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Abstract

Software is rapidly becoming a key component for an increasing number of critical applications

ranging from automotive, aerospace, banking, healthcare, and many more. Formal software

verification, which involves verifying the software properties for all possible inputs, has thus

become crucial. But the absence of the formal guarantees for the compiler that is used to translate

the software to the final executable code limits the guarantees provided by the formal source code

verification.

Equivalence checking involves verifying the functional equivalence between a program specification

and its implementation. An equivalence checker can be used in a translation validation approach

to provide formal correctness guarantees for the executable code generated by the compiler. A

black-box equivalence checker takes a program-pair as input and makes minimal assumptions on

the exact nature of transformations performed from one program to another.

The general equivalence checking problem is undecidable and is very challenging in the translation

validation context due to the potentially large syntactic gap between the source and assembly

representation and the long and complex nature of transformations/optimizations performed by

the modern optimizing compilers. These optimizations result in significant structural differences

v



between the input source code and the optimized output code. This work proposes two algorithms

that help make significant progress in the space of robust translation validation.

The first algorithm efficiently finds the correlation between program transitions for structurally

significantly different (but bisimilar) program-pairs and the second algorithm finds a general class

of relations between state elements of programs that have significant syntactic gap across them.

Both these algorithms are static and do not rely on execution traces. Instead, they purely rely

on the concrete models (aka counterexamples) returned by the SMT solvers.

The third contribution of this work is the first black-box equivalence checking tool that can au-

tomatically compute equivalence across the unoptimized intermediate representation (IR) of a

program and its optimized x86 assembly implementation generated either by an optimizing com-

piler or developed by a human programmer. We use a custom IR representation that resembles

LLVM IR to specify the input program. The long and rich pipeline of transformations from the

unoptimized IR to the optimized x86 assembly includes optimizations like loop unrolling, peeling,

unswitching, versioning, loop inversion, vectorization, register allocation, code hoisting, strength

reduction, dead code elimination, and many more.
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सार

ऑटोमोटिटव, एयरोस्पेस, बैंकिं�ग, हेल्थ�ेयर, और �ई अन्य महत्वपूर्ण� अनपु्रयोगों �ी बढ़ती संख्या �े लि+ए सॉफ्टवेयर
तेजी से ए� प्रमखु घट� बनता जा रहा ह।ै औपचारिर� सॉफ्टवेयर सत्यापन, जिजसमें सभी संभाटिवत इनपुट �े लि+ए
सॉफ़्टवेयर गुर्णों �ी पुटि: �रना शाटिम+ है, इस प्र�ार से महत्वपूर्ण� हो गया ह।ै +ेटि�न अनुवाद �रने �े लि+ए उपयोग
टि�ए जाने वा+े सं�+� �े लि+ए औपचारिर� गारटंी �ा अभाव,  अंतितम टिनष्पादन योग्य �ोड �े लि+ए  स्रोत �ोड
औपचारिर� सत्यापन द्वारा प्रदान �ी गई गारटंी �ो सीटिमत �रता ह।ै

तुल्यता जाँच में प्रोग्राम टिवटिनदFश और इस�ा �ाया�न्वयन �े बीच �ाया�त्म� तुल्यता �ी पुटि: �रना शाटिम+ ह।ै ए�
अनुवाद सत्यापन दृटि:�ोर्ण में ए� तुल्यता परीक्ष� �ा उपयोग टि�या जा स�ता है स�ं+� द्वारा उत्पन्न टिनष्पादन
योग्य �ोड �े लि+ए औपचारिर� शुद्धता �ी गारटंी प्रदान �रने �े लि+ए। ए ब्+�ै-बॉक्स तुल्यता परीक्ष� ए� प्रोग्राम-
जोड़ी �ो इनपुट �े रूप में +ेता है और ए� प्रोग्राम से दसूरे प्रोग्राम में टि�ए गए रूपांतरर्णों �ी सटी� प्र�ृतित पर
न्यनूतम धारर्णा बनाता ह।ै 

सामान्य तुल्यता जाँच समस्या अटिनर्णQत है और अनुवाद सत्यापन संदभ�  में बहुत चुनौतीपूर्ण�  है स्रोत और असेंब+ी
�े बीच संभाटिवत रूप से बडे़ सिंसटैक्टिक्ट� अंतर �े �ारर्ण और आधुटिन� अनु�ू+न सं�+� द्वारा टि�ए गए परिरवत�नों
/  अनु�ू+न �ी +ंबी और जटिट+ प्र�ृतित �े �ारर्ण। इन अनु�ू+न �े परिरर्णामस्वरूप महत्वपूर्ण�  संरचनात्म� अंतर
होते हैं स्रोत �ोड और अनु�ूलि+त आउटपुट �ोड �े बीच।  यह �ाम दो एल्गोरिरदम प्रस्ताटिवत �रता है जो मजबूत
अनुवाद सत्यापन �े के्षत्र में महत्वपूर्ण� प्रगतित �रने में मदद �रते हैं।

