be enabled, which may cause re-entrancy issues on access to the shared variable
jtarget.

before line-2 could cause the translated interrupt handler to run directly at this point, and an
exit to the dispatcher could overwrite the previous guest state. This is a reentrancy issue and
to handle this, we save the guest state to the guest stack itself. This could potentially cause
a transparency issue because the guest code can now observe some values on the stack that it
would never have observed while running natively. Most kernel code usually uses the guest’s
interrupt stack in a bracketed call/return (or interrupt/iret) fashion. And hence, simply stor-
ing an extra value at interrupt delivery, and restoring it at interrupt return (by translating the
iret instruction appropriately) would suffice in most cases. However, there are some rare sce-
narios where the interrupt/exception handler redirects the execution to somewhere else, and
such cases need to be handled specially. We discuss such rare scenarios and our solution in
Section 3.5.

The second reentrancy problem could arise due to the shared variable jtarget at line-6.
Notice that the dispatcher restores the guest flags at line-5. This could enable interrupts and
an interrupt just before line-6 directly calls the translated handler, which could potentially call
the dispatcher at some point. This nested call to the dispatcher overwrites the jtarget, and
the interrupted code would end-up executing a wrong translated block.

To handle this scenario, we save the jtarget at the kernel entry/exit points. This is similar
to how interrupts handlers save/restore registers before and after an interrupt. In addition to
saving and restoring guest registers and stack, we also save and restore the jtarget on kernel
entry and exit points.

The Linux kernel maintains an interrupt context data structure that consists of all the states
needed to be saved and restored. However, adding an extra entry (jtarget) to existing struc-
ture would require modification to the source code. Instead of adding a new entry, we repur-
pose existing unused entries in the structure for saving jtarget. We found that ds segment
value is always identical for every transition to and from kernel space. We use the ds slot
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in the interrupt context for saving and restoring jtarget. For simplicity, if we use jtarget
elsewhere in this thesis, we are referring to this special variable that is safe to access, across
interruptions. On a multicore system, concurrent calls to the dispatcher could also overwrite
jtarget. To prevent this, we use a per-CPU location for saving jtarget4.

It may not always be possible to find scratch space to store jtarget for any arbitrary
kernel. In this case, a different translation (Figure 3.12) can be used to avoid the reentrancy
problem. In this scheme, the dispatcher steals a register (by saving it to the stack) to store
jtarget. The translated code block would then need to be prepended by a stub to first restore
the register value before executing the translated code block. We have not implemented or
evaluated this scheme.

A similar reentrancy problem could arise due to the handling of indirect branches. Fig-
ure 3.13 shows the pseudo-code corresponding to the indirect branch instruction. Notice that
the lookup_hash is not thread-safe even if on a single core system. This is because reads and
writes to the hash-table are not atomic. The updates to the hash-table are performed in the
dispatcher. To disallow the invocation of dispatcher during hash-lookup, we disable interrupts
just before the hash lookup in the assembly code. Because the hash-table is always mapped in
memory, this piece of code never triggers any exception, and thus would run atomically with
respect to the dispatcher, on a uniprocessor. On a multiprocessor system, a concurrent dis-
patcher could also update the hash-table. To avoid this conflict, we use a per-CPU hash-table.
The second problem at lines 6-7 is similar to the indirect branch problem in the dispatcher, as
discussed before (an interrupt can occur between the restoration of flags and the indirect jump
at line 7). We handle this by using a per-CPU jtarget.

Apart from these issues, conflicts may arise if the dispatcher and the guest share the same
data structures, e.g., if the dispatcher uses the guest’s malloc function. In this case, several
race conditions may arise, e.g., if the guest’s malloc function acquires a lock, and the trans-
lated code calls the dispatcher after acquiring that lock (from within the malloc() function), a
subsequent call to malloc by the dispatcher (for allocating its own memory) would result in a
deadlock (as the dispatcher will try and acquire the same lock). To prevent this reentrancy is-
sue, we do not reuse the existing libraries of the guest OS; instead, the dispatcher implements
its own libraries which share nothing with the guest code.
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/* An alternative translation can be used, if
* we do not find unused space in the kernel’s
* interrupt stack frame for saving/restoring
* jtarget
*/

1. save guest state and flags
2. disable interrupts
3. switch to dispatcher stack
4. tx_pc = lookup_code_cache(nextpc)
5. restore guest state
6. push ecx /* A register is always safe to use

* because the interrupt handlers
* save and restore registers during the entry and
* exit of an interrupt handler
*/

7. mov tx_pc, ecx
8. restore flags
9. jmp *ecx

translated code-block:
pop ecx /* restore the register value if it was

* called through an indirect branch instruction
*/

original translation

Fig. 3.12 The dispatcher code uses a register ecx to save the translated code cache address (tx_pc).
To deal with re-entrancy issues, the dispatcher saves the register to stack, before returning to stack. The
first instruction of the translated block, pops the register ecx from the stack. The extra stub instruction
to pop the register value, is prepended to translated code block. This mechanism protects against
potential re-entrancy issues caused due to an interrupt occurring during the control transfer from the
dispatcher to the code cache.
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Input:
jmp *MEM

Output:
1. save temporary register t1, t2 and flags
2. mov MEM, t1
3. disable interrupts
/* Linux uses fs segment for per-CPU variables */
4. %fs:jtarget = lookup_hash(t1)
5. if (%fs:jtarget) {
6. restore t1, t2 and flags
7. jmp *%fs:jtarget
8. }
9. set nextpc (uses %fs:jtarget)
10. restore t1, t2 and flags
11. jmp dispatcher

Fig. 3.13 An example translation of an indirect instruction. Interrupts need to be disabled before
lookup_hash() call to avoid race conditions on the jumptable (hash table) with the dispatcher. Sim-
ilarly, a per-CPU jtarget is used to avoid race conditions due to multi-core concurrency. Interrupts
may get enabled between lines 6 and 7, causing a race condition on jtarget. This race condition is
solved by saving/restoring jtarget as discussed in Section 3.4.

3.5 Potential inconsistencies due to code-cache addresses liv-
ing in guest data structures

Our design allows code-cache addresses to be present in guest stacks. This enables faster trans-
lation, but at the same time creates correctness concerns. We studied a number of operating
systems (Table 3.1 ) and found out cases where the guest execution depends on the program
counter value pushed by the interrupt/exception handler on the stack. In our Linux kernel im-
plementation, we found that the page fault handler depends on the PC (program counter) value
of the faulting instruction. The Linux kernel memory is always mapped in the page-tables, and
the kernel expects page-faults only in certain regions of the kernel code (copy_from_user,
copy_to_user) identified by their PC values. These kernel-space routines access user-space
memory. The compiler emits information about the PC values of these potentially excepting
instructions, in the form of an exception table. The page-fault handler checks if the faulting
PC belongs to one of the PCs stored in the exception table, and raises a panic if not. If the
faulting PC belongs to the exception table, the kernel handles the fault accordingly, by invok-
ing the corresponding exception handler. In our design, the PC value pushed on the stack is the

4Linux kernel uses %fs segment register to implement per-CPU variables
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OS Unconventional uses of the
interrupted/excepting program
counter value pushed on stack
by hardware

Linux Found one check against a table of
addresses (exception table) in page
fault handler.

MS Windows __try()/__catch() blocks im-
plemented by maintaining per-
thread stacks of exception frames.

FreeBSD Found three equality checks
against hardcoded function ad-
dresses. Found two more uses for
debugging purposes. Implements
RAS. Overwrites return address
to implement custom page fault
handlers.

OpenBSD Implements RAS. Overwrites re-
turn address to implement custom
page fault handlers.

NetBSD Found two uses for debugging pur-
poses. Implements RAS. Over-
writes return address to implement
custom page fault handlers.

BarrelFish Found no such use.
L4 Found two equality checks against

hardcoded function addresses in
page fault handler.

Table 3.1 Unconventional uses of the interrupt return address (in ways that need special handling in
our DBT design) found in the kernels we studied.

code-cache address, which would be (incorrectly) absent in the compiler generated exception
tables.

Similar patterns, where certain exception handlers are sensitive to the excepting program
counter value, are also found in other kernels. For example, on some architectures (e.g.,
MIPS), restartable atomic sequences (RAS) [11] are implemented to support fast mutual ex-
clusion on uniprocessors. RAS code regions, indicating critical sections, can be registered
with the kernel using program counter start and end values. If a thread was context-switched
out in the middle of the execution of a RAS region (determined by checking the interrupted
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program counter against the RAS registry), the RAS region is “restarted” by the kernel by
overwriting the interrupt return address by the start address of the RAS region. With DBT,
this mutual-exclusion mechanism could get violated because the code cache addresses will
not belong to the RAS registry. Also, kernels implementing RAS can cause execution of
native code as they could potentially overwrite the interrupt’s return address with a native
value. A similar pattern involving overwriting of the interrupt return address by the handler
is also present in the BSD kernels, namely FreeBSD, NetBSD, and OpenBSD. The pattern is
shown in Figure 3.14. As explained in the figure, this is done to allow kernel subsystems to
install custom page fault handlers for themselves. As another example of a similar pattern,
Microsoft Windows NT Structured Exception Handling model supports a __try/__except
construct which registers the exception handler specified by the __except keyword with the
code in the __try block. These constructs are implemented by maintaining per-thread stacks
of exception frames; on entry to a __try/__except block, an exception frame containing the
exception handler pointer is pushed onto this stack, and on function return, this exception
frame is popped off the stack. If an exception occurs, the kernel’s exception handler (e.g.,
page fault handler) traverses this exception stack top-to-bottom to find and execute the ap-
propriate __except handler 5. Because on an exception inside the __try block, the kernel’s
exception handler overwrites the excepting program counter, our DBT design can incorrectly
cause execution of native untranslated code.

