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1 Normalized Loops

• A set of iteration variables, {i1 . . . in} has a normalized iteration space I if variables

start from 0, are incremented by 1 and the upper-bounds U1 . . . Un can be expressed

as functions of previous iteration variables.

I = {i1 . . . in | ∀t. 0 ≤ it ≤ Ut(i1, . . . , it−1)}

This was the previous formulation, which caused some problems and so was aban-

doned. We generalize this to work with arbitrary nonzero lower bounds and arbitrary

increments later. However the rest of the points about normalization remain the same.

• We denote the set of constraints defining I by CI which is a boolean function with the

domain (i1 . . . in). The tth constraint, 0 ≤ it ≤ Ut(i1, . . . , it−1), is denoted by CI [t],

which is a boolean function with the domain (i1 . . . it). Hence we get:

CI(i1 . . . in) =

n∧
t=1

CI [t](i1 . . . it−1)

• The ordering ≺I is the lexicographic ordering on the variables i1 . . . in. For some

i⃗ ∈ I, next(⃗i) represents the next value in the iteration space according to ≺I .

• For loop body B we have a set of variables V which are assigned to inside the loop

body and are alive at the end of the loop body, excluding the normalized iteration

variables.

• The set of variables P ⊆ V are the ones which can be expressed as functions of the

normalized iteration variables via invariant generation, P = {p1 . . . pk} = H(I)

• The set of variables which are live in the loop body and cannot be expressed as a

function of I by using invariant generation, X = {x1 . . . xm} = V \ P

• The transfer function of a non-normalized loop B has the type:

B : (X ,P)→ X ,P

If x⃗∗, p⃗∗ = B(x⃗, p⃗) then the following condition must be satisfied:

p⃗ = H (⃗i) =⇒ p⃗∗ = H(next(⃗i))

• For a normalized loop we modify the body to create another function, B∗, with the

type:

B∗ : (X , I)→ X

B∗ can be constructed as:

B∗(x⃗, i⃗) ≡
let x⃗∗, p⃗∗ = B(x⃗, H (⃗i))

return x⃗∗
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• A normalized loop, where x⃗ ∈ X , can be written as:

For i⃗ ∈ I by ≺I do x⃗ = B∗(x⃗, i⃗)

2 Notion of Equivalence

Instead of checking the ”equivalence” of these two programs we will try to generate invari-

ants after the loop bodies in both programs. These invariants would be a weakening of

the invariants that exist before the two loops in the product transfer graph of these two

programs.

Let the source and target have the following syntax:

Source:

For i⃗ ∈ I by ≺I do x⃗ = BS(x⃗, i⃗)

Target:

For j⃗ ∈ J by ≺J do y⃗ = BT (y⃗, j⃗)

Let Inv(x⃗, y⃗) be the invariants that hold before the two loop nests. The mathematical

formulation is:

For some M : (X × Y)→ {0, 1} such that

Inv(x⃗, y⃗) =⇒ M(x⃗, y⃗) ∧

∃ F : J 7→ I

(∀ x⃗ ∈ X , y⃗ ∈ Y, j⃗ ∈ J : M(x⃗, y⃗) =⇒ M(BS(x⃗, F (⃗j)), BT (y⃗, j⃗))) ∧

(∀ j⃗1, j⃗2 ∈ J : F (j⃗1) ≺I F (j⃗2) ∧ j⃗2 ≺J j⃗1 =⇒

∀ x⃗ ∈ X : BS(BS(x⃗, F (j⃗1)), F (j⃗2)) = BS(BS(x⃗, F (j⃗2)), F (j⃗1)))

(1)

Then M(x⃗, y⃗) is also true after the two loops.

Here 7→ symbols is used for denoting bijection, so F must be a bijection between I and J .

This is a generalization of the formula presented in PERMUTE. If we take M as the iden-

tity function and BT (x⃗, j⃗) =syn BS(x⃗, F (⃗j)) (where =syn means syntactically equal) then

the definitions become equivalent as the check for M(x⃗, y⃗) =⇒ M(BS(x⃗, F (⃗i)), BT (y⃗, i⃗))

becomes irrelevant.

The ∀ x⃗ ∈ X , y⃗ ∈ Y, j⃗ ∈ J : M(x⃗, y⃗) =⇒ M(BS(x⃗, F (⃗j)), BT (y⃗, j⃗)) part essentially

means that the following Hoare logic triple holds:

{M(x⃗, y⃗) ∧ i⃗ = F (⃗j)}[x⃗ = BS(x⃗, i⃗); y⃗ = BT (y⃗, j⃗)]{M(x⃗, y⃗)}

While the part

∀ j⃗1, j⃗2 ∈ J : F (j⃗1) ≺I F (j⃗2) ∧ j⃗2 ≺J j⃗1 =⇒

∀ x⃗ ∈ X : BS(BS(x⃗, F (j⃗1)), F (j⃗2)) = BS(BS(x⃗, F (j⃗2)), F (j⃗1))

is basically the same condition as the one in the permute paper, which says that if the

iteration vectors i⃗1 and i⃗2 get their order flipped due to F then the composition of the body
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at those iteration vectors should be the same.

3 Need for Normalization

Making loop normalized has two basic conditions: the iteration space, I, should be normal-

ized and that we should remove the variables P. these two steps are important in different

ways, and we will talk about them individually.

3.1 Normalized Iteration Space : Outdated

In the original paper, the authors assumed that the iteration variables are already known

along with the iteration space of the loops, I and ≺I . They assume that this information

is annotated by the compiler or somehow easily obtainable by heuristics. We cannot make

that assumption because of two reasons:

• In assembly code or other code with gotos it is hard to figure out which variable is

acting as an iteration variable, so we would have to use complicated heuristics here.

• We have to exactly quantify what the iteration space is. This would mean using

heuristics for getting the lower and upper bounds, getting the ordering ≺I and using

even more heuristics for cases where the iteration variables aren’t simply incremented

by 1. In the case of normalized iteration variables we can generate the upper bounds

Ux by invariant generation and the iteration space gets known without any heuristics.

In the new formulation, we use invariant generation to figure out I and ≺I using arbitrary

iteration variables.

3.2 Removing P

By removing variables which can be expressed as functions of the normalized iteration

variables in each iteration, we increase the possibilities of equivalences that can be proven.

We give an example where this is the case, consider the following loop reversal transform:

Source:

x1 := 0

x2 := 0

for i = 0; i < N; i ++:

x2 += x1

x1 ++

Target:

y1 := N

y2 := 0

for j = 0; j < N; j ++:

y2 += y1
y1 --

Here BS(x1, x2, i) = x1 + 1, x1 + x2 and BT (y1, y2, j) = y1 − 1, y1 + y2. As you can see the

value of F doesn’t matter here, which is why the proof will not go through.

However if we change the loops to:

Now x1 and y1 are no longer alive across the loop, they are not considered in X and Y. Now

the bodies are: BS(x2, i) = x2 + i and BT (y2, j) = y2 +N − j. For us to prove equivalence

we can take M as M(x2, y2) ≡ y2 = x2. The value of F can be taken as i = F (j) = N − j.

Under these assumptions we can verify that:
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Source:

x2 := 0

for i = 0; i < N; i ++:

x1 = i

x2 += x1

Target:

y2 := 0

for j = 0; j < N; j ++:

y1 = N - j

y2 += y1

M(x2, y2) =⇒ M(Bs(x2, F (j)), Bt(y2, j))

∴ x2 = y2 =⇒ Bs(x2, N − j) = Bt(y2, j)

∴ x2 = y2 =⇒ x2 +N − j = y2 +N − j

And also:

∀i1, i2 : i1 < i2 ∧N − i2 < N − i1 =⇒

∀x : BS(BS(x, i1), i2) = BS(BS(x, i2), i1)

≡

∀i1, i2 : i1 < i2 =⇒

∀x : x+ i1 + i2 = x+ i2 + i1

4 Generalization for Loop Splitting : Outdated

For loop splitting generalization we can weaken the definition of F from being a bijection

to a one-one function. We assume that one loop nest in the source maps to multiple loop

nests in the target, so the syntax is:

Source:

For i⃗ ∈ I by ≺I do x⃗ = BS(x⃗, i⃗)

Target:

For j⃗ ∈ J1 by ≺J1
do y⃗ = B1

T (y⃗, j⃗)

For j⃗ ∈ J2 by ≺J3
do y⃗ = B2

T (y⃗, j⃗)
...