पह+ा एल्गोरिरथम संरचनात्म� रूप से प्रोग्राम ट्र ांटिXशन �े बीच सहसंबंध �ो �ाफी अ+ग  (+ेटि�न टिबक्टिस्म+र)
प्रोग्राम-जोडे़ �े लि+ए �ुश+तापूव�� पाता ह ैऔर दसूरा एल्गोरिरदम उन प्रोग्रॅम्स �े राज्य तत्वों �े बीच संबंधों �ा ए�
सामान्य वग�  पाता है जिजन�े बीच महत्वपूर्ण�  वाक्यात्म� अंतर ह।ै ये दोनों एल्गोरिरदम क्टिस्थर हैं और टिनष्पादन �े
टिनशान पर टिनभ�र नहीं हैं। इस�े बजाय,  वे टिवशुद्ध रूप से भरोसा �रते हैं एसएमटी सॉल्वर द्वारा +ौटाए गए ठोस
मॉड+ (उफ�  �ाउंटरएक्सप्+ेम्स) पर।

इस �ाय� �ा तीसरा योगदान पह+ा ब्+�ै-बॉक्स तुल्यता जाँच उप�रर्ण ह ैजो खदु ब खदु ए� प्रोग्राम �े अनु�ू+न-
रटिहत इटंरमीतिडएट रिरप्रेजेंटेशन और इस�े अन�ूुलि+त असेंब+ी �ाया�न्वयन, जो या तो ए� अनु�ू+न सं�+� द्वारा
उत्पन्न हो या ए� मानव प्रोग्रामर द्वारा टिव�जिसत हो, में समतुल्यता �ी गर्णना �रता ह।ै हम प्रोग्राम टिनर्दिद: �रने �े
लि+ए ए� �स्टम आईआर प्रतितटिनतिधत्व �ा उपयोग �रते हैं जो ए+ए+वीएम आईआर इनपुट जैसा टिदखता ह।ै 
अनु�ू+न-रटिहत इटंरमीतिडएट रिरप्रेजेंटेशन और इस�े अन�ूुलि+त असेंब+ी �ाया�न्वयन में परिरवत�नों �ी +ंबी और
समदृ्ध  पाइप+ाइन  में  +ूप  अनरोलिं+ग,  पीलिं+ग,  अनक्टिस्वचिंचग,  वज�किंनग,  +ूप  इनवज�न,  वेक्टराइXेशन,  रजिजस्टर
अ+ो�ेशन, �ोड उत्थापन, शटिc �मी, मृत �ोड उन्मू+न, जैसे अनु�ू+न शाटिम+ हैं।
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Chapter 1

Introduction

The problem of equivalence checking, i.e. verifying the functional equivalence between a program

specification and its implementation has been of much research interest and has several important

applications in translation validation [52, 66, 69], program (super)optimization [3, 60, 4, 46, 55,

62], regression verification [65, 26], and many more [38, 42, 67]. The translation validation at-

tempts to automatically generate a proof of equivalence across the transformations (translations)

performed by an optimizing compiler. This involves constructing an equivalence checker which

after every run of the compiler verifies the functional equivalence between the input source code

and the generated executable code. The program synthesis (or superoptimization) involves using

program synthesis to automatically generate (or learn) optimizations for a given program specifi-

cation. The equivalence checker in this application is tasked with determining if the (randomly)

proposed optimized program is equivalent to the input program specification.

For most of these applications, soundness of an equivalence checker is critical, i.e., if the equiva-

lence checker determines the programs to be equivalent, then the programs must be guaranteed to

have equivalent runtime observable behavior for all legal inputs. An unsound equivalence checker

may result in verification of an incorrect translation and is unacceptable for most of the applica-

tions mentioned above. On the other hand, because the general problem of equivalence checking

is undecidable, completeness may not always be achievable for a sound equivalence checker. So,

1
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it is possible that the equivalence checker is unable to prove the programs equivalent, even if

they were behaviorally equivalent. In the context of translation validation, the lack of complete-

ness results in false negatives, i.e. the equivalence checker reports false compilation bugs and for

program synthesis/superoptimization this results in missed optimization opportunities. Thus the

precision and capability of the equivalence checking applications (including translation validation

and program synthesis) rely on the robustness of the equivalence checker used. In this work, we

propose algorithms for building a more robust equivalence checker which can compute equivalence

for a larger set of program-transformation pairs as compared to the state-of-the-art. Although we

use the translation validation for discussing the proposed algorithms, the techniques presented

are largely applicable to other equivalence checking applications as well.

The most common approach for equivalence checking involves establishing a bisimulation relation

across the given program-pair. The (bi)simulation relation construction algorithm consists of

two major steps (1) Correlating program transitions (or paths) across the specification and the

implementation programs (2) Identifying inductively-provable relations (or invariants) between

variables (state-elements) of the two programs at the endpoints of the correlated transitions [56].

If these correlations and inductive invariants ensure equivalent observable behavior (e.g., identical

sequence of I/O events, identical return values of the program and the non-temporary memory

state at the exit ), then we have obtained a proof (or witness) of equivalence (and bisimilarity).

This proof, involving correlations and invariants, can be represented either as a (bi)simulation

relation [56, 48, 52] or as a product program [74], both of which are equivalent representations.

In the context of translation validation, the program specification represents the language-level

semantics of the program, e.g., the C language semantics of a C program, and the implementation

models the semantics of the low-level assembly opcodes that run directly on the hardware, e.g.,

the semantics of the x86 assembly instructions. Thus, an ideal translation validator in this

setting should be able to automatically compute equivalence across the full pipeline of compiler

transformations from the C-language source code to the x86 assembly program implementation.

This is very challenging because

(a) The large and complex nature of transformations/optimizations performed by the modern

optimizing compilers result in significant structural differences between the input source
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code and the optimized output code. Robust and exhaustive algorithms (with potentially

exponential search space) are required to correlate the transitions across the input program

and the optimized output program.