Fortunately, such patterns are few and can usually be handled as special cases, as we
describe below.

On Linux, a kernel module can also have its own exception table. If the address is not found
in the mainline kernel’s exception table, then the page-fault handler looks for the address inside
the modules’ exception tables. We use this mechanism to our advantage. During translation,
if the program counter address is the part of the kernel or module exception table, we add
the corresponding translated entry in our DBT module exception table. This ensures correct
behavior on kernel page faults.

Similarly, DBT for kernels implementing RAS can be handled by manipulating the RAS
registry to include the translated RAS regions too. The exception directory in Microsoft Win-
dows for non-x86 architectures can be handled similarly. Further, to avoid execution of native
code after interrupt return, due to overwriting of return address by a handler (e.g., custom
page fault handler installation in BSD kernels), the iret instruction can be translated to check

5On non-x86 architectures (e.g., ARM, AMD64, IA64), a somewhat different implementation for
__try/__except is used. A static exception directory in the binary executable contains information about the
functions and their __try/__except blocks. On an exception, the call stack is unwound and the exception di-
rectory is consulted for each unwound frame to check if a handler has been registered for the excepting program
counter.
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void function_that_can_cause_page_fault()
{
/* by default, pcb_onfault = 0. */
push pcb_onfault;
pcb_onfault = custom_page_fault_handler_pc;

/* code that could page fault. */

pop pcb_onfault;
}

void kernel_page_fault_handler()
{
/* handler invoked on every page fault. */
if (pcb_onfault)
{
intr_stack[RETADDR_INDEX] = pcb_onfault;

}
}

Fig. 3.14 Pseudo-code showing registry of custom page fault handlers by kernel subsystems in BSD
kernels. The pcb_onfault variable is set to the program counter of the custom page fault handler
before execution of potentially faulting code. On a page fault, the kernel’s page fault handler overwrites
the interrupt return address on stack with pcb_onfault.

the return address; if the return address does not belong to the code cache, indicating over-
writing by the handler, the translator should jump to the dispatcher to perform the appropriate
conversion to its corresponding translated code cache address6.

In general, we believe that for a well-designed kernel, any interrupt or exception handler
whose behavior depends on the value of the interrupted program counter value, should ideally
also allow a loadable module to influence the handler’s behavior because the program counter
values of the module code are only determined at module load time. For example, Linux
provides the module exception table for page fault handling. This allows a DBT module to
interpose without violating kernel invariants. In cases where such interposition is not possible,
our DBT design will fail.

In some kernels, we also found instances where an excepting program counter address is
compared for equality with a kernel function address in the exception handler. These checks
against hardcoded addresses (as opposed to a table of addresses as in Linux) pose a new prob-

6If the code cache is allocated in a contiguous address range, this translation of iret to check the return
address is cheap (4-8 instructions). This is much faster than converting native addresses to translated addresses
on every interrupt return, as done in previous DBT designs.
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lem, as it is no longer possible for the DBT module to manipulate these checks. Fortunately,
such patterns are rare and are primarily used for debugging purposes. If such patterns are
known to exist, extra checks can be inserted at interrupt entry (by appropriately translating
the first basic block pointed to by the interrupt descriptor table) to compare the interrupted
program counter pushed on stack against translations of these hardcoded addresses. If found
equal, the program counter value pushed on the stack should be replaced by their correspond-
ing native code address. Similar checks should be added to interrupt return, with the appro-
priate conversion from native address to its translated counterpart if needed. Notice that these
special-case checks are much cheaper than translations from native addresses to code cache
addresses and vice-versa on every interrupt entry and return respectively, as done in previous
designs.

3.6 Optimizations

We implemented more optimizations to further improve the performance of DBT.

3.6.1 Call-ret optimization

The biggest remaining overhead of a DBT framework are the extra instructions introduced
during the translation of indirect branch instructions. In our design, handling of indirect in-
struction requires disabling of interrupts, followed by a lookup in a jumptable. All of these
are expensive operations. The most common type of an indirect branch instruction is a ret in-
struction (function return). Even after doing all the other optimizations, the indirect handling
of ret instruction could impose overheads of up to 2-3x. Most call and ret instructions
execute in bracketed fashion to implement function calls and returns. However, some excep-
tions exist, e.g., longjmp and setjmp routines. We find that the Linux kernel always uses
these instructions in a bracketed fashion to implement function calls and returns, and its logic
does not depend on the actual PC values pushed on the stack. Based on these observations,
we identity-translate7 call and ret instructions. The call instruction pushes the code-cache
address of the next instruction on the stack and ret directly pops the code-cache address and
jumps to it. We do not terminate a code block on call instruction, i.e., a code block may contain
multiple call instructions, which makes the translation of a call instruction very cheap and
does not require extra jmp instructions. Figure 3.15 shows a sample code block with multiple
call instructions. After this optimization, the output code block is identical to the input block

7The translated instruction is identical to the original instruction, except for branch instruction, where the
jump targets are the translated program counters.
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Input:
call target1
call target2
call target3
ret

Output:
call .edge0
call .edge1
call .edge2
ret

.edge0: save_registers_and flags
clear interrupts
set target_offset
set nextpc
jump to dispatcher

.edge1: ... (similar to .edge0)

.edge2: ... (similar to .edge0)

dispatcher:
save guest register and flags
%fs:jtarget = disassemble_and_code_gen(nextpc)
*(vaddr_t*)target_offset = %fs:jtarget
restore guest register and flags
jmp *%fs:jtarget

Fig. 3.15 A code block could potentially contain multiple call instructions. The target_offset
allows the dispatcher to know where to patch the translated code address of the corresponding call
target, for direct block chaining.

in this example.

Function calls with indirect targets require special care. Figure 3.16 shows the translation
of a code block consisting of an indirect call instruction. With call-ret optimization, an indi-
rect call instruction needs to push the code-cache address of the next instruction (labeled .next)
on the stack. On jumptable hit, the indirect call instruction at line-8 does this automatically. In
the case of a jumptable miss, the dispatcher is called. The dispatcher obtains the code-cache
address corresponding to target program counter and directly jumps to it.

To emulate correct behavior, the dispatcher is invoked using a call instruction (line-13)
followed by a jmp instruction. The target of the jmp instruction is the return address of the
called function. If the procedure is called through the dispatcher, after returning from the
procedure, it executes the jmp instruction at line-14 and jumps to the code-cache address
corresponding to actual return target.
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Input:
1. call *target
2. ret
Output:
3. save temporary registers and flags
4. disable interrupts
5. %fs:jtarget = lookup_hash(target)
6. if (not found) jmp .edge0
7. restore temporary registers and flags
8. call *%fs:jtarget
9. .next: ret
10. .edge0:
11. set nextpc
12. restore temporary registers and flags
13. call dispatcher
14. jmp .next

dispatcher:
save guest register and flags
%fs:jtarget = disassemble_and_code_gen(nextpc)
*(vaddr_t*)target_offset = %fs:jtarget
restore guest register and flags
jmp *%fs:jtarget

Fig. 3.16 The translation of an example indirect call instruction. target_offset is used for direct
branch chaining.

3.6.2 Code Cache Optimization

Figure 3.17 shows an example of a code block with multiple conditional branches. We exper-
imentally found out that these extra edges introduce to the code-cache results in poor instruc-
tion cache locality. As discussed earlier, these extra stubs added to the end of the code block
execute only once. This is the classic example of cold code sharing the same cache line with
hot code. To fix this, we allocate these stubs in a different memory pool called edge cache.
We observe a noticeable performance improvement after this optimization, as we discuss in
the experiments section.

Recall that we may require a prefix stub, if we are not able to find unused space in the
interrupt context to save jtarget. We can do similar optimizations to allocate the prefix stub
from a different memory pool if required. Our current implementation does not use a prefix
stub; instead, we repurpose the unused space in interrupt context to save jtarget.
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cmp %reg1, %reg2
jcc .edge0
cmp %reg3, %reg4
jcc .edge1
mov %reg3, %reg2
jmp .edge2

.edge0: save_registers_and flags
clear interrupts
set nextpc
jump to dispatcher

.edge1: ... (similar to .edge0)

.edge2: ... (similar to .edge0)

Fig. 3.17 The translated (pseudo) code generated for a code block involving multiple conditional
branches (jcc).

3.6.3 Indirect branch optimization

The function call-ret optimization significantly reduces the number of indirect branch instruc-
tions, which results in significant performance improvement. The indirect branch instruction
is translated to a jumptable lookup to calculate the tx-pc value when the pc is known during
runtime (see Figure 3.13). This also involves disabling the interrupts during lookup. These are
expensive operations. We experimentally found that, for most of the indirect branch instruc-
tions, the target address is usually identical across multiple executions, with high probability.
We take advantage of this fact and add a conditional branch instruction in the translation of
the indirect branch instruction to compare against one hardcoded address before the lookup
as shown in Figure 3.18. $pc_target, tx_pc, and .edge0 are updated similar to the direct
branch chaining code. Initially, $pc_target is set to zero. After the first execution of the indi-
rect branch instruction, the dispatcher is called. The dispatcher then rewrites the $pc_target,
and tx_pc with the nextpc, and tx-nextpc respectively. The .edge0 is updated with the
address of the indirect branch handler (which does the jumptable lookup and call the dis-
patcher as in Figure 3.13). $pc_target is updated in the last to maintain consistency across
the concurrent execution of the current indirect branch instruction. After this optimization, the
subsequent executions of the indirect instruction with the same nextpc value as $pc_target
do not involve disabling of interrupts and jumptable lookup.