For j⃗ ∈ Jk by ≺Jk
do y⃗ = Bk

T (y⃗, j⃗)
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Now the formula becomes:

For some M : (X × Y)→ {0, 1} such that

Inv(x⃗,y⃗) =⇒ M(x⃗, y⃗) ∧

∃ F1 . . .Fk : (where Ft has type Jt → I)

(∀ t ∈ [k] :

(∀ x⃗ ∈ X , y⃗ ∈ Y, j⃗ ∈ Jt : M(x⃗, y⃗) =⇒ M(BS(x⃗, Ft(⃗j)) = Bt
T (y⃗, j⃗))) ∧

(∀ j⃗1, j⃗2 ∈ Jt :

(Ft(j⃗1) = Ft(j⃗2) =⇒ j⃗1 = j⃗2) ∧

(j⃗1 ≺Jt
j⃗2 ∧ Ft(j⃗2) ≺I Ft(j⃗1) =⇒

∀ x⃗ ∈ X : BS(BS(x⃗, Ft(j⃗1)), Ft(j⃗2)) = BS(BS(x⃗, Ft(j⃗2)), Ft(j⃗1)))) ∧

(∀ s ∈ [t+ 1 : k], j⃗1 ∈ Jt, j⃗2 ∈ Js :

(Ft(j⃗1) ̸= Fs(j⃗2)) ∧

(Fs(j⃗2) ≺I Ft(j⃗1) =⇒

∀ x⃗ ∈ X : BS(BS(x⃗, Ft(j⃗1)), Fs(j⃗2)) = BS(BS(x⃗, Fs(j⃗2)), Ft(j⃗1))))) ∧

∀ i⃗ ∈ I : ∃ t ∈ [k], j⃗ ∈ Jt : i⃗ = Ft(⃗j)

(2)

The condition Ft(j⃗1) = Ft(j⃗2) =⇒ j⃗1 = j⃗2 is the condition for Ft being injective. The

condition Ft(j⃗1) ̸= Fs(j⃗2) is added because we don’t want two different loops in the target

map to the same iteration in the source. Finally the condition ∀ i⃗ ∈ I : ∃ t ∈ [k], j⃗ ∈ Jt :
i⃗ = Ft(⃗j) just checks if every iteration in the source is mapped to at least one iteration in

the target, so combined all of F1 . . . Fk are onto. The rest of the conditions are the same as

the equation defined above.

The generalization to loop splitting in the new formulation is now done implicitly by the

algorithm as we treat each loop as a ”space” and we can correlate multiple spaces with each

other.

5 Unsound Reduction of Search Space

Searching for functions F and M which directly satisfy the above definition is very hard as

we do not have a good way to iterate over the search space of all functions. Hence making

some reasonable assumptions about these functions is essential.

5.1 Affine F and Code Specialization

Almost all loop transforms performed by a compiler, like skewing, tiling, reversal, inter-

change etc, work with an F which can be expressed as multiplication with a constant matrix.

Another assumption we need to make here is that code optimizations specialize more often

than they de-specialize. This means that loop-unrolling and loop-tiling are more common

than loop-rerolling and loop-detiling. We will assume that de-specialization doesn’t happen,

which means that the function F can be broken down into n affine functions F 1 . . . Fn such

that ∀t. it = F t(⃗j) holds. Note that this is not true in the reverse direction if we consider

7



loop tiling transform, where you have to do j1, j2 = i/c, i%c, which isn’t affine.

5.2 Backtracking Approach to finding F

Being able to divide F into F 1, . . . , Fn allows for a backtracking solution to getting the

correct F . There are some checks we can run when we have constructed a partial solution

for k functions F 1, . . . , F k, k ≤ n, to confirm that they are part of an bijection between I
and J . For example we can check:

∀ j⃗ ∈ J : CJ (⃗j) =⇒
k∧

t=1

CI [t](F
1(⃗j) . . . F t(⃗j))

This gives us the ability to prune the search space for F .

5.3 Heuristics for Candidate F values

One way we can get values of F is by relating the equations generated in the computation

of P = H(I). Suppose in the source we have P = {p1, . . . , pk} = HS(I) and in the target

we have Q = {q1, . . . , ql} = HT (J ). Considering pt = qs as a candidate relation between I
and J for some t and s makes sense. Equating the temporaries in the bodies which have

affine relations with the loop iteration variables is also a good idea.

5.4 Affine or Permutation M

Similar to F , we can assume M to only contain affine equality constraints. If we want to

restrict it further then we can consider M to be a permutation instead of just affine. There

are rarely any cases where a compiler will make a loop transform that makes M not be

a permutation, an example could be the target code computing 2x instead of x and then

dividing it by 2 after the loop ends. Hence at the very least it makes sense for us to give

priority to simple permutation-like functions for M when searching for a solution.

5.5 Partial M

Computing the solution for a value of M which relates all of the variables at the same time

might be difficult as we would have to guess the entire permutation. Even if one equation is

wrong the solution would fail and we wouldn’t be able to find any value of F . So it makes

sense to try and check for the equality of one variable at a time, and we can also do this in

parallel. In some cases choosing a weaker M , counterintuitively, enables us to prove more

as different M values can have different F bijections in their proof. For example in the

following code:

Source:

x1 := 0

for i = 0; i < N; i ++:

x1 += i

Target:

y1 := 0

y2 := 0

for j = 0; j < N; j ++:

y1 += N - j

y2 += j
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One candidate M can be M1(x1, y1, y2) ≡ x1 = y1 and another candidate M can be

M2(x1, y1, y2) ≡ x1 = y2. If we take M to be M3(x1, y1, y2) ≡M1 ∧M2 ≡ x1 = y1 ∧x1 = y2

then the proof wouldn’t go through for any F , however for both M1 and M2 there exists a

value of F which completes the proof.

However there are also cases where a stronger M is required to prove a claim than just

individual affine relations. Consider the following transform:

Source:

x1, x2, x3 := 0

for i = 0; i < N; i ++:

x1 += i

x2 += N - i + 1

x3 += x1 + x2

Target:

y1, y2, y3 := 0

for j = 0; j < N; j ++:

y1 += N - j

y2 += j + 1

y3 += y1 + y2

Here if we take M(x1, x2, x3, y1, y2, y3) ≡ x3 = y3 then the proof wouldn’t work, however

M(x1, x2, x3, y1, y2, y3) ≡ x1 = y1 ∧ x2 = y2 ∧ x3 = y3 works for i = F (j) = N − j.

6 Hoare Logic Optimizations : Outdated

Instead of choosing an M and choosing an F individually, we can get some information

about the nature of F by looking at the body and M . Suppose we choose a value for M .

Using this we can compute the weakest precondition in Hoare logic as:

{WP(x⃗, y⃗, i⃗, j⃗)}[x⃗ = BS(x⃗, i⃗); y⃗ = BT (y⃗, j⃗)]{M(x⃗, y⃗)}

And we also know that any value of F must satisfy:

M(x⃗, y⃗) ∧ i⃗ = F (⃗j) =⇒ WP(x⃗, y⃗, i⃗, j⃗)

We can rewrite this as:

i⃗ = F (⃗j) =⇒ ∀ x ∈ X , y ∈ Y : (M(x⃗, y⃗) =⇒ WP(x⃗, y⃗, i⃗, j⃗))

So we use the shorthand:

G(⃗i, j⃗) ≡ ∀ x ∈ X , y ∈ Y : (M(x⃗, y⃗) =⇒ WP(x⃗, y⃗, i⃗, j⃗))

If we can use the weakest precondition to find equations that are implied by G and then we

know that they have to be correct in any chosen value of F . We expect most reasonable loop

optimizations to have the property that most affine relations between the iteration variables

can be figured out by finding G.