(b) Simple invariants (like equality or inequality relation between two program variables) do

not suffice for the large syntactic gap between the source and assembly representation.

More expressive invariants (like affine invariants) are required to be inferred across the

state-elements of the two programs.

To tackle this challenging equivalence checking problem at the scale of real world programs, prior

work has usually simplified the problem by one of the following approaches or problem settings

• Using the same abstraction level for both the specification and implementation programs.

For example, both the programs could be in high-level IR representation or both the pro-

grams may be in low-level assembly representation. This may simplify the invariants re-

quired to prove equivalence and may benefit from syntax based heuristics for invariant

inference. The shortcoming of using IR as both specification and implementation [52, 69,

25, 75, 44] is that it misses some of the most involved transformations (like instruction

selection) that are critical for verification. Using assembly as both specification and imple-

mentation [63, 14, 60, 11] may result in more false equivalence failures because information

to prove a transformation correct may not be available in the assembly level specification

(as compared to source code or IR level specification).

• Modifying the compiler source code to produce a witnesses (or proof) [51, 35] during com-

pilation itself. This places extra burden on the compiler developers and increases the com-

piler complexity. Further, this approach for verification can not be used for constructing

an equivalence checker for the application of program synthesis. An equivalence checker for

program synthesis/superoptimization should be agnostic to the exact nature of transforma-

tions performed while proposing the (randomly chosen) optimized program.

• Computing equivalence only across selected components/transformations of the compiler

[25, 44] such that the resulting program after the transformation is structurally similar

to the input program. This reduces the equivalence checking problem to only invariant

inference problem as the structurally similar program-pair can be correlated trivially.
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• Executing both the programs on real inputs and using the execution output for establishing

the correlation and inferring the required invariants. Although these program execution-

based techniques [63, 23, 11, 53] are effective, their precision/completeness depends on the

coverage of the execution traces. Also, generating these execution traces can have practical

limitations for programs at different level of abstractions; this has not been demonstrated

yet in any prior work.

• Correlating the whole program in a single step mostly using a common alignment condition

[63, 11]. This simplifies the simulation relation construction problem by partitioning it into

two completely disjoint steps for correlation and invariant inference. The invariant infer-

ence algorithm in this setting is usually performed after the correlation for the complete

program has been established. Sophisticated invariant inference techniques (like [13, 26])

can now be used for relating the state-elements for the complete correlated program. The

biggest shortcoming of this approach is that different fragments (or loops) in a program

may require different alignment conditions for correlation and this approach cannot handle

such programs by correlating the whole program in a single step using a common align-

ment condition. Prior work has demonstrated these common alignment condition based

correlation on mostly single-loop source programs only.

1.1 Contributions and Organization

This thesis makes the following high-level contributions to address the shortcomings of prior work:

• The first contribution is a counterexample-guided correlation algorithm called Counter.

Counterexamples represent the concrete models returned by an SMT solver for queries

that are not provable. Unlike most prior work, which correlates the whole program in a

single step, Counter is an incremental algorithm for identifying the correlations and can

handle programs with multiple loops which may have different alignment constraints. At

each incremental step, the proposed algorithm uses a counterexample-guided best-first search

strategy to choose the new correlated transition pair from an exponential search space and

performs the invariant inference across the chosen transition pair. The proposed best-first
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search strategy involves (a) counterexample execution based pruning of infeasible correla-

tions to reduce the search space (b) choosing the most promising candidate correlation using

a ranking procedure based on the invariants inferred so far. Using the proposed best-first

search strategy, Counter can efficiently identify the required correlations across structurally

significantly different (but bisimilar) program-pairs.

Chapter 3 discusses the proposed Counter algorithm and its comparison with prior work in

more detail.

• The second contribution is a counterexample-guided invariant inference algorithm called

Sifer. Sifer is a purely static algorithm to find inductive invariants between state elements

of programs that have large syntactic gap across them. It uses the concrete models (aka

counterexamples) returned by the SMT solver to infer expressive invariants like affine in-

variants or inequality invariants with respect to a constant; such invariants were otherwise

considered as intractable for static invariant inference. Another important property of the

proposed Sifer algorithm is that it is simple enough to be used with advanced and incremen-

tal correlation algorithms like [14] or the proposed Counter algorithm. Unlike single-step

correlation algorithms which call the invariant inference procedure once after completing the

correlation for whole program, an incremental correlation algorithm invokes the invariant

inference procedure multiple times at each incremental step. Thus the invariant inference

algorithm used with incremental correlation algorithms in the equivalence checking setting

should be efficient and should have a bounded runtime. Our proposed Sifer algorithm is

based on Data-Flow analysis and thus is itself incremental in nature.

Chapter 4 discusses the proposed Sifer algorithm, its properties like runtime bound and

precision guarantees, and its comparison with prior literature in more detail.

• The third contribution is an Unoptimized-IR-to-Optimized-Assembly translation validation

tool, COUNTER, based on the proposed correlation and invariant inference algorithms. To

our knowledge, ours is the first black-box equivalence checking tool that can successfully

compute equivalence across the unoptimized IR for a C-language program and the optimized

x86 assembly program. Unlike prior work that verifies only a few selected components of

the compiler or uses a pass-by-pass approach for verification, the proposed tool can verify

the composition of a long and rich pipeline of transformations like loop unrolling, peeling,
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unswitching, versioning, loop inversion, vectorization, register allocation, code hoisting,

strength reduction, dead code elimination, etc.