3.6.4 Per-CPU code-cache vs shared code-cache

In our initial prototype, we used a per-CPU code cache. This makes the dispatcher completely
concurrent because concurrent calls to dispatcher work on different code-caches. Later we
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cmp $pc_target, MEM
je tx_pc
jmp .edge0
.edge0:

save_registers_and_flags
clear interrupts
set nextpc
jump to dispatcher

Fig. 3.18 The translation of an example indirect branch instruction “jmp *MEM”, which checks against
one harcoded address, pc_target, before looking up the jumptable.

found out that once the code-cache is warmed up, calls to the dispatcher are rare and it is okay
to have a shared code-cache across multiple CPUs, to reduce memory pressure. On the other
hand, multiple code-caches are beneficial in the scenarios where CPU specific optimizations
are required. Figure 3.19 shows an example where a per-CPU code-cache results in better
generated code than a shared code-cache. In this example, we want to take a decision based
on the current CPU-id. With a shared code cache, we first have to load the CPU-id in some
register before making a decision, whereas, with a per-CPU code cache, we can hard-code
the CPU-id in the instruction itself. In this case, the shared code requires an extra register
and a load instruction. In our design, a per-CPU code-cache adds extra complexity because
we allow code cache addresses to be present in the guest stacks. On a call to the guest’s
scheduler, a thread might end up executing the code corresponding to a different CPU (when
it unwinds its stack), if it gets migrated across CPUs. To prevent this inconsistency, on every
scheduling decision, we walk the stack and replace the code-cache addresses with the code-
cache addresses corresponding to current CPU. We rely on the compiler generated symbol
table to interpose on the scheduler, and to identify the routines that need to be instrumented.

3.6.5 Jumptable optimization

Our jumptable is a hash table which maps a guest PC value pc, to its code-cache translated
PC value tx-pc. We implement a jumptable as a contiguous array (Figure 3.8). The hash key
is computed by masking the lower 12 bits of the PC address. We observed that a significant
number of dispatcher calls occur due to hash collisions. To further reduce these dispatcher
calls, we handle hash collisions using open addressing. If we find a hit for the computed index,
we directly jump to it; otherwise, we perform linear probing up to the next three entries to find
a match before calling the dispatcher. If a match is found during linear probing, we swap the
current entry with the top, for faster execution of subsequent indirect calls. Recall that this
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CPU0:
cmp $0x1, MEM
je next
...

next:
...

CPU1:
cmp $0x2, MEM
je next
...

next:
...

(a) Per-CPU code cache.

mov %fs:var, reg
cmp reg, MEM
je next
...

next:
...

(b) Shared global code cache.

Fig. 3.19 Code translation for code that depends on the current CPU-id, for a per-CPU code-cache and
a shared global code cache.

lookup logic is programmed in assembly code. After this optimization, we find that the calls to
the dispatcher reduce drastically; this is significant because dispatcher calls constitute a major
source of DBT overheads.

3.7 Translator switchon and switchoff

Our DBT framework is a kernel module, which can dynamically start and stop translation (dis-
cussed in Section 4.3). The call-ret optimization adds extra complexity to translator switchon
and switchoff. At the time of switchon, the threads in the scheduler list contain the native ad-
dresses. With call-ret optimization, if a thread got scheduled after our module is loaded, it may
momentarily run native code after it unwinds its stack. However, when a thread enters through
the kernel entry points it always executes the translated code. To fix this issue on translator
switchon, we stop all the CPUs and iterates through the scheduler list to replace all the native
return addresses with the code-cache addresses. The program counter values are identified by
following the stack’s frame pointers. A similar problem exists during switchoff. In this case,
the thread stacks may contain code-cache addresses, which need to be replaced by native guest
addresses. Again, we perform a similar walk and replace the code-cache addresses with their
native counterparts.

Finally, we discuss our code-cache replacement policy. As pointed out earlier, we do
not allow code-cache replacement in a way that existing DBT frameworks do. If we indeed



46 Fast Dynamic Binary Translation for the kernel

need to do code-cache replacement, a translator switchoff followed by a translator switchon
results into a complete invalidation of the code-cache and a fresh translation begins for future
execution of the kernel code, with an empty code cache. In our experiments with around
10MB code cache, we did not need to do cache replacement even after running the translated
kernel several days with regular desktop applications and some kernel intensive benchmarks.

3.8 Implementation and Results

For evaluation, we discuss our implementation, experimental setup, single-core performance,
scalability with the number of cores, and DBT applications. We finish with a design discus-
sion.

3.8.1 Implementation

Our translator is implemented as a loadable kernel module in Linux. The module exports
DBT functionality by exposing switchon() and switchoff() ioctl calls to the user. A
switchon() call on a CPU replaces the current interrupt descriptor table (IDT) with its trans-
lated counterpart. Similarly, the switchoff() call reverts to the original IDT. We also pro-
vide init() and finalize() calls. The init() call preallocates code cache memory and
initializes the translator’s data structures, and the finalize() call deallocates memory after
ensuring that there are no code cache addresses in kernel data structures.

A user level program is used to start and stop the translator on all CPUs. To start, the
program calls init() in the beginning. To stop, the program calls finalize() at the end.
In both cases, the program spawns n threads (where n is the number of CPUs on the system),
pins each thread to its respective CPU (using setaffinity() calls), and finally each thread
executes switchon()/switchoff() (for start/stop respectively).

Our code generator is efficient and configurable. It takes as input a set of translation rules.
The translation rules are pattern matching rules; patterns can involve multiple native instruc-
tions. Our code generator allows codification of all well-known instrumentation applications.
Our implementation is stable, and we have used it to translate a Linux machine over several
weeks without error. Our implementation is freely available for download as a tool called
BTKERNEL [1].

3.8.2 Experimental Setup and Benchmarks

We ran our experiments on a server with 2x6 Intel Xeon X5650 2.67 GHz SMP processor
cores, 4GB memory, and 300GB 15K RPM disk. For experiments involving network activity,
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our client ran on a machine with identical configuration connected through 10Gbps ether-
net. We compare DBT slowdowns of our implementation with the slowdowns reported in
DRK and VMware’s VMM. We could not make direct comparisons as we did not have ac-
cess to DRK; and VMware’s VMM uses additional virtualization mechanisms like shadow
page tables, which make direct comparisons impossible. Hence, to compare, we use the same
workloads as used in the DRK paper [28] (with identical configurations).

All our benchmarks are kernel-intensive; the performance overhead of our system on user-
level compute-intensive benchmarks are negligible, as we only interpose on kernel-level exe-
cution. We evaluate on both compute-intensive and I/O-intensive applications. I/O-intensive
applications result in a large number of interrupts and are thus expected to expose the gap
between our design and previous approaches. Some of our workloads also involve a large
number of exceptions/page faults.

We use programs in lmbench-3.0 and filebench-1.4.9 benchmark suites as work-
loads. We also measure performance for apache-2.2.17 web server with apachebench-2.3
client, using 500K requests and a concurrency level of 200. We also compare performance
overheads during the compilation of a Linux kernel source tree; an example of a desktop-like
application with both compute and I/O activity.

We plot the performance for two variants of our translator: default (all optimizations ex-
cept indirect branch optimization are enabled), no-callret (all except call-ret optimization
are enabled). We also implement a profiling client (prof) to count the number of instruc-
tions executed, the number of indirect branches, the number of hits to the jumptables (with-
out and with collision), and the number of dispatcher entries. The corresponding results are
labeled prof-default (all optimizations except indirect branch optimization enabled) and
prof-no-callret (all except call-ret optimization enabled) in our figures. Table 3.3 lists the
profiling statistics obtained using the prof client.

3.8.3 Performance

We first discuss the performance overhead on a single core. Figures 3.20, 3.21, and 3.26
plot our performance results. All these workloads intensely exercise the interrupt and excep-
tion subsystem of the kernel. The “fast” kernel operations in Figure 3.20 exhibit less than
20% overhead, except write (35% overhead) and read (25% overhead). We found 11%
improvement in Protection(Prot). Figure 3.21 plots the performance of fork operations
in lmbench. Here, we observe 1-1.5% performance improvement with DBT. Similarly, Fig-
ure 3.26 plots the performance on communication-related microbenchmarks. DBT overhead
is higher for tcp (69%) and sock (22%); for others, overhead is less than 15%.