6.1 Example : Outdated

Lets take loop skewing as an example:

For simplicity, we aren’t considering the loop iteration space to be normalized as it makes

the example easier to read. For M(x, y) ≡ ∀k1, k2 : x[k1, k2] = y[k1, k2] the F function we
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Source:

for i1 = 0 ; i1 ≤ N ; i1++:
for i2 = 0 ; i2 ≤ m ; i2++:

x [ i1, i2 ] := x [ i1 − 1, i2 − 1 ]

Target:

for j1 = −M ; j1 ≤ N ; j1++:
for j2 = max(0, j1) ;

j2 ≤ min(N, j1 +M) ; j2++:
y [ j2, j2 − j1 ] := y [

j2 − 1, j2 − j1 − 1 ]

want is: i1, i2 = F (j1, j2) = j2, j2 − j1. Now the command in the Hoare triple is:

x[i1, i2] := x[i1 − 1, i2 − 1]; y[j2, j2 − j1] := y[j2 − 1, j2 − j1 − 1]

The postcondition is simply ∀k1, k2 : x[k1, k2] = y[k1, k2]. The weakest precondition comes

out to be:

I f i1, i2 = j2, j2 − j1 then :

∀ k1, k2 : (k1, k2 ̸= i1, i2) =⇒ x[k1, k2] = y[k1, k2]

E l se :

y[i1, i2] = x[i1 − 1, i2 − 1] ∧
x[j2, j2 − j1] = y[j2 − 1, j2 − j1 − 1] ∧
∀ k1, k2 : (k1, k2 ̸= i1, i2) ∧ (k1, k2 ̸= j2, j2 − j1) =⇒ x[k1, k2] = y[k1, k2]

If we compute ∀x, y : ∀k1, k2 : x[k1, k2] = y[k1, k2] =⇒ WP then the Else condition is

rejected because it puts additional constraints on x and y. Hence:

∀ x ∈ X , y ∈ Y : (M(x⃗, y⃗) =⇒ WP(x⃗, y⃗, i⃗, j⃗)) =⇒ (i1 = j2 ∧ i2 = j2 − j1)

This means that for this case G is equal to F .

6.2 Relations in G are easier to find : Outdated

It is much easier to get affine equality relations implied by G as compared to directly

constructing F . This is because we can guess single affine relations on just one variable and

test if it is implied by G(⃗i, j⃗). After testing several such equalities, we can AND all of them

together and get a significant portion of F . In comparison if we were working on getting F

directly then only after we have constructed the whole F can we test if it implies G(⃗i, j⃗),

which would increase the search time.

6.3 CEGAR implementation : Outdated

One way to utilize the Hoare logic weakest-precondition equation is to compute candidate

affine equality relations using counter-example guided abstraction refinement. We use the

following notation to describe the algorithm:

• upper′ and lower′ denote a set of affine relations on i⃗, j⃗ such that lower′ =⇒
G(⃗i, j⃗) =⇒ upper′.

• AbstractConseqence is a function which takes lower′ and upper′ and returns p′ such

that lower′ =⇒ p′ but p′ ≠⇒ upper′.
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• A ⊔ B returns the affine equality relation which is implied by both A and B. So for

example:

[i = 10, j = 12] ⊔ [i = 3, j = 5] = [i = j − 2]

Similarly A ⊓B returns the affine equality relation which implies by both A and B.

• Model is the SMT solver which can return TimeOut, UNSAT or a model M which satisfies

the constraints given to it.

The algorithm is as follows:

upper′ ← ⊤
lower′ ← ⊥
while lower′ ̸= upper′∧ ResourcesLe f t do :

p′ ← AbstractConseqence(lower′, upper′)

M ← Model(∃ i⃗, j⃗ : G(⃗i, j⃗) ∧ ¬p′)
i f M i s TimeOut then

break

else i f M i s UNSAT then

upper′ ← upper′ ⊓ p′

else

lower′ ← lower′ ⊔ M

return upper′

The naive approach of finding G would involve randomly guessing affine relations and check-

ing if they are implied by G(⃗i, j⃗), however this generates a lot of SMT queries. Instead we

can use the SMT solver to get concrete examples, or models, i⃗1, j⃗1 such that G(i⃗1, j⃗1) is

true. Then we can guess an affine relation which is satisfied by this example.

CEGAR is an extension of this idea. If we have two models i⃗1, j⃗1 and i⃗2, j⃗2 which work

with G then we can find some affine relation which is satisfied in both, which is called p′ in

the algorithm. Then we can ask the SMT solver to generate another model i⃗3, j⃗3 in which

p′ isn’t true. If we are unable to find it then p′ is implied by G, otherwise we can add the

model to our set of models, and find another p′ which is satisfied by all models.

Lets take the example used above, where G(i1, i2, j1, j2) ≡ i1 = j2∧i2 = j2−j1. An example

run of the algorithm could look like:

upper′ := ⊤
lower′ := ⊥
p′ := AbstractConsequence(⊥,⊤)

= ⊥
M :=Model(∃ i⃗, j⃗ : G(⃗i, j⃗) ∧ ¬⊥)

= [i1 = 2, i2 = 1, j2 = 2, j1 = 1]

lower′ := ⊥ ⊔ [i1 = 2, i2 = 1, j2 = 2, j1 = 1]

= [i1 = 2, i2 = 1, j2 = 2, j1 = 1]

p′ := AbstractConsequence([i1 = 2, i2 = 1, j2 = 2, j1 = 1],⊤)
= (i1 = 2 ∧ i2 = 1)

M :=Model(∃ i⃗, j⃗ : G(⃗i, j⃗) ∧ ¬(i1 = 2 ∧ i2 = 1))
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= [i1 = 2, i2 = 0, j2 = 2, j1 = 2]

lower′ := [i1 = 2, i2 = 1, j2 = 2, j1 = 1] ⊔ [i1 = 2, i2 = 0, j2 = 2, j1 = 2]

= [i1 = 2, i2 = j2 − j1, j2 = 2]

p′ := AbstractConsequence([i1 = 2, i2 = j2 − j1, j2 = 2],⊤)
= (i1 = 2)

M :=Model(∃ i⃗, j⃗ : G(⃗i, j⃗) ∧ ¬(i1 = 2))

= [i1 = 3, i2 = 0, j2 = 3, j1 = 3]

lower′ := [i1 = 2, i2 = j2 − j1, j2 = 2] ⊔ [i1 = 3, i2 = 0, j2 = 3, j1 = 3]

= [i1 = j2, i2 = j2 − j1]

p′ := AbstractConsequence([i1 = j2, i2 = j2 − j1],⊤)
= (i1 = j2)

M :=Model(∃ i⃗, j⃗ : G(⃗i, j⃗) ∧ ¬(i1 = j2))

= UNSAT

upper′ = ⊤ ⊓ (i1 = j2)

= [i1 = j2]

p′ := AbstractConsequence([i1 = j2, i2 = j2 − j1], [i1 = j2])

= (i2 = j2 − j1)

M :=Model(∃ i⃗, j⃗ : G(⃗i, j⃗) ∧ ¬(i2 = j2 − j1))

= UNSAT

upper′ = [i1 = j2] ⊓ (i2 = j2 − j1)

= [i1 = j2, i2 = j2 − j1]

upper′ = lower′ : Break

Hence by using CEGAR we can mostly avoid searching for F or G by a searchspace.

6.4 Removing Quantified Queries

In the CEGAR algorithm above we use quantified queries to the solver which have a universal

forall quantifier over x and y. However if we have a value of i⃗, j⃗ which works for a random

choice of x⃗, y⃗ which satisfies M(x⃗, y⃗) then it is quite likely that it will work with all values

of x⃗ and y⃗. This is because most of the times there are only corner-case values which give

wrong i⃗, j⃗ values. Lets take the following program as an example:

Source:

x = 1
for i = 0 ; i < N; i ++

x ∗= i

Target:

y = 1
for j = 0 ; j < N; j ++

y ∗= N − j

Here the weakest-precondition for M(x, y) ≡ x = y is WP(x, y, i, j) = x× (N − j) = y × i.