The proposed tool is categorized as a black-box equivalence checker because it makes minimal

assumptions on the exact nature of transformations performed. Such an equivalence checker

is capable of deciding equivalence across a larger and general space of transformations.

Unlike witness generation based techniques that modify the compiler source code and put

undue burden of verification on compiler developers, the black-box equivalence checker can

be built independently by formal verification experts. Further, it can be used in other

equivalence checking applications like program synthesis/superoptimization which require

the equivalence checker to consider the transformations performed while proposing the

optimized program as black-box.

A competing approach to translation validation for verifying the compiler correctness is

certified compilation (exemplified by the CompCert compiler [42]). Certified compilation

involves manually developing the compiler from scratch along with the correctness guaran-

tees using a proof assistant. As compared to translation validation which involves verifying

the input-output behavior for every compilation, certified compilation involves proving in

advance that the compiler will always produce semantic preserving executable code, which

requires laborious manual effort and is non-trivial for many loop optimizations. In compar-

ison to this, a robust and comprehensive translation validation tool (like COUNTER) has

significant scope for automation and can be reused to verify common off-the-shelf (COTS)

compilers.

Chapter 5 discusses the implementation details for the Unoptimized-IR-to-Optimized-

Assembly translation validation tool and presents its evaluation and limitations.

Chapter 2 provides the required background and the conclusion is presented in chapter 6.



Chapter 2

Preliminaries

2.1 Formal Definition of Equivalence in the context of

Translation Validation

Given the pair of specification (C) and implementation(A) programs, a translation validator

verifies that the observable behaviors produced by the implementation program A are equivalent

to the observable behaviors produced by the specification program C. Here and in the rest of the

thesis, C is used to denote the specification program and A is used to denote the implementation

program. Observable behaviors include the return values of the program (e.g., exit code of the

main procedure) and the non-temporary memory state which includes the heap and the memory

region belonging to the global variables. Observable events also include any intermediate calls

to procedures (aka functions) whose definition is not available in the same compilation context

as its caller, because the compiler and the validator must conservatively assume that such callee

procedures can potentially result in I/O events (e.g., through system calls). Without inter-

procedural optimizations (our setting), all callee procedures are undefined.

In the context of translation validation, the program specification represents the language-level

semantics of the program, e.g., the C language semantics of a C program, and the implementation

7
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int a[100];

C0: void ubDCE(int n){

C1: for(int i=0; i<n; i++) {

C2: a[i] = 0;

C3: if (i > 100) {...}

C4: }

C5: return;

EC: }

Figure 2.1: An example C-language program for dead code elimination (DCE) optimization.

models the semantics of the low-level assembly opcodes that run directly on the hardware, e.g.,

the semantics of the x86 assembly instructions. High-level languages (like C-language) have

associated undefined behavior (UB) conditions. The compiler assumes the absence of undefined

behaviors in the source program and uses this information to perform aggressive optimizations.

To see this with an example, consider the C program shown in fig. 2.1. In this example program,

the compiler is free to remove the logic at location C3 because accessing an array beyond its size

is an undefined behavior in C-language and thus the variable i should be less than 100 for the

program to be free of out of bound array access UB. The translation validator should also model

the high-level language UB conditions in order to validate the transformations performed by the

compiler which rely on the absence of these UB conditions.

In the presence of UB conditions in the specification program language, equivalence checking

across the specification and implementation programs reduces to refinement checking: The trans-

lation validator checks that if the specification program is safe (i.e. does not exhibit undefined

behavior), then the observable behaviors produced by the implementation program are equivalent

to the observable behaviors produced by the specification program. To tackle undefined behaviors

in C, a special “error” state is introduced in C which is reached whenever UB condition gets

triggered.

Both the specification program C and the implementation program A are deterministic in the

absence of undefined behavior; the equivalence problem in this setting can be over-approximately

reduced to the checking of weak trace equivalence: C and A are equivalent, if for all inputs
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1. Either both C and A programs produce identical (and potentially infinite) sequence of

observable events;

2. Or C exhibits UB on that input and transitions to the error state which is characterized as

an internal action in this formalism.

This check is over-approximate because all types of UB in C-language are not modeled. For

example, the absence of non-terminating behaviors in C, which is often UB, is not modeled and

C and A can potentially produce infinite sequence of observable events.

2.2 Control-Flow Graph Representation

Formal verification involves computing equivalence for all inputs, thus an abstract representation

is used for the input specification and implementation programs to the equivalence checker. This

section presents the details for the abstract framework named as Control-Flow Graph (CFG1)

used for program representation in this thesis.

CFG is a directed graph with nodes and edges. Each node in the CFG representation of a program

corresponds to a program location or program counter (PC) and is denoted by the symbol n. Each

edge in the CFG corresponds to transition from one program location to another and is denoted

using ω[n→ n′] from node n to node n′. Each edge (representing a transition) is labeled with an

edge-condition that must be true to trigger that transition, a transfer function that specifies how

the (abstract) machine’s state is modified across that transition, and an action that indicates the

program’s potential interactions with the environment (e.g., program exit, unspecified procedure

call). The CFG for a program has a start node (nstart) at which it begins execution, and a

(potentially empty) set of exit nodes.