We experimentally found that the higher overheads of tcp, write, read, and sock are
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Fig. 3.29 lmbench communication related operations with indirect branch optimization
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System(s) User(s) Wall(s)
native.1 249 3633 4280
default.1 235 3625 4257
prof-default.1 263 3631 4295
no-callret.1 417 3647 4565
prof-no-callret.1 504 3670 4666
native.12 275 3704 573
default.12 273 3702 555
prof-default.12 304 3698 560
no-callret.12 491 3726 590
prof-no-callret.12 573 3740 594

Table 3.2 Linux build time for 1 and 12 CPUs

Without Call Optimization With Call Optimization
Total Indirect Fastpath SlowpathDispatcher Total Indirect FastpathSlowpathDispatcher
(x1B) (x1M) (x10K) (x1K) Entries (x1B) (x1M) (x10K) (x1K) Entries

fileserver 56.54 1285.55 1234.1 51205 238907 94.51 337.49 330.9 6562 17
webserver 62.25 1335.91 1289.1 46674 94351 98.50 401.15 393.9 7179 12
webproxy 62.19 1337.71 1287.1 50389 169203 100.1 406.47 398.9 7485 4
varmail 65.07 1395.25 1337.5 57503 224263 109.7 448.73 439.5 9170 8

linux build 569.1 16038.0 15622.9 342962 72153153 589.9 626.30 613.9 12302 33059
apache 55.65 1650.14 1469.9 173057 7158220 59.10 202.18 171.7 30445 125
tcp500 0.142 3.316 3.3 4 1344 0.268 1.934 1.9 1 0
pgfault 5.294 158.631 158.6 12 2835 5.836 6.915 6.9 1 2

Table 3.3 Statistics on the total number of instructions executed, number of indirect instructions ex-
ecuted, number of without collision (Fastpath) jumptable hits, number of with collision (Slowpath)
jumptable hits, and the number of dispatcher entries with and without call-ret optimization (obtained
by prof client). Values in columns labeled (x1B) are to be multiplied by one billion, labeled (x1M)
are to be multiplied by one million, labeled (x10K) are to be multiplied by ten thousand and labeled
(x1K) are to be multiplied by one thousand.

due to higher percentage of indirect instructions. For these benchmarks, we found the indirect
branch optimization very helpful. With indirect branch optimization, the “fast” kernel opera-
tions in Figure 3.29 exhibit less than 1% performance overheads for all the benchmarks. Sim-
ilarly, with indirect branch optimization, the communication-related microbenchmarks show
improvement in some cases (see Figure 3.28). For example, 500_tcp, 250_fd, 500_fd, and
sock report up to 10% improvement over native. For other benchmarks, the overheads are
always less than 7%.

DRK exhibited 2-3x slowdowns on all these programs. These experiments confirm the
high performance of our design on workloads with high interrupt and exception rates.
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3.8.4 Scalability

To further study the scalability and performance of our translator, we plot the performance of
different programs with increasing number of processors. Figures 3.22, 3.23, 3.24, 3.25 plot
the throughput of filebench programs with increasing number of cores. To eliminate disk
bottlenecks, we used RAMdisk for these experiments. As expected, the throughput increases
with more cores, but our translation overheads remain constant. This confirms the scalability
of our design (CPU-private structures, minimal synchronization). Interestingly, our translator
results in performance improvements of up to 5% for fileserver on eight processors. For
other filebench workloads, DBT overhead is between 0-10%.

Figure 3.27 shows the throughput of apache webserver when used with apachebench
client over the network. DBT overheads are always less than 12%. We observe performance
improvement of 17% (for eight processors) and 2.5% (for one processor) on apache. DRK
reported 3x overhead for this workload. Table 3.2 shows the time taken to build the Linux
source tree using “make -j” with and without translation. The time spent in the kernel while
building Linux improves by 5.6% on one processor and exhibits near-zero overhead on 12
processors.

Fair comparisons with VMware’s VMM are harder because VMware’s VMM also imple-
ments many other virtualization mechanisms, namely shadow page tables, device virtualiza-
tion, etc. However, we qualitatively compare our results with those presented in the VMware
paper [2]. The VMware paper reported roughly 36% overheads for Linux build (compared
with -5.6% using our tool) and 58% overhead for apache (compared with 12% using our
tool).

All our performance results confirm that call-ret optimizations result in significant runtime
improvements. Table 3.3 reports statistics on the number of indirect branches (that needed
jumptable lookups) with/without the call-ret optimization on a single core. Clearly, the ma-
jority of indirect branches are function returns. We also present jumptable hit rates (with and
without collision) and the number of dispatcher entries for different benchmarks in the table.
These statistics were generated in steady state configuration when the code cache has already
warmed up. Without call-ret optimization, the jumptable hit rates for apache were 99.56%
(89.07% without collision, 10.48% with collision). With call-ret optimization, the jumptable
hit rates were always above 99.99% (84.94% without collision, 15.05% with collision). In
all our experiments, the number of dispatcher entries was roughly equal to the number of
jumptable misses.
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3.9 Discussion

In summary, our fast DBT design has the following salient features:

• We avoid back-and-forth translation of interrupted/excepting program counters between
native and translated values, on interrupt entry and return.

• We assume a large enough code cache, so it can fit all kernel code and does not need
cache replacement during normal operation.

• We relax precision requirements on exceptions and interrupts.

• We maintain temporary DBT state on kernel thread stacks and use a reentrant dispatcher.

• We use a cache aware layout for the code cache.

• We use identity translations for function call and return instructions.

Evidently, our DBT design requires knowledge about guest OS internals, to handle special
cases appropriately. We also require the guest to obey certain invariants:

• The guest should read the interrupted/excepting program counter value (pushed on the
stack by hardware) mostly through the return-from-interrupt instruction and should be
otherwise indifferent to it, except special cases that can be handled specially.

• The guest should not depend on precise exceptions and interrupts.

• The guest should allow a module to access the kernel’s list of threads and their call
stacks, to allow translation of return address program counters to translated and native
values at switchon and switchoff times respectively.

• The guest must obey the stack discipline.

• After it has booted, the guest must use function return addresses only through bracketed
call/return instructions, to allow call-ret optimization.

For these reasons, our design is inappropriate for use in VMMs expected to run any guest
OS. Our scheme can be used however to improve performance for specific guest operating
systems, using a custom guest-side kernel module in VMMs.

As an alternative, it is possible to write static or dynamic analysis tools to determine if an
optimization is legal. Verification for the call-ret optimization would involve checks that all
code uses the return address only through bracketed call/return instructions. Notice that any
dynamic analysis can be implemented by using or DBT implementation (without optimiza-
tions).



Chapter 4

Deterministic Replay

The goal of deterministic replay is to recreate the program execution using a trace of non-
deterministic events. Deterministic replay has applications in debugging [3, 40, 45, 50, 51,
58], fault tolerance [7, 14–16], intrusion detection [26], remote attestation [36], computer
forensics [26], dynamic analysis [20, 48, 52], profiling [4], testing and verification [45, 52],
trace generation [12, 52, 63] and more. We study the problem of efficiently recording and
replaying a multiprocessor operating system with all its applications. The biggest challenge
in deterministic replay is to record the order of shared memory reads and writes. In this
chapter, we discuss our method to record shared memory non-determinism using dynamic
binary translation efficiently.

4.1 Background

We motivate our approach with an example of a function foo() (Figure 4.1). foo() deref-
erences the ptr argument. If multiple threads call foo() with the same ptr, the order of
accesses by these threads to this shared variable needs to be recorded for deterministic replay.

Several hardware and software based approaches have been proposed to record this non-
determinism due to concurrent accesses of the shared variable. In this thesis, we only focus on
full system record/replay. The most relevant work which supports full system record/replay

void foo(int *ptr)
{
(*ptr)++;

}

Fig. 4.1 A sample function accessing a shared variable.
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is SMP-Revirt [27]. SMP-Revirt implements the concurrent reads exclusive write (CREW)
protocol to restrict the behavior of a system such that it can be logged efficiently. A CREW
protocol allows concurrent reads to a shared variable by multiple CPUs, but restricts writes to
a single CPU. SMP-Revirt uses hardware page protection mechanism to implement CREW for
an unmodified virtual machine. Their technique was introduced during the early days of hard-
ware virtualization when the memory management unit (MMU) used the shadow page table
for memory virtualization. SMP-Revirt changed the MMU implementation in the hypervisor
to create a unique shadow page table for each CPU. To implement CREW, SMP-Revirt always
maps a physical page into multiple shadow page tables in write-protected mode; however, a
page with write access is mapped into a single CPU’s shadow page table. Every page is asso-
ciated with the set of owners (CPUs). A page owned by multiple CPUs is in read-shared mode
– in the case of a single owner, the page is in write-exclusive mode. If a CPU tries to access
a page without adequate ownership, it results in a trap to the hypervisor. The hypervisor then
relinquishes the desired privilege, by taking away privilege from other CPUs. This privilege
transfer must be recorded to reproduce the same transfer during replay.

SMP-Revirt works very well when there is sparse sharing, but incurs huge overheads for
workloads exhibiting dense sharing patterns among CPUs. Further, the overheads increase
rapidly with the number of cores. The fact that ownership is tracked at page granularity,
causes spurious ownership transfers if multiple CPUs access a page on different indexes. This
is called the false sharing problem where there is no actual sharing, but yet sharing overheads
occur due to the granularity of sharing. In this page-granular CREW scheme, the ownership
conflicts are very expensive because they also involve an expensive trap into the hypervisor.
A hypervisor trap involves a world switch [18] followed by the execution of thousands of
instructions in the hypervisor that incur significant overheads.

In general, software-based CREW can be implemented with an additional reader/writer
lock for every shared memory access (see Figure 4.2). Here, the acquire_read and release_read
functions protect a read access, while acquire_write and release_write protect a write
access. A lock is associated with every shared memory address. Multiple readers are allowed
to enter the read-critical-section, but a single writer is permitted to enter the write-critical-
section. We can ensure the deterministic order of shared memory accesses by recording the
order of lock acquisitions. As an optimization, the lock can also be implemented using an
ownership protocol. Multiple readers can own the lock simultaneously; however, only one
writer is allowed to own the lock. In this case, we only need to record the lock acquisition
if the readers/writers do not already own the lock. If a CPU does not own a lock, it needs to
record a deterministic state of all the owners before acquiring the lock. This is necessary to
reproduce the same deterministic state during the replay.
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void foo(int *ptr)
{
acquire_read(&ptr->lock);
temp = *ptr;
release_read(&ptr->lock);
temp++;
acquire_write(&ptr->lock);
*ptr = temp;
release_write(&ptr->lock);

}

Fig. 4.2 A software-only implementation of CREW.