Now consider the SMT query

M(x, y) ∧WP(x, y, i, j)

≡ x = y ∧ x× (N − j) = y × i

If we try this then the only example where i ̸= N − j that we can get is when x = y = 0,

which is a rare corner-case if x and y are sampled uniformly at random. Now we can use
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fuzzing to replace the quantified SMT query. We replace the SMT query

∀x ∈ X , y ∈ Y : (M(x⃗, y⃗) =⇒ WP(x⃗, y⃗, i⃗, j⃗))

with the following procedure:

x⃗1, y⃗1 ← Model(∃ x⃗, y⃗ : M(x⃗, y⃗))

i⃗1, j⃗1 ← Model(∃ i⃗, j⃗ :WP(x⃗1, y⃗1, i⃗, j⃗))

check ← Model(∃ x⃗, y⃗ : M(x⃗, y⃗) ∧ ¬WP(x⃗, y⃗, i⃗1, j⃗1))
i f check i s UNSAT:

return i⃗1, j⃗1

For most examples this should work fine considering that the SMT model gives randomized

enough results. This is however quite often not true, and SMT solvers tend to return quite

a lot of 0s. To solve this we can randomize the value of x⃗ and calculate y⃗ from that, which

would very likely give us a correct value of i⃗1 and j⃗1.

Another way to solve this is to modify the procedure to work with multiple x⃗, y⃗ models. We

can get these models in a counter-example guided way. So the new procedure is:

S = {} ( empty set with type X × Y )
M ← Model(∃ x⃗, y⃗ : M(x⃗, y⃗))

S ← S ∪M

while True :

i⃗1, j⃗1 ← Model(∃ i⃗, j⃗ :
∧

x⃗t,y⃗t∈S

WP(x⃗t, y⃗t, i⃗, j⃗))

M ← Model(∃ x⃗, y⃗ : M(x⃗, y⃗) ∧ ¬WP(x⃗, y⃗, i⃗1, j⃗1))
i f M i s UNSAT:

return i⃗1, j⃗1

else :

S ← S ∪M

7 Loop Unrolling

Loop unrolling is a loop transform that is already handled in Counter, however it involves

trying to unroll every loop individually by a λ factor. Instead of unrolling each loop, we can

try making copies of the bodies by a λ factor and then figuring out which loops are unrolled

using that. We can replace the command in the Hoare logic triple from x⃗ = Bs(x⃗, i⃗); y⃗ =

BT (y⃗, j⃗) to:

x⃗ = Bs(x⃗, i⃗1); x⃗ = Bs(x⃗, i⃗2); . . . ; x⃗ = Bs(x⃗, i⃗λ); y⃗ = BT (y⃗, j⃗)

Here i⃗1 . . . i⃗λ ∈ I are all different variables, and we can denote them as i⃗t = {it1, it2, . . . , itn}.
The postcondition remains the same, that is M(x⃗, y⃗). Now using the weakest-precondition

method, if we get:

∀ x⃗ ∈ X , y⃗ ∈ Y : (M(x⃗, y⃗) =⇒ WP(x⃗, y⃗, i⃗1, . . . , i⃗λ, j⃗))

=⇒ i1k = i2k = · · · = iλk
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Then we know that the loop hasn’t been unrolled at the kth loop index. If we add further

conditions of i1k ≤ i2k ≤ i3k ≤ · · · ≤ iλk for some k we might be able to get a constraint

like i1k = i2k − 1 = i3k − 2 = · · · = iλk − λ+1 which would tell us which specific loop index

was unrolled.

8 New Formula

This formula is a weakening of the previous formula, so it increases the number of transforms

that we can prove. We discussed an informal proof of this, but haven’t written it down yet.

For some M : (X × Y)→ {0, 1} such that

Inv(x⃗, y⃗) =⇒ M(x⃗, y⃗) ∧

∃ F : J 7→ I

(∀ x⃗ ∈ X , y⃗ ∈ Y, j⃗ ∈ J : M(x⃗, y⃗) =⇒ M(BS(x⃗, F (⃗j)), BT (y⃗, j⃗))) ∧

(∀ j⃗1, j⃗2 ∈ J , x⃗ ∈ X , y⃗ ∈ Y : F (j⃗1) ≺I F (j⃗2) ∧ j⃗2 ≺J j⃗1 =⇒

(M(x⃗, y⃗) =⇒ M(BS(BS(x⃗, F (j⃗1)), F (j⃗2)), BT (BT (y⃗, j⃗2), j⃗1))))

(3)

A good example of where this works and the previous definition doesn’t is a program where

in the source we have some redundant calculation of a value which gets eliminated in the

target because it isn’t alive. The value calculated might not satisfy the exchange condition

according to F , so the proof wouldn’t go through.

Source:

x = 0, z = 0

for i = 0; i < N; i ++

x += i

z %= i

Target:

y = 0

for j = 0; j < N; j ++

y += N - j

Here M(x, z, y) ≡ x = y wouldn’t have worked before, but works now.

9 Piecewise Affine F

There are examples of commonly occurring code that cannot be proven with an affine F but

are still correct. An example can be something like:

Source:

for i = 0; i < N; i ++

if i == 0:

x = 0

else:

x += i

Target:

for j = 0; j < N; j ++

if j == 0:

y = 0

else:

y += N - i

For these cases we can consider a piecewise affine F. F (0) = 0 ∧ F (i > 0) = N − i works in

this case.
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10 Problems with normalized Iteration variables

There are certain cases where normalized iteration variables cause the iteration space to be

not affine, and also certain cases where finding the bounds on the affine iteration variables

is considerably harder than arbitrary iteration variable. So it would be beneficial to extend

our approach to arbitrary iteration variables which might not be normalized.

10.1 Normalized iterations not affine

Consider the following loop nest:

for i1 = −6 ; i1 ≤ 6 ; i1++:

for i2 = max(0, i1) ; i2 ≤ 10 ; i2++:

for i3 = 0 ; i3 ≤ min(i2 − i1, 10) ; i3++:

. . . .

Normalizing the outermost loop gets us:

for i′1 = 0 ; i′1 ≤ 12 ; i′1++:

for i2 = max(0, i′1 − 6) ; i2 ≤ 10 ; i2++:

for i3 = 0 ; i3 ≤ min(i2 − i′1 + 6, 10) ; i3++:

. . . .

Normalizing the second loop gets us:

for i′1 = 0 ; i′1 ≤ 12 ; i′1++:

for i′2 = 0 ; i′2 ≤ min(10, 16− i′1) ; i2++:

for i3 = 0 ; i3 ≤ min(i′2 +max(0,−i′1 + 6), 10) ; i3++:

. . . .

This loopnest isn’t affine! So we have a problem now that we need to somehow compute the

upper bound which looks like min(i′2 +max(0,−i′1 + 6), 10). This isn’t really an easy thing

to do.

10.2 Lower bounds and upper bounds after normalization

A general 2 depth nested loop, assuming that the variables are incremented by 1, would

look something like:

for i1 = C1 ; i1 ≤ C2 ; i1++:

for i2 = max(L1(i1), L2(i1) . . . Ln(i1)) ; i2 ≤ min(U1(i1), U2(i1) . . . Um(i1)) ; i2++:

. . . .

When we normalize this we get:

for i1 = C1 ; i1 ≤ C2 ; i1++:

for i2 = 0 ; i2 ≤ min(U1(i1), U2(i1) . . . Um(i1))−max(L1(i1), L2(i1) . . . Ln(i1)) ; i2

++:

. . . .

min(U1(i1), U2(i1) . . . Um(i1))−max(L1(i1), L2(i1) . . . Ln(i1)) can be written as min(U1(i1), U2(i1) . . . Um(i1))+

min(−L1(i1),−L2(i1) · · · − Ln(i1)), which can then be written as min
1≤p≤n,1≤q≤m

(Up(i1) −
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Lq(i1)). This means that a 2 depth iteration space is always affine even after normalization.

Now suppose we are given the upper bounds of the normalized second loop asH1(i1), H2(i1) . . . Hn(i1).

To get to the un-normalized iteration loop we can try to ”break up” these upper bounds

into two sets of functions Lq(i1) and Up(i1) such that each Hk(i1) can be written as

Up(i1) − Lq(i1). For example min(i1, N,M,N + M − i1) from the look skewing exam-

ple can be written as min(N, i1)−max(0, i1 −M).

One way to do this which would take advantage of our generated max invariants would be

to try checking whether they can be subtracted from the H functions to get some common

U functions. If a max term is found in the upper-bound of the third nested loop then we

can test that as our max(L1(i1) . . . Lq(i1) lower bound as well.