The CFG representation of the program is analogous to deterministic labeled transition system.

It uses a symbolic representation denoted by Ωn to specify the state elements at node n. In this

symbolic representation:

1Our notion of CFG is different from the standard term which is used to represent a graph over basic blocks.



10 Preliminaries

int a[100];

C0: int array_sum(int n){

C1: int sum = 0;

C2: for(int i=0; i<n; i++) {

C3: sum += a[i];

C4: }

C5: return sum;

EC: }

(a) C program

C0 C2 C4 EC
sum=0
i=0

true

sum+=a[i]

i < n

!(i < n)

a sum

i++

true

(b) C program CFG. C0 is the entry node
and EC is the exit node

Figure 2.2: An example C-language program and its control-flow graph representation.

• The edge-condition for edge ω[n→ n′] is a boolean-valued function, {econdω : Ωn →bool},
which takes as input the symbolic state at the source node of the edge.

• The transfer function pω : Ωn → Ωn′ takes the symbolic state at source node of the edge as

input and returns the symbolic state for the target node of the edge.

• The action αω for exit edges i.e. edges with target node as exit node, represent the return

value for the procedure (if non-void) and the non-temporary memory state. For an undefined

procedure call edge, αω includes the procedure name and its actual arguments, along with

the memory-regions that the callee function may access (includes heap, global variables,

and any address-taken local variables/stack). The edges which are not corresponding to

a procedure call or are not exit edges, are labeled with a special internal action τ . This

represents an internal behavior (or mute transition) that is not observable. This work does

not support programs with procedure calls and thus only exit edges in the CFG are labeled

with an observable action αω and all other edges are labeled with the internal action τ .

Figure 2.2 shows an example C-language program and its control-flow graph representation.

The example program calculates the sum of the elements of the global array ‘a’. In the CFG

representation shown in fig. 2.2b, the edge condition is shown above the transition edge, and

the transfer function is shown inside a box below the transition edge. As an example, the edge

condition for the edge (C2 → C4) is (i < 100) and the transfer function for the edge (C4 → C2)
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is (i+ +). The action α for an exit edge is shown inside an ellipse below the transition edge. In

this example CFG, there is a single exit edge (C2 → EC) and the action α associated with this

edge (shown in ellipse below the edge) returns the variable sum that holds the return value and

the memory region for global variable a.

The labels (C0), (C2), (EC), etc., in the C-program denote the program locations or PCs and

are used to represent the nodes in the CFG. In this example and in the rest of the thesis, we

use the following correspondence between a program’s PC labels and its CFG’s node names: (1)

for a general statement, the PC label represents the start of the corresponding statement in the

program; (2) for a for-loop construct, the PC label corresponds to the condition test which is

also the loop head. The for-loop initialization statement is shown as a part of the transfer function

of the incoming edges to the loop head; (3) EC and EA represent program exits for the specification

program C and the implementation program A respectively. The CFG representation used in

this thesis is similar to the Transfer Function Graph representation used by prior work [14].

2.2.1 Modeling Undefined Behavior

To model undefined behavior conditions, the CFG representation additionally associates each edge

ω[n→ n′] with a boolean valued function σω : Ωn →bool, which takes as input the machine state

at source node n. σω encodes the condition that represents the absence of undefined behavior. If

at node n (source node of edge ω[n→ n′]), the condition σω is violated then the abstract machine

transitions into a special Error node. In other words, the transition to the special Error node in

the CFG indicates that UB was triggered. The Error node has no outgoing transitions and once

entered, the program stays in the Error node forever henceforth. The edges that transition into

the Error node are labeled with a special observable “Error” action. Also, all concrete machine

states that reach the target node n′ of the edge ω[n→ n′] satisfy the condition σω.

Figure 2.3 shows the CFG along with the UB conditions (σω) for the example C program listed

in fig. 2.2a. The UB conditions associated with the edges are shown in a box above the edge in

boldface. In this example, the UB condition for edge (C2 → C4) is i < 100 because accessing

an array beyond its size is undefined behavior as per C-language semantics and the size of global
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C0 C2 C4 EC
sum=0
i=0

true i<100

sum+=a[i]

i < n

!(i < n)

a sum

i++

true

Figure 2.3: CFG with UB assumptions for C program shown in fig. 2.2a

.

array ‘a’ is 100. Any value of i ≥ 100 will trigger the undefined behavior and the abstract

machine transitions to Error state for all such inputs. Identifying these UB conditions for a

given program requires (deep) program analysis and a more detailed discussion on identifying

and modeling undefined behavior is available in prior work on modeling undefined behavior[15].

In general, for completing an equivalence proof, we do not necessarily need to identify all possible

UB conditions. However, the identified UB conditions should be strong enough to capture the

assumptions made by the optimizing compiler.

With the UB conditions modeled in the CFG, the given pair of CFGs is considered equivalent if

for each potential input:

1. Either both the CFGs are weak trace equivalent, i.e., they produce identical sequence of

observable (non-internal) events.

2. Or the specification CFG transitions to the Error state for that input.

Also note that, if for the given input, the implementation program transitions to the Error state

while the specification program does not, then the programs are inequivalent by definition. In the

rest of the thesis, for simplicity and brevity, we will omit the second condition i.e. we are only

interested in proving equivalence for inputs that do not trigger UB. We will henceforth assume

that the equivalence needs to be proven only if the source program does not reach the Error

state.
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2.2.2 Well-formed CFG

A given control-flow graph (CFG) is well-formed iff the following conditions are met:

1. For every non-exit node in the CFG, the outgoing edge conditions are mutually exclusive,

i.e., for all possible machine states at the node, the edge condition of exactly one of the

outgoing edges at that node must be true.