Apart from recording shared memory accesses, a typical record/replay framework requires
logging of other events that can not be deduced deterministically during replay. These events
are interrupts and their timings, I/O port reads, special instructions (rdtsc, rdscp), device
direct memory accesses (DMA), etc. The hypervisor emulates I/O port reads and DMA in
software that makes it easier to record them. A race between a concurrent emulated DMA and
a concurrent thread can be resolved using the CREW protocol. A hypervisor can configure
a virtual machine to generate a trap on special instructions for recording their values. For
an asynchronous interrupt, we need to record the timing in addition to the interrupt vector
number, to inject them at the same time during the replay. For example, a hypervisor can use
fast hardware performance counters to count the number of retired instructions to measure the
timing of asynchronous events.

4.2 Our technique

There are two main problems with the page-grained CREW approach: slow ownership trans-
fer, and false sharing. To mitigate these problems, we use DBT to implement CREW at byte
granularity, thus eliminating false sharing. We also handle ownership transfers within the
guest itself, thus avoiding the expensive hypervisor traps and world switches. To do this, we
use shadow memory (Section 4.2.1) to associate a reader-writer lock with each accessed byte
in main memory.

A large fraction of memory accesses are CPU-private, e.g., stack accesses. Tracking own-
ership of CPU-private memory locations would incur unnecessary overheads. We rely on a
training phase to identify the instructions that may access shared memory. An instruction that
accesses a memory location that has previously been accessed by another thread is deemed to
be accessing shared memory (full discussion in Section 4.2.2).
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While many user-applications do not exhibit a high degree of sharing, kernel code usually
involves dense sharing patterns. Thus, we use the software implementation of CREW for
kernel-mode execution, whereas the page-protection based CREW (ala SMP-revirt) is used
for user-mode execution. In our SMP-Revirt implementation, we observe a lot of ownership
conflicts due to true and false sharing inside the kernel. We believe that these overheads are
hard to avoid with a page-granular ownership tracking scheme, and hence it is better to use
an instrumentation-based byte-granular CREW inside the kernel for faster handling of shared-
memory ownership conflicts. Although instrumentation adds overheads to the common case,
the faster execution of ownership conflicts outperforms the page based CREW in most cases.

4.2.1 Shadow memory

Shadow memory is a technique to track extra information about the main memory used by an
application, during runtime. A shadow byte relates to some byte in main memory. Usually,
the shadow memory is invisible to the original application and additional instrumentation is
added to the normal execution, which manipulates shadow memory for gathering information
about the main memory, e.g., for monitoring or profiling purposes. We implement fast shadow
memory for the 32-bit Linux kernel using shadow memory. The 32-bit Linux kernel reserves
the top one GB (0xc0000000-0xffffffff) virtual address space for its exclusive use, in each
process’s page table. We reserve the top 512 MB of this kernel space for implementing shadow
memory. Our DBT engine uses one byte corresponding to every byte in the main memory to
implement the corresponding reader/writer lock.

At initialization time, our shadow-memory module walks through the kernel page table to
map a shadow page corresponding to every original page in the kernel address space. Further
updates to the page table are intercepted, and the corresponding mappings are appropriately
created for shadow memory. We change the Linux kernel source code to implement this
feature.

4.2.2 Global variable detection

Instrumenting all memory accesses is avoidable, as a large fraction of the memory accesses
are thread-private, e.g., stack accesses. Our software implementation of CREW instruments
only those instructions that may access a shared address. Our DBT-based instrumentation
module works on unmodified binaries, and it is generally hard to detect a shared memory
access by statically looking at the instructions. Thus, to identify global variables, we rely on a
“training phase” before the DBT module is ready for recording the kernel. During the training
period, we instrument every memory access instruction to use shadow memory for detecting
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shared accesses. Every byte of main memory corresponds to one byte of shadow memory.
Individual bits in the shadow byte are associated with different CPUs. On a memory access,
the instrumentation code sets the bit corresponding to the executing CPU in the shadow byte.
If a memory location is accessed by multiple CPUs and has been written at least once, it is
marked as global (or shared). Further, when the instrumentation code encounters a global
memory location, it marks the corresponding program counter (PC value) as a shared memory
accessor, i.e., an instruction that may access shared memory. To prevent misdetection of a
global variables due to memory reuse by the allocators, malloc and free are modified to
reset the shadow bytes corresponding to the object being allocated/freed.

Our algorithm to detect shared (global) locations and instructions that may access shared
locations, is best-effort, and could result in both over-approximation and under-approximation.

The algorithm could result in over-approximation (i.e., some instructions may incorrectly
be identified as shared memory accessors) in the following cases:

• The algorithm may fail to detect a custom memory pool/allocator inside the kernel. A
re-allocation from the pool may incorrectly mark a variable shared.

• The algorithm does not capture ordering relationships between accesses to multiple
memory locations. For example, the happens-before relationship has been used widely
in the literature [30, 39] to capture relationships between synchronization primitives
and shared variables. In these cases, if a shared variable is always appropriately pro-
tected by a synchronization primitive (e.g., lock), then it is not necessary to track the
ownership information for the shared variable — it suffices to track ownership for the
synchronization variable in this case. Because our algorithm does not capture this or-
dering information, it would track ownership for both the synchronization primitive and
the shared-variable in our example. Our algorithm to detect shared-memory locations
and shared-memory accessing instructions is similar to the lock-set algorithm used in
Eraser [55], in the sense that like us, Eraser is also order-agnostic.

Over-approximation may lead to over-instrumentation resulting in higher overheads for both
recording and replaying; however over-approximation does not compromise the soundness
(correctness) of the scheme.

Conversely, our technique could also result in under-approximation, if some behavior of
the code is left unexercised during the training phase. In these cases, we may incorrectly
identify some instructions as private-memory accessors, even though they may access shared
memory in the production run. Under-approximation is a correctness (soundness) issue, and
may lead to replay failure. A sound solution would perhaps need to rely on a combination
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of static and dynamic approaches to identify instructions that may access shared-memory re-
gions. We leave this for future work.

Even if our algorithm fails to detect all shared-memory accessing instructions (due to
under-approximation limitations outlined before), it will only manifest as a replay failure. We
argue that such cases should be relatively rare (assuming that the training phase has high code
coverage), and can be handled using a guided search during the replay phase as proposed by
multiple previous works [3, 51]. The guided search should be able to reproduce the data race
after multiple replays; the number of replays required can be bounded using our best-effort
scheme to identify shared memory accessing instructions.

4.2.3 Byte-granularity CREW

We use DBT to implement the CREW protocol at byte granularity. The instrumented code
maintains the ownership information in shadow memory. We reserve one byte of shadow
memory corresponding to every byte in the main memory. Our system reserves one bit for
every CPU in the shadow byte, and thus our current implementation can only record up to
eight CPUs. This limitation can be relaxed by allocating more space to shadow memory. To
simplify instrumentation, the shadow byte is kept at a constant offset from the main memory.
We instrument every instruction that may access shared memory (as detected through the
training phase Section 4.2.2) to perform a (fast) ownership check. For read accesses, the
ownership check involves checking if the current core is one of the owners; for write accesses,
the instrumentation code checks if the current CPU is the exclusive owner the main memory
byte. If the fast ownership check fails, the acquire_slowpath routine (Figure 4.4) tries
to atomically acquire the ownership from the current owners. If the ownership acquisition
succeeds, the deterministic state of all the conflicting CPUs is logged in the replay-log, so
that this ownership transfer can be reproduced identically during the replay. As we have
discussed before (Section 4.1), these ownership checks and transfers can also be thought-of as
reader/writer locks, and we will discuss them as such.