10.3 Matrices which imply mod conditions

Consider the loop transform implied by the matrix [ 2 1
0 1 ]. Suppose the original source loop

looks like:

for i1 = 0 ; i1 ≤ N ; i1 ++:

for i2 = 0 ; i2 ≤M ; i2 ++:

. . . .

The target loop after the transformation would look like:

for j1 = 0 ; j1 ≤ 2N +M ; j1 ++:

for j2 = max(j1%2, j1 − 2N) ; j2 ≤ min(j1,M) ; j2 += 2 :

. . . .

Normalizing this would get us:

for j1 = 0 ; j1 ≤ 2N +M ; j1 ++:

for j′2 = 0 ; j′2 ≤ min(N, M+2N−j1
2 , j1

2 ,
M−j1%2

2 ) ; j′2 ++:

. . . .

The upper bound in this case has a %2 term which is hard to determine and also non-affine.

Also the divided by 2 expressions involve integer division, so we would probably need to

generate invariants like 2j′2 ≤M + 2N − j1.

11 General Non-normalized iteration variables

Restricting ourselves to only work with the ghost iteration variables that we added is more

trouble than it’s worth. We can define our iteration space with any possible variable that

is availible in the program for which we can completely determine the invariants. A general

loop iteration variable can be defined as a variable which is incremented by a constant (or

a loop invariant function) in each iteration, and for which we can get the lower and upper

bounds.
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11.1 Calculating iteration space

11.1.1 Oracles

There are a few oracles that would help us get the iteration variables. We will also talk

about the potential implementations of these oracles and if they can be done in a way which

doesn’t rely on any syntactic assumptions. In the

• Increment oracle: Given some loop-and-function-free code this oracle can find all

variables which are incremented by a constant amount in the code, along with the

increment value.

• Max oracle: Given some loop-and-function-free code this oracle can find all invariants

of the form x
c = max( f1(v⃗)c , f2(v⃗)

c , . . . , fn(v⃗)
c ) which holds after the code is executed,

where v is the set of live variables, f1 . . . fn are arbitrary functions (assumed linear)

and c is a specified constant. This can also be written as max(f1(v⃗), f2(v⃗), . . . , fn(v⃗)) ≤
x < max(f1(v⃗), f2(v⃗), . . . , fn(v⃗)) + c.

• Modulo oracle: Given some loop-and-function-free code this oracle can find all in-

variants of the form (x mod c) = (f(v⃗) mod c) which holds after the code is executed,

where v is the set of live variables, f is an arbitrary function (assumed linear) and c

is a specified constant.

• Trip-count oracle: Given a loop body with exit conditions this oracle generates all

invariants of the form x ≤ f(v⃗) which hold inside the loop, where v is the set of live

variables, f is an arbitrary function (assumed linear).

11.1.2 Iteration space from oracles

Using the oracles defined above we can get an iteration space of the form max(L1, . . . Ln) ≤
i ≤ min(U1, . . . Um) ∧ i%c = H where L1 . . . Ln are lower bound functions, U1 . . . Um are

upper bound functions and H is the modulo function. The procedure to do this is as follows:

1. From the loop body find all variables which are incremented by a constant amount

using the increment oracle. Let one such variable be i with increment c.

2. Using the Max oracle find the max invariant of i
c = max(L1(v⃗)

c , L2(v⃗)
c , . . . , Ln(v⃗)

c ) just

before the start of the loop.

3. Using the Modulo oracle find the modulo invariant just before the start of the loop, i

mod c = h(v⃗) mod c

4. Using the trip-count oracle find all invariants of the form i ≤ Uj(v⃗) which hold inside

the loop.

5. At the end of the loop assert i
c = min(U1(v⃗)

c , U2(v⃗)
c , . . . , Um(v⃗)

c ) to confirm that you

have found all of the upper bounds using the trip-count oracle.
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11.2 Implementation of oracles

Apart from the trip-count oracles, the other three can be implemented in a way which

doesn’t rely on the syntax of the code. Loop trip-count is a well studied problem which is

considered pretty hard, however I will also try to provide a basic implementation of it based

on some reasonable syntax assumptions specific to our problem.

11.2.1 Increment Oracle

Let m is the number of (relevant) loop invariant variables and n is the current number

of counter examples generated. The matrix A ∈ Zn×(m+1) represents the values of these

variables in the CEs stored in a matrix form, with the last column being 1. The vector

b ∈ Zn represents the values in the CEs of the loop iteration variable at the begining of the

loop subtracted from the value of the loop iteration variable at the end of the loop. If we

can find a vector x ∈ Zm+1 such that Ax = b then we have found a proposed increment

constant as a linear function of the loop invariant variables, represented by x. We can

assert if this invariant always holds and if so then we are done. Otherwise we can append

the generated counter example to A and continue our search. If at some point we cannot

find an x satisfying Ax = b then we can stop and say that the variable isn’t a loop iteration

variable.

11.2.2 Modulo Oracle

The modulo oracle is implemented in pretty much the same way, except instead of the

matrices and vectors being from the field of integers, Z, they would be from the field of

integers modulo c, Zc. The relevant variables would be the previous loop iteration variables

and the loop invariant variables.

11.2.3 Maximum Feasible Subset

The maximum feasiable subset problem (or MaxFS) is defined as:

Given a matrix A of size n×m, where n > m, and a vector b ∈ Zn, find a vector x ∈ Zm

such that (Ax)i = (b)i is satisfied at the most number of indices i. This can also be thought

of as minimizing the l0 norm of Ax − b, or as finding a m-dimensional hyperplane which

passes through the most number of points in a n-dimensional space. Other variations of this

problem replace the equality relation with ≥ or >, and there can also be multiple vectors b

for which different inequalities/equalities hold. All of these problems are NP hard.

We are interested in the specific problem b ≤ Ax < b + c⃗, where c⃗ is a constant vector

with all entries as c. We also don’t need an exact solution, a good enough solution will do.

Furthermore we have a promised case where we know that there exists an x such that at

least n
k indices are satisfied for some small constant k. One way to solve this would be to

encode this as an ILP problem and send that to an optimizer.

11.2.4 Max Oracle

We can construct the matrix A which would contain the values in the CEs for the relevant

variables (previous loop iteration variables and loop invariant variables), and the vector b

can be constructed as the values of i rounded down to the nearest multiple of c, so c× ⌊ ic⌋.
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Let the lower bound be max(L1(v⃗) . . . Lk(v⃗)). We know that every CE would satisfy at least

one lower bound from L1 to Lk. This means that we have a promise that for any MaxFS

call atleast n
k indices can be satisfied.

Using the oracle for the MaxFS problem defined above we can get a candidate x∗ and then

we can check whether the invariant i
c = v⃗×x∗

c holds. If not then we would get some CEs

which don’t work with x∗ and then hopefully the caididate x∗ wouldn’t be generated again.

If the invariant holds then we can remove all of the CEs which satisfy i
c = v⃗×x∗

c from A

and add the condition i
c ̸=

v⃗×x∗

c to all invariants to be generated in the future. Once we

stop getting any CEs due to the SMT queries becoming SAT we would know that we have

generated all the lower bounds.

11.2.5 Trip-count Oracle

Let the exit condition by E(i, v⃗)→ {0, 1}, so we exit the loop if it returns 1. If we assume

that E flips atmost k number of times for some small constant k then we can use a similar

method as above to generate the upper bounds. More formally, for all fixed v⃗ = v∗ the

set {i : i mod c = H(v∗) mod c ∧ E(i, v∗) = 1 ∧ E(i − c, v∗) = 0} should have the size

≤ k. If this condition is satisfied then we can generate CEs which satisfy i mod c =

H(v∗) mod c ∧ E(i, v∗) = 1 ∧ E(i − c, v∗) = 0, which would give us CEs which satisfy
i
c ≤ min(U1(v⃗)

c . . . Uk(v⃗)
c ) and then we can use the same method as the max oracle.

11.3 Asserting invariants

Let us define UB = min(U1(v⃗) . . . Um(v⃗)) and LB = max(L1(v⃗) . . . Ln(v⃗)).