For example, in the CFG shown in fig. 2.2b, the edge conditions for the two outgoing edges

of node C2 are i < n and ! (i < n), which are mutually exclusive.

2. For every non-exit node in the CFG, the union of edge-condition of all outgoing edges at

that node must be true. Any node for which this condition is not satisfied is called an

incomplete node.

For example, the union of the edge conditions for the two outgoing edges of node C2, i.e.,

((i < n) ∪ ! (i < n)) is true for the CFG shown in fig. 2.2b.

3. If the set of concrete machine states that is possible at a node n is represented as a logical

formula Invn (denoting the node-invariant at n), then the following relation holds for every

edge ω[n→ n′] in the CFG,

(σω ∧ Invn ∧ econdω)⇒ WPω(Invn′)

where WPω(p) represents the weakest precondition of the predicate p across the transition

through edge ω. This well-formedness criterion ensures that the set of machine states

reachable at the target node n′ of edge ω[n→ n′] is a superset of the set of machine states

reachable at n′ through n. In other words, the node-invariants in a well-formed CFG must

be inductive.
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2.3 Equivalence Checking Through Simulation Relation

Construction

The CFG representation of the program is analogous to a deterministic labeled transition system

and thus for CFGs, weak trace equivalence and weak bisimilarity coincide [59]. Most prior work

on equivalence checking (including our proposed equivalence checker) is based on identifying a

(weak) bisimulation relation between the given specification (C) and implementation (A) CFGs.

2.3.1 Product-CFG

The bisimulation relation, which represents a proof of equivalence across two given CFGs, can

itself be represented using a control-flow graph called product-CFG (π). The inductive node-

invariants for the product-CFG represent the inductive invariants which relate the state-elements

of the two programs. Figure 2.4a shows an example C-language program with nested loops.

The program computes the sum of a two-dimensional array ‘a’ and returns the computed sum.

Figure 2.4b shows an equivalent abstracted assembly language program. The assembly program

has undergone many optimizations including loop inversion for both the loops, loop splitting,

and register allocation. Figure 2.4c and Figure 2.4d show the CFG representation for the C-

program and the assembly program respectively. One of the possible product-CFGs across the

two programs along with the inductive invariants is shown in fig. 2.4e and fig. 2.4f respectively.

The product-CFG encodes the lockstep execution of the two given programs represented as (de-

terministic) CFGs and has the following properties:

1. A node in the product-CFG is formed by pairing two respective nodes (or PCs) of C and

A CFGs and is termed as a PCpair. For instance, the node (C2,A2) in the product-CFG

in fig. 2.4e is formed by pairing node (C2) of C-program CFG and node (A2) of assembly

program CFG. A PCpair indicates that if an abstract machine visits a node (nC , nA) in

product-CFG, then it would have visited nC in C and nA in A.

2. The machine state for the product-CFG is formed by pairing the machine states of C and
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int a[100][50];

C0: void nestedLoop (){

C1: int sum = 0;

C2: for(int i=0; i <100; i++) {

C3: for(int j=i; j<50; j++) {

C4: sum += a[i][j];

C5: }

C6: }

C7: return sum;

EC: }

(a) C program

A0: nestedLoop:

A1: r1 = 0; r3 = 0

A2: if (r1 >= 50) goto A7

A3: r2 = r1

A4: r3 += a[r1][r2]

A5: r2++

A6: if (r2 != 50) goto A4

A7: r1++

A8: if (r1 != 100) goto A2

EA: ret r3

(b) (Abstracted) Assembly program

C0 C2 C3 C4 EC
sum=0
i=0

true

j=i

i < 100 j < 50

!(i < 100)

i++

!(j < 50)

sum+=a[i][j]
j++

true

(c) C program CFG.

A0 A2 A4 A6 A8 EA

r1=0
r3=0

true

r2=r1

!(r1 >= 50)

r1++

r1 >= 50

r3+=a[r1][r2]
r2++

true

r1++

!(r2 6= 50)

r2 6= 50

r1 6= 100

!(r1 6= 100)

(d) Assembly program CFG.

C0,A0 C2,A2 C4,A4 EC,EA
A0-A2

C0-C2

A2-A8-EA

C2-C3-C2-EC

A2-A4

C2-C3-C4

A4-A6-A4

C4-C3-C4

A4-A6-A8-A2

C4-C3-C2

(e) One of the possible Product-CFG

Node Invariant

(C0,A0) HC = HA
(C2,A2) sum = r3; i = r1; HC = HA
(C4,A4) sum = r3; i = r1; j = r2; HC = HA
(EC,EA) sum = r3; HC = HA

(f) Inductive invariants for product-CFG in
fig. 2.4e

Figure 2.4: An example C-language program, its equivalent (abstracted) assembly language
program, their CFG representation and simulation relation across the CFGs represented as a
product-CFG and the inductive invariants at the nodes of the product-CFG.
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A CFGs. For example, product-CFG’s machine state has two memories corresponding to

the memory state of C and A programs.