4.2.4 Lock implementation

A reader/writer lock acquire/release is placed around every instruction that may access a
shared variable (detected during the training phase Section 4.2.2). A read_acquire() rou-
tine is inserted before every read access, and write_acquire() is inserted before every write
access. A release() routine is appended after the shared memory access (read/write) fin-
ishes. Every memory location is associated with a reader-writer lock. The rwlock_t structure
is essentially a bitmap of owners that are allowed to access the corresponding memory loca-
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cpu_t
{

long sequence_number; // count the number of shared loads and stores
byte_t id; // unique id for each cpu
byte_t mask; // (1 << id)
long brlock; // big-reader lock

}

rwlock_t
{
byte_t owners; // A bitmap of cpu-ids currently holding this lock

}

read_acquire(struct rwlock l):
1 cur_cpu.brlock = true;
2 if ((l.owners & cur_cpu.mask) == 0) // the current cpu is one of the owners
3 {
4 acquire_slowpath(l, cur_cpu, true);
5 }
6 cur_cpu.sequence_number++;

write_acquire(struct rwlock l):
1 cur_cpu.brlock = true;
2 if (l.owners != cur_cpu.mask) // the current cpu is the only owner
3 {
4 acquire_slowpath(l, cur_cpu, false);
5 }
6 cur_cpu.sequence_number++;

release(struct lock l):
1 cur_cpu.brlock = false;

Fig. 4.3 Pseudo-code of our instrumented reader-writer lock routines. The thread_t structure stores
per-CPU state. The owners field stores a bitmap of the CPUs that currently own this location. If the
location has multiple owners, it must be in a read-shared state. The read_acquire() function checks
if the current thread is one of the owners. The write_acquire() function checks if the current thread
is the only owner. If the check fails, the acquire_slowpath routine in Figure 4.4 is called to update
the ownership information.
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acquire_slowpath(struct rwlock l, cpu_t cur_cpu, bool read):
1 cur_cpu.brlock = false;
2
3 %eax := 0;
4 /* lock the current memory index */
5 while (lock xchgb(%al, &l.owners) == 0)
6 {
7 cup_relax();
8 }
9
10 /* current set of owners is stored in %eax */
11 owners := %eax;
12 for each cpu c in bitmask(owners)
13 {
14 while (c.brlock);
15 add c.sequence_number, c.id and cur_cpu.sequence_number to the record

log
16 }
17
18 /* reacquire the big reader lock */
19 cur_cpu.brlock = true;
20
21 if (read)
22 l.owners = (owners | cur_cpu.cpu_mask);
23 else
24 l.owners = cur_cpu.cpu_mask;

Fig. 4.4 Pseudo-code of our instrumented reader-writer slowpath code. The acquire_slowpath()
function waits for the current owner CPUs to leave the critical section (i.e., wait for their brlock
flags to become false) before updating ownership. This implementation of reader-writer locks is tuned
for very-small critical sections and frequent acquisition of a lock by the same CPU repeatedly. The
sequence numbers for current CPU and owner CPUs are logged with every ownership update event, to
record the order of events.
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tion. At the high-level, read_acquire() and write_acquire() routines simply check for
the shared/exclusive ownership of the current CPU. If this check fails, then the CPU atom-
ically takes away the ownership of all the CPUs by resetting the owner bitmask (ownership
invalidation). This is done to ensure that no other CPU can concurrently access the memory
location after the ownership invalidation.

This scheme would work fine if the ownership checks and the memory access could be
performed in one atomic instruction. However, the critical sections of the read_acquire()
and write_acquire() functions consist of multiple instructions, and to ensure that no other
CPUs are concurrently in their critical section, we additionally use a per-CPU big-reader lock
(brlock) [21]. We carefully optimize the implementation for our scheme for the case where
ownership transfers are rare.

We now discuss the different race conditions that are possible, and the correctness of our
locking scheme. We do so by enumerating the different scenarios of concurrent execution
(e.g., when read_acquire() executes concurrently with another read_acquire()), and dis-
cussing why the lock implementation is sound in all these cases.

1. Concurrent execution of [read|write]_acquire with another [read|write]_acquire:
The read_acquire and write_acquire functions implement the fast-path checks, and
simply check for ownership of the executing CPU. The ownership change can only hap-
pen in the acquire_slowpath. Because the ownership checks are read-only, the con-
current execution of [read|write]_acquire and another [read|write]_acquire is
always safe.

2. Concurrent execution of [read|write]_acquire with acquire_slowpath: The ac-
quire_slowpath function first atomically invalidates the ownership. This ensures that the
subsequent ownership check at line-2 in [read|write]_acquire routines always goes
to the slowpath. Furthermore, a spinlock at line-5 in acquire_slowpath ensures that
only one CPU can proceed after this point. Before ownership transfer, the current CPU
needs to reach a deterministic point that is reproducible during replay. This determin-
istic point ensures that all the CPUs have already safely accessed the current memory
location and have seen the new state of the lock (i.e., nobody owns the lock). The xchg
instruction at line-5 ensures that all the CPUs see the new state of the lock atomically.
However, another problem exists: other CPUs may still be in their critical section. To
ensure that all the other CPUs have already accessed the current memory location, we
use big-reader locks.

A big-reader lock is efficient in our case of read-mostly access patterns: the lock is
acquired in read-mode on the fast path, and acquired in the write-mode on the slow
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path. Because slow-path is much rarer than fast-path, big-reader locks are an appropriate
choice in this scenario.

The big-reader lock is acquired at line-1 in the [read|write]_acquire routine and
released only after the successful access of shared memory (in release() routine). So,
in the acquire_slowpath routine, acquiring the per-CPU big-reader lock of owner
CPUs ensures the completion of outstanding accesses to current memory byte by all the
CPUs. It is also possible that some of the CPUs are currently in the acquire_slowpath
and currently waiting in the spinlock at line-5. To prevent a deadlock during acquisi-
tion of per-CPU locks of these CPUs, we release the per-CPU lock at line-1 in the
acquire_slowpath() function.

Once the current CPU is convinced that all the other CPUs are at the deterministic point
after acquiring the big-reader lock, it simply logs the ID(s) of the owner CPU(s), deter-
ministic counters of the owner CPU(s), and its own deterministic counter in its record
log to reacquire the ownership during replay. The deterministic counter (sequence num-
ber) is a per-CPU counter that counts the number of retired shared memory accesses.
The current CPU acquires its own per-CPU big reader lock at line-19 before acquiring
the ownership. At line-22,24 the ownership information is stored in the reader-writer
locks to allow other CPUs to acquire the spinlock at line-5. But this does not prevent
the current CPU to access the shared location because the other CPUs must wait for this
CPU to reach its deterministic point (i.e. release of the big-reader lock).

3. Concurrent execution of acquire_slowpath with another acquire_slowpath: The
concurrent execution of two acquire_slowpath routines gets serialized through the
spinlock at line-5. The spinlock protects the acquisition of the big-reader lock at line-
19; the spinlock is released after the successful acquisition of the big-reader lock at
lines-22,24.

4.2.5 Lock implementation for relaxed memory models

While the above implementation works on a machine with sequentially consistent memory
model, there are more issues for relaxed memory models. On the x86 architecture with
the TSO memory consistency model [34], a load can be reordered with earlier stores, if
they access different memory locations. Consider a case when a load at line-2 (Figure 4.3)
in [read|write]_acquire gets reordered with the acquisition of big-reader lock at line-1 (Fig-
ure 4.4). Notice that, in this case, the slowpath may incorrectly assume that no other thread
is currently in their critical section and would log a wrong sequence_number. In our original



4.2 Our technique 65

implementation, we overlooked this issue, and our evaluation is based on the above imple-
mentation. Since the probability of such event is rare, a search during replay can fix these
inconsistencies [3, 51]. Next we propose an alternate way to get rid of this limitation. One
way to ensure correctness is to add a fence after acquiring the big-reader lock, but that would
be unacceptably inefficient for the fast-path code. We discuss a faster approach:

At line-12 (Figure 4.4) in the slowpath function, the current CPU iterates the current set
of owners to finish their critical sections. As we pointed out earlier that after resetting the cur-
rent owners at line-5 in slowpath routine (ownership invalidation), a subsequent access to the
corresponding memory location always results in a call to the slowpath. For the deterministic
point, we just need to make sure that the CPU(s), which have already successfully checked
the ownership information must have accessed this memory location and incremented the se-
quence_number. Because, on x86 TSO, a load or store can not be reordered with subsequent
stores, just ensuring that the sequence number update happened at least once on all the owner
CPU(s) after the ownership invalidation, would be enough to ensure that no other CPU(s) is
accessing the conflicting memory location concurrently. On x86, for efficiency, the updates
are stored in a per-CPU store buffer and only flushed out to the shared cache on certain events
(e.g., not enough space in store buffer). One way to check whether all the owner CPU(s) have
successfully accessed a shared location is: take the snapshot of the sequence number of all
the owner CPU(s) after ownership invalidation and wait for them to change at least once. A
change in the sequence number implies that the remote CPU(s) have flushed their cache line
(which contains the sequence number) at least once after the ownership invalidation. How-
ever, this still does not necessarily ensure that the remote CPU(s) have successfully exited
their critical section: a flush to the write buffer may happen due to other writes or some other
event, and in this case, the updated value we have, may be an older sequence number prior to
the invalidation of ownership. However, after this point, another change in sequence number
should imply that all the owner CPU(s) have updated the sequence number at least once after
the ownership invalidation, because the cache line which contains the sequence number was
flushed twice after the ownership invalidation. (If a memory location has been updated twice,
we assume that there must have been at least one store-buffer flush between the two updates,
because otherwise both updates should have been absorbed by the store buffer). One problem
with this approach is: we only increment the sequence_number at a shared memory access. If
the other CPU(s) are not accessing the shared memory for a longer duration, then the slowpath
may unnecessarily consume CPU cycles without doing any useful work. To ensure bounded
waiting times in the slowpath, we increment the sequence_number at the start of every basic
block that does not access any shared memory. Even so, certain instructions may block still
causing the waiting time to grow unbounded (e.g., I/O emulation code, the slowpath itself, or
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cpu_t
{

long sequence_number; // count the number of shared load and
stores

byte_t id; // unique id for each cpu
byte_t mask; // (1 << id)
long old_sequence_number[MAX_CPUS]; // temporary space used in slow path
byte_t state; // state may be BLOCK or ACTIVE

}

rwlock_t
{
byte_t owners; // A bitmap of cpu-ids currently holding this lock

}

read_acquire(struct rwlock l):
if ((l.owners & cur_cpu.mask) == 0) // the current cpu is one of the owners
{

acquire_slowpath(l, cur_cpu, true);
}

write_acquire(struct rwlock l):
if (l.owners != cur_cpu.mask) // the current cpu is the only owner
{

acquire_slowpath(l, cur_cpu, false);
}

release(struct lock l):
cur_cpu.sequence_number++;

Fig. 4.5 Pseudo-code of our instrumented reader-writer lock routines for x86 TSO memory model.

user-mode execution may all potentially block). In all of these events, a separate flag is set to
notify that the CPU is in a block state. The slowpath only waits for another CPU’s sequence
number to change, if the other CPU is not in block state (see Figure 4.6). In this new scheme,
the fast-path code (Figure 4.5) does not require the big-reader lock.