If all of the following invariants hold then we can know that the iteration variable defined

is correct:

Invariant Location

i ≤ UB In loop body

i ≥ LB In loop body

(i mod c) = (H mod c) In loop body, At loop head

i = iprev + c In loop body, At loop head

(c > 0) =⇒ LB ≤ iinit < LB+ c In loop body, At loop head

(c < 0) =⇒ UB+ c < iinit ≤ UB In loop body, At loop head

(c > 0) =⇒ i ≥ LB At loop head

(c < 0) =⇒ i ≤ UB At loop head

(c > 0) =⇒ LB ≤ UB =⇒ i ≤ UB+ c At loop head, After loop

(c < 0) =⇒ LB ≤ UB =⇒ i ≥ LB+ c At loop head, After loop

(c > 0) =⇒ i > UB After loop

(c < 0) =⇒ i < LB After loop

These invariants also form a set where each can be proven based on the structure of the

program and the rest of the invariants defined. This has been tested in the code.
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12 Piecewise Algorithm

12.1 Non-affine transform on affine iteration spaces

It is possible that the iteration spaces we have found are not related in an affine manner,

so there doesn’t exist a matrix F which you can multiply with one iteration space to get

the other, but it is still true that the underlying transform is still affine. As an example

consider the following transform:

Source Target

for i1 = 0 ; i1 ≤ N ; i1++:

for i2 = 0 ; i2 ≤M ; i2++:

x[i1, i2] := x[i1 − 1, i2 − 1]

for j1 = 0 ; j1 ≤ N +M ; j1++:

for j2 = max(0, j1 −M) ; j2 ≤ min(N, j1) ; j2++:

y[j2, j2 − j1 +M ] := y[j2 − 1, j2 − j1 +M − 1]

The transform here is affine and if we get i1, i2, j1 and j2 as our iteration variables we can

find the matrix which transforms one to the other, however we can also write the dst code

as:

for j1 = 0 ; j1 ≤ N +M ; j1++:

for j2 = 0 ; j2 ≤ min(j1, N,M,N +M − j1) ; j2++:

k := j2 +max(0, j1 −M)

y[k, k − j1 +M ] := y[k − 1, k − j1 +M − 1]

This iteration space isn’t affinely related to the source, so there doesn’t exist a matrix we

can find.

12.2 Non-affine transforms

Many reasonable transforms can also be non-affine, but instead be piecewise affine. For

example we can have:

Source Target

for i1 = 0 ; i1 < N ; i1++:

i f i1 == 0 :

x = 0

else :

x+ = i

for j1 = 0 ; j1 < N ; j1++:

i f j1 == 0 :

x = 0

else :

x+ = N − j1

In this code the first iteration in the source maps to the first iteration in the dst, while other

iterations are reversed in order.

12.3 Canonical Form of Iteration spaces

We can write an iteration space in its canonical form by representing each lower/upper

bound as a vector which represents a hyperplane. The iteration space is the n-dimensional

space of the iteration variables. For now let us work with inc = 1 to make things simpler.

Then the iteration space is defined by:
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n∧
x=1

((
px∧
y=1

ix ≥ Lx
y( ⃗ix−1)

)
∧

(
qx∧
y=1

ix ≤ Ux
y ( ⃗ix−1)

))
Assuming all L and U are affine we can write each one of them as a multiplication with a

matrix, so we get:

n∧
x=1

((
px∧
y=1

⟨ ⃗lbxy , i⃗x⟩ ≥ lxy

)
∧

(
qx∧
y=1

⟨u⃗bxy , i⃗x⟩ ≤ ux
y

))

This means all of these affine relations can be written as a vector dot-product with i⃗ (the

vector of all iteration variables, i⃗n, with 1 appended at the end). Now the iteration space

can just be written as: ∧
a⃗∈A

⟨⃗a, i⃗⟩ ≤ 0

Where A is a set of vectors which define the iteration space.

12.3.1 Example

Consider this loop skewing example code:

for i1 = 0 ; i1 ≤ N +M ; i1++:

for i2 = max(0, i1 −M) ; i2 ≤ min(N, i1) ; i2++:

y[i2, i2 − i1 +M ] := y[i2 − 1, i2 − i1 +M − 1]

The relavant inequalities are:

0 ≤ i1 ≤ N +M

max(0, i1 −M) ≤ i2 ≤ min(N, i1)

After canonicalisation these become:

−i1 ≤ 0

i1 −N −M ≤ 0

−i2 ≤ 0

i1 − i2 −M ≤ 0

i2 −N ≤ 0

i2 − i1 ≤ 0

And for the normalized version:

for i1 = 0 ; i1 ≤ N +M ; i1++:

for i2 = 0 ; i2 ≤ min(i1, N,M,N +M − i1) ; i2++:

k := i2 +max(0, i1 −M)

y[k, k − i1 +M ] := y[k − 1, k − i1 +M − 1]

The relavant inequalities are:

0 ≤ i1 ≤ N +M

0 ≤ i2 ≤ min(i1, N,M,N +M − i1)

After canonicalisation these become:
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−i1 ≤ 0

i1 −N −M ≤ 0

−i2 ≤ 0

i2 −N ≤ 0

i2 −M ≤ −
i2 − i1 ≤ 0

i2 + i1 −N −M ≤ 0

12.3.2 Removing redundancies

Some of the inequalities given above are actually redundant. For example 0 ≤ j2 ≤ N and

−M ≤ j2 − j1 ≤ 0 together imply 0 ≤ j1 ≤ N +M . Similarly 0 ≤ j1 ≤ N +M is implied

by 0 ≤ j2 ≤ min(N,M), j2 − j1 ≤ 0 and j2 + j1 ≤ N +M . We can remove these redundant

inequalities to get a smaller representation.

12.4 Hyperplanes, Corners and Edges

• A vector a⃗ ∈ A can also be interpreted as a hyperplane, which takes the equation

⟨⃗a, i⃗⟩ = 0.

• A corner is defined taking the conjunction of a set of n independent hyperplanes. We

call this set AC for corner C.

• A corner can be infeasible if it is outside the iteration space. This is checked by

(
∧

a⃗∈A⟨⃗a, i⃗⟩ ≤ 0) ∧ (
∧

a⃗∈AC
⟨⃗a, i⃗⟩ = 0) being UNSAT.

• An edge is a set of n− 1 independent hyper planes. We call this set AE for edge E.

• An edge is adjacent to a corner if AE ⊂ AC .

• Two corners are adjacent if they share an edge, so they differ only by one hyperplane.

12.4.1 Corners and Conditions

There are some cases where a corner falls outside the iteration space. Consider the space

defined by 0 ≤ j2 ≤ 6, j2−j1 ≤ 0 and j2+j1 ≤ 16. If we take the corner between j2−j1 = 0

and j2 + j1 = 16 then we get j2 = 8 and j1 = 8. However this lies outside the space as it

doesn’ satisfy j2 ≤ 6, so it isn’t an actual corner.

When dealing with iteration spaces which are dependent on loop invariant variables then the

condition for a corner lying inside the iteration space implies conditions on the loop invariant

variables. Consider the space 0 ≤ j2 ≤ min(N,M), j2 − j1 ≤ 0 and j2 + j1 ≤ N +M . If we

take the corner defined by j2 − j1 ≤ 0 and j2 + j1 ≤ N +M then we get the condition as

N = M .

For every set of conditions we can enumerate all of the corners which exist under those

conditions.
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12.5 The Algorithm

12.5.1 High Level Idea

The first step of the algorithm is to map a corner or the source to a corner of the target. Let

the source corner be CS and the target corner be CT . We repeatedly follow the following

steps

1. Take an adjacent corner of CT or CS and try and map it to a point on one of the

adjacent edges of the other corner.

2. When you have found a mapping on all adjacent edges of CT and CS , take the convex

hull of these points.

3. The mapping should imply an affine transform in the terms of a matrix. Check if that

transform works for all points in the convex hull.

4. Remove the convex hull from the source and iteration spaces. The new CT and CS

are then set to one of the previously mapped points.