3. An edge in the product-CFG is formed by pairing a path (or a series of edges) in the two

CFGs. As an example, the product-CFG edge (C0, A0)→ (C2, A2) is formed by pairing the

path (C0→ C1→ C2) in C with the path (A0→ A1→ A2) in A.

A product-CFG edge encodes the lock-step execution, i.e., the product-CFG edge ω =

(nC , nA) → (n′C , n
′
A), represents that C makes a transition from nC → n′C and A makes a

transition from nA → n′A.

4. The edge condition of an edge in the product-CFG is formed by conjuncting the path

conditions for the corresponding paths in C and A. The path condition is computed as the

weakest-precondition of the True predicate on the given path. The weakest-precondition

(WP) for any predicate P on a series composition (�) of two edges ω1 and ω2 can be com-

puted as follows:

WPω1�ω2(P ) = WPω1(WPω2(P ))

5. The transfer function of an edge in the product-CFG is formed by composing the transfer

function for the corresponding paths in C and A. The transfer function for a path is

computed by composing the transfer function of individual edges as follows:

pω1�ω2(Ω) = pω1(pω2(Ω))

6. The node-invariant at the start node of the product-CFG is formed by equating the program

arguments and non-temporary memory states of C and A programs while accounting for

the different input representations in the two syntaxes. The first row in fig. 2.4f shows

the node-invariant at the start node (C0,A0) of the product-CFG, where H represents the

non-temporary memory state for a program which includes the memory regions belonging

to the global variables and heap.

7. The product-CFG is a well-formed CFG and satisfies the well-formedness conditions out-

lined in section 2.2.2.
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The second well-formedness condition states that all non-exit nodes should be complete i.e. the

union of edge conditions for all outgoing edges from a node in the CFG should be true. This

well-formedness condition in the context of product-CFG implies that a well-formed product-CFG

includes all possible behaviors of the (deterministic) CFG pair on legal inputs and hence serves

as a proof (or witness) of bisimulation between C and A CFGs for all legal inputs to C and is

also termed as complete product-CFG.

The third well-formed condition states that the node-invariants in a well-formed CFG are induc-

tive. Thus, given the node-invariant at the start node of the product-CFG, the node-invariants at

other nodes of the product-CFG can be identified through a sound and over-approximate inference

procedure. If the inferred invariants are strong enough to prove equivalent observable behavior,

then the product-CFG along with the inferred invariants represent the witness (or proof) of

equivalence. For example, the second and third row in fig. 2.4f show the inferred inductive in-

variants at the product-CFG nodes (C2,A2) and (C4,A4) respectively and are strong enough to

inductively prove the equivalence of observables (the return value and the non-temporary memory

state in this case) represented using the invariant at exit-node (EC,EA).

Most prior work on simulation relation construction based equivalence checking involves con-

structing the complete product-CFG in a single step mostly using a common alignment condition

[63, 11]. An alignment condition or alignment predicate (AP) can be thought of as a relation be-

tween the state elements of the specification program C and implementation program A such that

for all edges e = (ηC , ηA) in the product-CFG, the states at the two (start and stop) endpoints of

the paths ηC in C and ηA in A are related by AP. The single step construction of the complete

product-CFG simplifies the simulation relation construction problem by partitioning it into two

completely disjoint steps for correlation and invariant inference. The algorithm first constructs

the complete product-CFG by identifying the correlated transitions that cover all possible pro-

gram behaviors followed by an invariant inference algorithm to infer the inductive node-invariants

for each node in the static product-CFG. The advantage of performing invariant inference on the

complete product-CFG is that sophisticated invariant inference techniques (for example using

constraint solving [13, 26]) can now be used for relating the state-elements at each node of the

product-CFG. However, the biggest shortcoming of this approach is that different fragments (or

loops) in a program may require different alignment conditions for correlation and this approach
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cannot handle such programs by correlating the whole program in a single step using a common

alignment condition.

2.3.2 Incremental Algorithm for Product-CFG Construction

To overcome the shortcomings of simulation relation construction algorithms which involve con-

structing the complete product-CFG in a single step mostly using a common alignment condition,

an incremental algorithm for product-CFG construction was proposed by Dahiya et al. [14]. The

pseudo code for the incremental algorithm proposed by Dahiya et al. is shown in fig. 2.5. The

algorithm takes as input the CFG for the specification program (C) and the CFG for the imple-

mentation program (A). It returns either a product-CFG that is a provable bisimulation (if proof

found) or null (if the proof was not found).

The top-level procedure incrementalCorrelate() initializes a partial product-CFG πinit to a

CFG that has a single node (C0,A0) formed by pairing the start node C0 in C and the start node

A0 in A. The procedure then “expands” the partial product-CFG πinit by adding new product-

CFG edges to it through the call to expandProductCFG(). As noted in section 2.3.1, each of these

product-CFG edges is formed by pairing a path from the two CFGs. The expandProductCFG()

procedure enumerates multiple potential path pairs for each product-CFG edge to be added

and uses a backtracking search tree to store these possible correlations. The frontier Ω of the

backtracking search tree is initialized by a call to expandProductCFG() procedure for the initial

product-CFG (πinit).