4.2.6 Replay

During the record phase, we log three entries corresponding to every owner CPU: current
CPU’s sequence_number, owner CPU’s ID, and owner CPU’s sequence_number. If there are
multiple owners, ID and sequence_number is logged for all of them. During replay, every
instruction that can access a shared memory is prepended and appended with replay_begin
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acquire_slowpath(struct rwlock l, cpu_t cur_cpu, bool read):
1 cur_cpu.state = BLOCK;
2 id := cur_cpu.id;
3 %eax := 0;
4 /* lock the current memory index */
5 while (lock xchgb(%al, &l.owners) == 0)
6 {
7 cup_relax();
8 }
9 /* current set of owners is stored in %eax */
10 owners := %eax;
11 for each cpu c in bitmask(owners)
12 {
13 c.old_sequence_number[id] = c.sequence_number
14 c.iter[id] = 0;
15 }
16 do
17 {
18 need_iteration = false;
19 for each cpu c in bitmask(owners)
20 {
21 If (c.iter[id] == 2 || c.state == BLOCK)
22 {
23 c.iter[id] = 2;
24 continue;
25 }
26 need_iteration = true;
27 If (c.old_sequnce_number[id] != c.sequence_number)
28 {
29 c.old_sequence_number[id] = c.sequence_number;
30 c.iter[id]++;
31 }
32 }
33 } while (need_iteration);

34 for each cpu c in bitmask(owners)
35 {
36 add c.sequence_number, c.id and cur_cpu.sequence_number to the record

log
37 }
38 cur_cpu.state = ACTIVE;
39 memory_barrier();
40 if (read)
41 l.owners = (owners | cur_cpu.cpu_mask);
42 else
43 l.owners = cur_cpu.cpu_mask;

Fig. 4.6 Pseudo-code of our instrumented reader-writer slowpath for x86 TSO memory model.
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struct log_t
{
long sequence_number;

}

replay_begin(cpu_t cur_cpu, log_t cur_log):
while (cur_log.sequence_number == cur_cpu.sequence_number)
{
owner_cpu_id := read_from_log();
owner_sequence_number := read_from_log();
while (get_cpu(owner_cpu_id).sequence_number < owner_sequence_number);
cur_log.sequence_number = read_from_log();

}

replay_end(cpu_t cur_cpu):
cur_cpu.sequence_number++;

Fig. 4.7 Pseudo-code of our instrumented replay routine. The replay_head routine waits for all the
CPUs to reach their deterministic point. The replay_tail function simply increments the expired
shared memory accesses count.

and replay_end routines respectively (see Figure 4.7). replay_begin checks if the cur-
rent CPU’s sequence number is equal to the one in record log. If yes, then the current CPU
waits for other CPUs in the record log to reach their deterministic point. This ensures the
same order of shared memory access, as it was during record. After the shared memory
access, the replay_tail routine increments the number of retired shared memory access
(sequence_number), as is done during record.

4.2.7 Asynchronous events in kernel execution

One issue with using DBT for record/replay is: the number of branch instructions executed
during the record and replay is different. This is because instrumentation code in record/replay
is very different, and the dispatcher follows different code-paths for generating different stubs
for record and replay. Secondly, the program counter values are different in record/replay that
causes uneven dispatcher exits during record and replay, because the jumptable depends on
the program counter values. Due to these reasons, traditional approaches to count the number
of retired instructions (or retired branch instructions) for interrupt delivery (or the delivery of
any other asynchronous event) are no longer applicable.

To deal with this issue, we restrict asynchronous events to occur only at certain determin-
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istic execution points during the kernel execution. Deterministic execution points reflect the
execution points that will occur during both record and replay in the exact same sequence and
count. In our implementation, we use the I/O instructions, other special instructions like (e.g.,
rdtsc, rdpmc) and the x86 pause instruction [33] as deterministic points: these events can
be identified deterministically during replay because our DBT module does not use any of
these instructions, and hence their sequence and count during record and replay will be iden-
tical. Further, the time gap between two deterministic points needs to be bounded, to ensure
bounded waiting for the delivery of asynchronous events (e.g., interrupts). For example, the
identification of the pause instruction (which is executed each time the CPU enters the idle
state) as a deterministic point allows bounded waiting times for asynchronous events during
CPU blocking.

This restriction of delivering asynchronous events (e.g., interrupts) at only deterministic
execution points makes the DBT dispatcher execution completely transparent with respect to
the translated execution. In other words, even if the dispatcher state may vary during the
recorded and replayed executions, the translated code behavior remains identical in both exe-
cutions.

The challenge in this scheme is to be able to identify deterministic execution points such
that they are both deterministic (i.e., their sequence and count is preserved across record and
replay) and ensure bounded waiting times (i.e., the time gap between two deterministic ex-
ecution points must be bounded). The latter requirement is harder to meet: if the time gap
between two deterministic execution points can grow unbounded, this synchronous delivery
of interrupts (or other asynchronous events) could lead to a deadlock. For example, consider
a case where CPU-1 sends an inter-processor interrupt to CPU-2, and busy-waits for CPU-2 to
receive the interrupt. At the same time, CPU-2 may be busy-waiting for CPU-1 to release some
lock. This situation causes a deadlock if the busy-wait loop in CPU-2 does not execute a de-
terministic instruction that allows the hypervisor to inject the interrupt. This is rare, because
usually busy-waiting involves the pause instruction. In the few cases in the Linux kernel,
where busy-waiting was implemented without the pause instruction, we manually inserted a
pause instruction in the busy wait loop (by changing the Linux kernel source code). Most lock
primitives in the Linux kernel already use the pause instruction, and so we had to manually
modify only a few custom busy wait loops.

4.3 Experiments

We implemented our deterministic replay system for the multiprocessor virtual machine run-
ning a 32-bit Linux kernel. We use KVM/QEMU as the hosting platform for the guest oper-
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ating system. The device emulation code in QEMU is modified to record the value of ioport
reads, network packets, etc. The guest virtual machine is configured to trap on special in-
structions like rdtsc, to record their values. Interrupts for virtual machines are also emulated
and preceded by a trap to the hypervisor. However, the delivery of interrupt is asynchronous.
To record the timing of asynchronous interrupts, we record the number of branch instructions
executed in user-mode, program counter value, and rcx; which gives us a unique timestamp.
Notice that we only count the branch instructions executed in user-mode (and not in kernel-
mode) because the interrupt delivery timing in the kernel is counted using deterministic exe-
cution points (Section 4.2.7).

We use hardware performance counters to count the number of expired user-mode branch
instructions. The imprecise instruction count support on x86 hardware forces us to use the pre-
cise branch count. A branch count combined with the instruction pointer (eip) and provides
the exact instruction, where we need to inject interrupt. However, there are some instructions,
which may be partial executed (e.g., rep movs) during interrupt injection. The rep prefix ex-
ecutes the instruction as many times as specified in the count register ecx and decrements ecx
on each iteration. To handle this case we also include ecx in our logged timestamp. We disable
branch counting during kernel mode execution, as we only inject interrupts at deterministic
execution points in the kernel.

During replay, we use a somewhat imprecise performance monitoring interrupt (PMI)
mechanism to inject a logged event at a given time epoch (as also done in [27, 63]). To
inject the interrupt at the same timestamp as was logged during record, we need to configure
the virtual machine to trap at the logged branch count. We use the overflow counter in the x86
architecture, which generates a trap when the counter overflows. However, this counter is not
precise and may cause a trap within an error window of 128 branches. This means that, if we
configure it to take a trap after x branches, it may trap anywhere between x to (x + 128)
branches. To deal with this issue, we configure the counter to trap before 128 branches of
the original timestamp (i.e., x-128) and run the virtual machine in single-step mode until we
reach the current timestamp value. For recording byte-grained CREW conflicts, we allocate a
large per-CPU buffer inside the guest. When the buffer gets full, we trap to the hypervisor for
flushing it to the disk before reusing the buffer.

For comparison, we implemented a page-grained CREW mechanism similar to SMP-
Revirt [27] inside KVM. We used the extended page table (EPT) hardware [34] and manipu-
lated the present and read/write bits in the EPT page tables, to implement page-grained read-
/write CPU-level ownership of pages. We change the existing implementation to use per-CPU
extended page tables. This mechanism was sufficient to ensure a complete and robust deter-
ministic replay of a full Linux multiprocessor VM, with its applications. The performance of
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this system however severely suffered for any application that involves a large amount of OS
kernel activity (see results later).

Name Description
read Repeatedly calls read() system call on a single file.
readdir Repeatedly calls readdir() system call on a single directory.
ipc Creates two processes, producer and consumer. Producer sends a large

amount of data to the consumer through a pipe().
socket Same as ipc, except uses TCP socket() instead of pipe.
forkwait One process repeatedly creates a process and waits for it to exit.
apache Uses the ab tool to send 80K requests at concurrency-level 50 to the Apache

webserver running locally.