5. Repeat till the either one of the spaces is empty.

12.5.2 Oracle

We assume that we have an oracle which takes the following values:

• Constraints on the source and target iteration vectors, i⃗ and j⃗, H (⃗i, j⃗)

• An invariant M(x⃗, y⃗) which relates variables in the source and target x⃗ and y⃗.

• The source and target bodies, x⃗ := BS (⃗i, x⃗) and y⃗ := BT (⃗j, y⃗), which take the iteration

vectors as input and variables as input.

The oracle query O(BS , BT ,M,H) is given as follows:

¬(∃⃗i⃗j. ∀x⃗y⃗. H (⃗i, j⃗) =⇒ M(x⃗, y⃗) =⇒ M(BS (⃗i, x⃗), BT (⃗j, y⃗)))

If the oracle is UNSAT and gives us the counter-example i⃗′ and j⃗′ then that means we have

found two iterations in the source and target which match with each other.

This query is quantified however we can turn it into a non-quantified query by using CEGAR,

which on a high level is just done by sampling x⃗, y⃗ which satisfy M(x⃗, y⃗) multiple times.

12.5.3 Notations

We define the following notations:

• Adj(C,A) is the set of adjacent corners to C in the space A which are feasible.

• If C ′ ∈ Adj(C,A) and E is the edge between them then AE = AC′ ∩ AC . We denote

this edge by E = Edge(C ′, C)

• For any corner C or edge E we use the shorthand C (⃗i) ≡ AC (⃗i) and E(⃗i) ≡ AE (⃗i),

where AC , AE ⊂ A. These can be interpreted as i⃗ being the corner C and i⃗ lying on

the the edge E respectively.
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• HP(P1, . . . , Pn) is the hyperplane which passes through the n− 1 points {P1, . . . , Pn}.

• If a is a hyperplane then −a is the same hyperplane but it denotes the different side

in the iteration space.

• Transform([PS
1 . . . PS

n+1], [P
T
1 . . . PT

n+1]) denotes the matrix which maps the points PS
i

with PT
i .

• This can just be calculated by MTM
−1
S , where MS is the matrix which has PS

1 . . . PS
n

as columns and MT is the matrix with PT
1 . . . PT

N as columns, with the last row of

both having all 1s.

12.5.4 Pseudocode

The function findMatchingAdjacent takes the inputs as two corners CS
1 and CT

1 such that

they map to each other, i.e. O(BS , BT ,M, λ⃗i⃗j.CS
1 (⃗i) ∧ CT

1 (⃗j)) returns SAT.

The output is a set of source and target points PS
1 . . . PS

n+1 and PT
1 . . . PT

n+1 which satisfy

the following conditions:

• All source and target points map with each other in order, i.e.

∀k.O(BS , BT ,M, λ⃗i⃗j.PS
k (⃗i) ∧ PT

k (⃗j)) = SAT

• At least one of the source and target point pairs is an adjacent corner to CS
1 or CT

1

respectively. i.e.

∀k.PS
k ∈ Adj(CS

1 ) ∨ PT
k ∈ Adj(CT

1 )

• All points lie on edges adjacent to CS
1 or CT

1 respectively. i.e.

∀k.∃AE ⊂ AC1
.|AE | = n− 1 ∧ ∀a⃗∈AE

⟨⃗a, P⃗k⟩ = 0

def findMatchingAdjacent(CS
1 , C

T
1 , A

S , AT ) :

PointsS := [CS
1 ] ; PointsT := [CT

1 ]

for CS
2 ∈ Adj(CS

1 , A
S) :

i f CS
2 ∈ PointsS :

continue

for CT
2 ∈ Adj(CT

1 , A
T ) :

i f CT
2 ∈ PointsT :

continue

ES := Edge(CS
1 , C

S
2 ) ; ET := Edge(CT

1 , C
T
2 ) ;

H1 := λ⃗i⃗j. (ES (⃗i) ∧ CT
2 (⃗j)) ; H2 := λ⃗i⃗j. (CS

2 (⃗i) ∧ ET (⃗j))

i f ((PS , PT ) := O(BS , BT ,M,H1)) or

((PS , PT ) := O(BS , BT ,M,H2)) :

PointsS += PS ; PointsT += PT

return (PointsS , PointsT )

The recursive function breakupSpace takes in two points CS
1 and CT

1 which map with each

other and also two iteration spaces AS and AT .
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def breakupSpace(CS
1 , C

T
1 , A

S , AT ) :

i f AS = ϕ or AT = ϕ :

return F Found

PointsS , PointsT := findMatchingAdjacent(CS
1 , C

T
1 , A

S , AT )

i f |PointsS | ≠ n+ 1 or

|PointsT | ≠ n+ 1 :

return F Not Found

T := Transform(PointsS , PointsT )

H1 := λ⃗i⃗j. T × i⃗ = j⃗

aS := HP(PointsS \ CS
1 ) ; aT := HP(PointsT \ CT

1 )

AS
1 = AS ∪ {aS} ; AS

2 = AS ∪ {−aS}
AT

1 = AT ∪ {aT } ; AT
2 = AT ∪ {−aT }

H2 := λ⃗i⃗j. AS
2 (⃗i) ∧AT

2 (⃗j)

i f O(BS , BT ,M,H1 ∧H2) i s UNSAT :

return F Not Found

CS
2 ← (PointsS \ CS

1 ) ; CT
2 ← (PointsT \ CT

1 )

return breakupSpace(CS
2 , C

T
2 , A

S
1 , A

T
1 )

12.6 Example Run

For the example run I’ll work with the following loop skew transform:

Source Target

for i1 = 0 ; i1 ≤ N ; i1++:

for i2 = 0 ; i2 ≤M ; i2++:

x[i1, i2] := x[i1 − 1, i2 − 1]

for j1 = 0 ; j1 ≤ N +M ; j1++:

for j2 = max(0, j1 −M) ;

j2 ≤ min(N, j1) ; j2++:

k := j2 − j1 +M

y[j2, k] := y[j2 − 1, k − 1]

Which then get normalized to:

for j1 = 0 ; j1 ≤ N +M ; j1++:

for j2 = 0 ; j2 ≤ min(j1, N,M,N +M − j1)− ; j2++:

k := j2 +max(0, j1 −M)

y[k, k − j1 +M ] := y[k − 1, k − j1 +M − 1]

The source iteration space is given by the red graph. The target iteration space is given by

the blue graph and the normalized target iteration space is given by the violet graph.
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The color-coded mapping of the points is:

Figure 1: Source Iteration Space
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Figure 2: Target Iteration Space

Figure 3: Normalized Target Iteration Space

We will consider one step of the function breakupSpace which compares the source with

the normalized target space. We start from the initially mapped points (0, 0) and (0, 0).

So in the function findMatchingAdjacent we get CS
1 = (0, 0), CT

1 = (0, 0).

Inside the for loop let CS
2 = (0,M) and CT

2 = (N +M, 0) (denoted by the red points).

And we get AS
E , A

T
E as the lines connecting CS

1 , C
T
1 with CS

2 , C
T
2 respectivly. (denoted by

the green lines).
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The code:

H1 := λ⃗i⃗j. (AS
E (⃗i) ∧ CT

2 (⃗j))

(PS , PT ) := O(BS , BT ,M,H1)

Asks whether there is a point on the source green line, AS
E , which gets mapped to the target

red point, CT
2 . The oracle will return SAT, i.e. there exists no such point.

The code:

H2 := λ⃗i⃗j. (CS
2 (⃗i) ∧AT

E (⃗j))

(PS , PT ) := O(BS , BT ,M,H2)

Asks whether there is a point on the target green line, AT
E , which gets mapped to the source

red point, CS
2 . The oracle will return UNSAT, i.e. there such a point at (M, 0). Hence

PS = CS
2 = (0,M) and PT = (M, 0).

When we try and map the other corner/edge of the target with the same one of the source

then we get no mappings.
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But when we also change the source corner/edge then we get the mapping of PS = (M, 0)

and PT = (M,M).

Now the array PointsS and PointsT are [(0, 0), (0,M), (M, 0)] and [(0, 0), (M, 0), (M,M)]

respectively.

So Transform(PointsS , PointsT ) calculates:0 M M

0 0 M

1 1 1

×
0 0 M

0 M 0

1 1 1


−1

=

1 1 0

1 0 0

0 0 1


From the submatrix

[
1 1

1 0

]
we get j1 = i1 + i2 and j2 = i1.

Now the code:

aS := HP(PointsS \ CS
1 )

aT := HP(PointsT \ CT
1 )

Gives us the following lines (in black):

Now we can break up the space along this line by:

AS
1 = AS ∪ {aS} ; AS

2 = AS ∪ {−aS}
AT

1 = AT ∪ {aT } ; AT
2 = AT ∪ {−aT }
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AS
1

AT
1

AS
2

AT
2

Finally when we call the oracle by O(BS , BT ,M,H1 ∧H2) we can check that all points in

the the small triangular spaces (AS
2 and AT

2 ) are mapped by the equation j1 = i1 + i2 and

j2 = i1.

After this is done we can then recursively call the function on the remaining spaces AS
1 and

AT
1 .

12.7 Generalization to more spaces

The algorithm above doesn’t necessarily have to work with just one source and one target

space, we can have multiple of each. This means we can work with transforms like loop

splitting and loop peeling trivially. Furthermore we can split an iteration space into two

parts if there is something like an if condition in between of which we can determine the

condition. So for example in the following code:

for i = 0; i ≤ N ; i ++:

if i ≤ N
2 :

x = x+ i

else:

x = x+N − i

The if statements can actually be seen as just for loops, so one way to look at this code is:

for i = 0; i < N ; i ++:

for j = i; j ≤ min(i, N
2 ); j++

x = x+ j

for j = max(N2 + 1, i); j ≤ i; j++

x = x+N − j

So we can divide the iteration space into two parts, one for i ≤ N
2 and the other for i > N

2 .

30



12.7.1 Multiple loop bodies at different levels

Consider the following code:

for i1 = 0; i1 < N ; i1 ++:

for i2 = 0; i2 < M ; i2 ++:

y = y + i2

x = x+ y

for i3 = i1; i3 < L; i3 ++:

z = z + x− i3

One way to approach this would be to consider this as a set of three loops and then trying to

match these three loops to corresponding three loops in other code. However a better way

would be to just consider this entire thing as a union of three spaces and run the algorithm

on them.

12.7.2 Generalization to loop fission and fusion

Loop fission is also a natural extension to this idea. If we have a way to somehow determine

which statements in the source/target match with which statements in the target/source

then we can copy a loop iteration space and make it into two parts, but with different bodies.

An example with deals with this idea is loop reindexing.

Source Target

for i = 0 ; i ≤ N ; i++

y[i] = z[i]

x[i] = y[i− 1]

i f (N ≥ 0) :

x[0] = y[−1]
for j = 0 ; j ≤ N − 1 ; j++

y[j] = z[j]

x[j + 1] = y[j]

i f (N ≥ 0) :

y[N ] = z[N ]

The source loop and the target loop can be split into two parts with the same space but

with different bodies. After this the source will have two spaces and the target would have

4 (two ”spaces” would just be points, or 0-dimensional spaces). Then we run the algorithm

on these sets of spaces and get an answer.

13 Implementation Details

13.1 Structural Changes

These changes were originally committed to the branch non-bisimilar. A summary of the

new classes introduced in this branch is given below.

• graph correl step t<T PC, T E>: This is a template interface which acts as a single

step of a tfg which can be correlated with another step (of the other tfg) in the

correlation graph. Thus this class replaces the class graph full pathset t in many

places in the code. In turn graph full pathset t and a new class graph loopnest t
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inherit graph correl step t as they can both be taken as a single step to correlate.

A tfg correl step t is the instantiation of this class with <pc, tfg edge>.

• graph loopnest t<T PC, T N, T E>: This class inherits graph correl step t<T PC,

T E> and is yet to be completed. It is stores the region of a loopnest for now. An

instantiation of this class with <pc, tfg node, tfg edge> is tfg loopnest t.

• lockstep correl t: This is another interface which abstracts the class path correl t.

It has function to return a source and target tfg correl step t. Apart from path correl t,

it is also inherited by loopnest correl t.

• loopnest correl t: This class inherits lockstep correl t and contains one shared ptr

of tfg loopnest t each for src and dst.

• correl entry t: This was changed slightly to make it work with both kinds of corre-

lations (bisimilar and non-bisimilar). Some data and functions were moved to derived

classes.

• bisimilar correl entry t: Inherits correl entry t and implements what the pre-

vious version of correl entry t implemented. Similarly enum bisimilar correl entry t

and CE propagated bisimilar correl entry t also implement their previous non-

bisimilar counterparts. loopnest correl entry t inherits correl entry t and con-

tains a loopnest correl t.

• corr graph edge: This class was changed to being abstract, just like correl entry t.

This now gets inherited by corr graph bisimilar edge and corr graph loopnest edge.

A bunch of functions were made virtual and need implementation in corr graph loopnest edge,

and there are also certain places where we dynamically cast a corr graph edge to

corr graph bisimilar edge assuming that all edges of the correlation graph are

bisimilar, so these places need more implementation.

Along with these classes the rest of the code changes are mainly just to replace classes

and their function calls with their new abstract counter-parts. There is also the function

tfg get loopnests from pc added in tfg.cpp which constructs returns the loopnest which

starts from a specific pc, and if no such loopnest exists then it returns a nullptr. This function

is then used in get dst unrolled paths from pc (in cg with outgoing dst paths.cpp) and

in get next potential correlations (in correlate.cpp) to make correlations with loop-

nests instead of just paths.

13.2 TFG invariant generation

This part is mostly done and doesn’t need any more fixes. On a high level the work done

here is:

• Created a graph with eqclasses class which now contains a lot of the code common

to tfg and corr graph invariant generation.

• Moved a bunch of eqclass functions like compute ineq eqclass or compute bv bool eqclasses

from corr graph to graph with eqclass.
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• The eqclass functions work using some virtual functions of the class graph with eqclasses

like get src pc, get dst pc etc which can be implemented in the derived classes

(corr graph or tfg).

• Added a function tfg generate invariants which runs invariant generation on a

copy of the tfg. It also changes the copy to add the alloc well-formedness conditions

as assumes on edges.

13.3 Itervars and invariants

Currently the iteration variables are not found out directly from the code but given as

correlation hints to eq. The implementation details for this are:

• The class iter var holds the following 5 things:

1. The expression for the iteration variable

2. The expression for the increment

3. The expression for the mod invariant that is satisfied by the iteration variable

4. A list of expressions for the lower bounds

5. A list of expression for the upper bounds

• We store the iter var class as a map from pc to iter var.

• During invariant generation we add invariants corresponding to the section 11.3 in

the tfg for each iter var. These invariants are added as stability invariants which

means that tfg invariant generation will fail if they aren’t proven. This is done in the

compute invariants for iter var function.

• The function add prev iter var adds the iprev variable by adding another variable in

the to state which takes the value of i in the previous iteration.

• The function get minimal anchor pcs after loop returns the anchor pcs which are

first reached after the exit of the loop, we assert the ”After loop” invariants at these

pcs. There was previously a bug with this implementation where the invariants did not

hold at the ”After loop” pcs because some variables got their values changed before we

reached that point, so to fix that we add some extra variables which take the value of

the variables just at the exit of the loop. These are stored in the var change mapping

map.

• The function add loop taken var for loop head adds a boolean variable in the tfg

for a specific loop which at any pc helps with knowing if the loop had been taken

or not. This is achieved by assuming the loop taken boolean variable in the edges

exiting the loop and assuming the not of the loop taken variable in some edges which

take a path which doesn’t go through the loop. This then helps us assert the ”After

loop” invariants as we only want to assert them if the loop gets taken.
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13.4 Next steps for implementation

Most recently, I was working on implementing recursive graph loopnest t which would

hold a tree-like structure of the loopnest, with each edge having an associated loop and itera-

tion variable and the leafs containing loop-free code stored as a graph edge composition ref.

A recursive graph loopnest t is constructed recursively from an input loop region and

the top-most node of this tree is stored in the graph loopnest t.

After the implementation for this is completed we should work on the implementation of

correl entry apply of the loopnest correl entry t, which currently is implemented as a

no-op. In this function we have to run the whole algorithm for correlation of two loopnests.
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