Table 4.1 Description of Benchmarks

We use BTKernel[35] to implement byte-grained CREW protocol inside the guest oper-
ating system. BTKernel achieves near native performance for kernel intensive benchmarks
for identical translation. We ran our experiments on a four-processor Intel Core i7 with 3GB
RAM. Our guest virtual machine is configured with 1 GB of RAM, out of which 512 MB is
reserved for shadow memory. We first instrument all the memory instructions to use shadow
memory for detecting shared memory accessors. Our training phase involves running kernel
intensive workloads (including the benchmarks we use for evaluation) several times for a long
duration of time (to minimize the chances of under-approximation during identification of
shared-memory accessors Section 4.2.2). The output of the training phase is a list of instruc-
tion pointers that need to be instrumented during the record phase. We maintain reader/writer
locks corresponding to every byte in main memory, in the shadow memory. We use one bit
corresponding to every CPU in the shadow byte, and thus our current implementation supports
a maximum of eight CPUs.

We implemented our scheme only for the kernel and tested our implementation with ap-
plications that share nothing in the user-mode. For completeness, we also implemented the
SMP-Revirt like page-granular CREW protocol for the user-mode in addition to byte-granular
CREW for the kernel. One of the problems in running CREW with DBT is: the hypervisor
does not know whether a physical page belongs to the kernel or the user. Because the hy-
pervisor only needs to run CREW on user pages, we changed the Linux memory allocator to
allocate pages for kernel and user from different pools. This allows the hypervisor to distin-
guish between a user and kernel page easily, based on its address. We have also tested our
implementation while running applications with user-mode sharing.

We successfully replayed all our benchmarks with or without sharing. All results in this
thesis are generated for only the kernel (by turning off user-mode page-grained CREW). For
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Fig. 4.8 Runtime on 4 processors for native, page-grained CREW, and byte-grained CREW executions.

concurrency, we ran the same application multiple times. We also pin the applications to
their respective CPUs, because the migration of a thread from one core to another appears
as sharing to the hypervisor, and would distort our results. A more general technique would
involve identification of thread-migration events.

We performed experiments to compare with page-grained CREW in terms of recording
overheads and log size. Table 4.1 lists our benchmarks. We wrote some micro-benchmarks to
exercise different subsystems of the kernel, and to exercise different types of sharing behavior
between the different subsystems. The read, readdir benchmarks exercise the filesystem
logic. The ipc benchmark exercises the inter-process communication subsystem using pipes,
and the socket benchmark exercises the networking subsystem. forkwait exercises the pro-
cess creation and destruction logic, and the virtual memory subsystem of the kernel. apache
is a real world workload used for the evaluation.

We evaluate the performance of byte-grained CREW with respect to native (KVM) and
page-grained CREW. Interestingly, there are a few tradeoffs while using byte-grained CREW,
when compared to using page-grained CREW.

• Log growth: Byte-grained CREW may result in very high log-growth rates, as com-
pared to page-grained CREW. For example, consider a case, where a CPU is trying to do
a bulk copy on a shared page. In page-grained CREW, it would create only one log entry
for 4096 bytes (page-size), whereas, for byte-grained CREW, it may create 4096 log en-
tries depending upon the instruction. For example, we translate rep movsb instruction
to copy one byte at a time in a loop. Most of the generic copy functions like memcpy,
strcpy, etc. use these instructions and create large log sizes in our implementation.

On the other hand, page-grained CREW results in false sharing and causes extra log
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Fig. 4.9 Log growth rate on 4 processors for native, page-grained CREW and byte-grained CREW
executions.

entries that are absent in byte-grained CREW. Thus, the log-growth rates for the two
schemes are workload-dependent.

• Concurrency: As discussed already, the slowpath in page-grained CREW is very slow
and sometimes helps the other CPUs to execute in isolation. Due to this, the recorded
execution might miss some interesting shared memory interleavings that would have
been noticed otherwise during a native run. For example, consider a case where multiple
CPUs are trying to access the same page. In the page-granular recording scheme, a trap
by one CPU (in failing to access a page because of inadequate permissions) helps the
owner CPU(s) to access the page in isolation with the faulty CPU, until the trap handler
on the faulty CPU sends an inter-processor interrupt(IPI) to the owner CPU(s) to acquire
ownership. On the other hand, the slowpath in byte-grained CREW is relatively fast,
and a faulty CPU quickly acquires ownership through shared memory communication
(which is much faster than a trap to the hypervisor followed by an IPI). The faster
acquisition of ownership in byte-grained CREW facilitates the reproduction of more
shared memory interleavings as compared to page-grained CREW. This is particularly
useful when record/replay is used to debug a multi-threaded program (in our case, an
OS kernel). However, more concurrency causes additional ownerships transfers, which
results in higher log growth.

It is interesting to note that while higher concurrency induces higher overheads, it is
also closer in behavior to the native run. Many applications involving testing and debug-
ging, for example, would appreciate the higher-concurrency provided by byte-granular
CREW over page-granular CREW.
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Figure 4.9 shows the results for log growth rate (MB/s) on four processors. Notice, that
byte-grained CREW has substantially higher log growth rate than page-grained CREW for
these workloads. Figure 4.8 shows the running time of native, page-grained CREW, and byte-
grained CREW on four processors. For apache and forkwait the byte-grained CREW re-
ports 4-6x overheads as compared to 19-41x overheads of page-grained CREW. The higher
log growth rate during the page-grained CREW during readdir as compared to read bench-
mark confirms the false-sharing in readdir. The high log-growth rate in the read benchmark
for byte-grained CREW is mostly due to a large number of ownership transfers due to bulk
copy. For this benchmark, byte-grained CREW overhead is 9x as compared to the 4x over-
heads of page-grained CREW. This is because, in page-grained CREW, we do not have any
instrumentation overheads, whereas, for byte-grained CREW, we also have to pay instrumen-
tation overheads regardless of sharing. Apart from sharing, byte-grained CREW also suffers
from high overheads, if the shared instructions execute very often, due to more frequent own-
ership transfers. The other benchmarks have a moderate amount of false sharing, and our
performance gain for these benchmarks are not significant.

4.4 Discussion

In summary, we implement byte-granular CREW for recording and replaying an operating sys-
tem kernel. Instead of relying on the page-protection mechanism, we take an instrumentation-
based approach. We use a fast DBT framework discussed in Chapter 3 for instrumentation. We
only inject interrupts at deterministic points in the kernel. Our scheme allows fast handling
of CREW conflicts inside the guest kernel itself, as opposed to the previous works, which
handles CREW conflicts inside the hypervisor. In our scheme, the faster handling of CREW
conflicts may result in higher log growth rates both due to finer-granularity of tracking and
due to higher concurrency. On the other hand, the higher concurrency of byte-granular CREW
facilitates more applications of record/replay. Even so, there are many workloads, where the
advantages of reducing false-sharing result in reduced overall runtime overheads, when com-
pared to page-granular CREW. Future work may involve dynamically adapting the granularity
of ownership tracking, for faster operation.

Our scheme employs a training phase to detect all the instructions that may access a shared
variable. Our training phase is best-effort, as it may both under- and over-approximate the
identification of shared-memory accessing instructions. By ensuring that the training phase
involves high coverage, the probability of such under-approximation is rare, and can be han-
dled in a manner similar to previous search-based replay techniques [3, 51]. The byte-granular
CREW solves the problem of false sharing at the cost of instrumentation overheads in the



4.4 Discussion 75

common case. In the case of large ownership conflicts (very common in an OS kernel), the
small overheads of instrumentation always outperform page-granular CREW. Overall, our re-
sults provide an empirical study on the various trade-offs involved in using byte-granular vs.
page-granular CREW for recording and replaying a full compute system.





Chapter 5

Conclusions

In this thesis, we explore the problem of deterministic replay from a software systems stand-
point. We implement a byte-granular CREW protocol to record/replay an operating system
kernel with its applications. We present a method based on dynamic binary translation, to
explore this design space. We also present a method to implement dynamic binary trans-
lation (DBT) for the OS kernel efficiently, which involves efficient and correct handling of
asynchronous interrupts and exceptions.

To implement byte-granular CREW, we instrument a reader/writer lock before every in-
struction that may potentially read/write to shared memory. We employ a DBT-based shadow-
memory implementation to implement byte-grained reader/writer locks. If a lock acquisition
fails, we record this event so that during replay, we can acquire the lock in the same order. This
scheme outperforms page-granular CREW for many workloads, especially when there is high
false-sharing. For workloads involving true-sharing of large memory regions, the overheads of
byte-granularity ownership tracking may outweigh the advantages of eliminating false-sharing
and reducing ownership transfer overheads.

The use of dynamic binary translation entails advantages over higher-level approaches that
assume properties about the target program (e.g., knowledge of synchronization operations).
DBT also alleviates the false-sharing problems of page-grained techniques. Previous DBT
solutions (VMware, DRK) [2, 28] for the kernel exhibit 3-5x overheads for many kernel in-
tensive benchmarks. We implement a kernel-level dynamic binary translator with near-native
performance. Our design differs from VMware and DRK in its more efficient handling of
exceptions and interrupts. Our design is perhaps the first to allow dynamic switchon and
switchoff of DBT for a running system.

In summary, we present a method to efficiently record the shared-memory non-determinism
present in a tightly-coupled shared-memory software system like a monolithic OS kernel. This
is perhaps the first study of its type, as previous work on deterministic replay has largely fo-
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cused on application-level programs.
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