The expandProductCFG() procedure takes a partial product-CFG π as input and through

a call to findIncompleteNode() procedure identifies an incomplete product-CFG node n =

(nC , nA) in π. As discussed in section 2.2.2, an incomplete node in the CFG is a node for which

the union of edge-condition of all outgoing edges at that node is not true. If no such node

exists in the input partial product-CFG π then the findIncompleteNode() procedure returns

a nullptr indicating that the input product-CFG π is already complete; in which case, the

expandProductCFG() procedure returns to the caller which will eventually check if the inferred

invariants ensure equivalent observable behavior (ProductCFGisProvableBisim()).
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Algorithm 1: Incremental Product-CFG Construction Algorithm

1 Function expandProductCFG(π, C, A, Ω)
2 if ¬ ((nC , nA)← findIncompleteNode(π)) then
3 return True;
4 end
5 pathA ← getNextPath(nA, A);
6 κC ← getCandCorrelations(nC, C, pathA);
7 foreach pathC ∈ κC do
8 if actionsAreCompatible(pathC, pathA) then
9 πnew ← π;

10 addEdge(πnew, (pathC, pathA));
11 Ω ← Ω ∪ {πnew};
12 end

13 end
14 return False;

15 Function incrementalCorrelate(C, A)
16 πinit ← initProductCFG(C, A);
17 Ω ← { };
18 expandProductCFG(πinit, C, A, Ω);
19 while Ω is not empty do
20 πcur ← removeDepthFirstOrder(Ω);
21 if checkCriterionForNewEdge(πcur) then
22 inferInvariants(πcur);
23 if checkCriterionForEdges(πcur) then
24 isComplete ← expandProductCFG(πcur, C, A, Ω);
25 if isComplete ∧ ProductCFGisProvableBisim(πcur) then
26 return πcur;
27 end

28 end

29 end

30 end
31 return null;

Figure 2.5: Pseudo code for the incremental product-CFG construction algorithm
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If there exists an “incomplete node” n = (nC , nA) in the partial product-CFG π, the get-

NextPath() procedure is used to identify the path pathA starting at node nA in A that has not

yet been correlated. The getCandCorrelations() procedure then enumerates multiple poten-

tial correlations for pathA in the specification C starting at node nC and returns these multiple

possible correlation candidates in κC . A product-CFG edge is formed by pairing the chosen path

pathA in A with one of the possible correlation candidate pathC ∈ κC . The detailed algorithm to

enumerate the set of paths to be correlated in A and the multiple possible correlation candidates

in C is given in section 4.3 in [14] and is briefly discussed here.

The enumeration algorithm for A involves fixing the entry, exit and loop heads in A as anchor

PCs (or nodes) and the path between these anchor nodes form the set of paths {pathA} to be

correlated in A. For example, the chosen anchor PCs for the implementation CFG shown in

fig. 2.4d are (A0, A2, A4, EA) and the set of paths that need to be correlated is {(A0-A2),
(A2-A4), (A4-A4), (A4-A2), (A2-EA)}.

The enumerated correlation candidates κC in the specification program C for a chosen pathA in

A consist of composite paths from the node nC to any other node in C up to a bounded unroll

factor. A bound on the unroll factor ensures that an enumerated path must be smaller than

a multiple of the program size; in practice, the enumerated paths are much shorter due to the

presence of intermediate anchor nodes.

A composite path between two nodes is formed by composing a sequence of edges (into a path),

or by combining a disjunction of multiple paths. The disjunction of multiple paths is required to

handle transformations which involve merging of multiple paths in the source program to a single

path in assembly program. These transformations are mainly possible because of the availability

of conditional opcodes in the assembly syntax; the code generated using these opcodes is more

performant and it enables more optimization opportunities. An example program-pair for which

the required product-CFG consists of composite path involving disjunction of multiple paths in

the specification program is shown in fig. 3.1. The required composite path in this example

consists of 81 individual paths and we discuss this example in detail in section 3.2.1.

In general, the total number of paths that are required to be correlated in a single composite
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(C0,A0)

1

(C0,A0) (C2,A2)
A0-A2

C0-C2

2 . . .

(C0,A0) (C2,A2) (C4,A4)
A0-A2

C0-C2

A2-A4

C2-C4

3

. . .

(C0,A0) (C4,A2)
A0-A2

C0-C2-C3-C4

. . .

. . .

. . .

(C0,A0) (C3,A2)
A0-A2

C0-C2-C3

. . .

. . .

. . .

Figure 2.6: A snapshot of the backtracking search tree for the program-pair shown in fig. 2.4

path can be exponential in the size of the program and unrolling performed by the compiler.

We present techniques to scalably handle this exponential number of paths requirement in our

proposed counterexample-guided correlation algorithm.

For each enumerated correlation candidate pathC ∈ κC , first the compatibility of its action is

checked with the action on pathA (actionsAreCompatible()). For programs without function

calls (as considered in this thesis), the action compatibility check involves checking that pathC

is an exit path iff pathA is an exit path (as an exit path can potentially produce an “observable

action”). If the action compatibility check passes, a new product-CFG πnew is created which

additionally includes the new product-CFG edge encoding the candidate correlation between

pathC and pathA.

All these newly created product-CFGs (in the expandProductCFG() procedure) containing one

additional edge as compared to the input product-CFG π are added back to the frontier Ω of the

backtracking search tree2. A snapshot of the search tree for the pair of programs in fig. 2.4 is

depicted in fig. 2.6. Each node in the search tree represents a partially-constructed product-CFG,

and the outgoing edges at a node represent the potential possibilities for the newly added edge.

Here, the frontier Ω represents the set of all partially-constructed product-CFGs at the end of all

visited paths.

2The frontier Ω is passed as a call by reference parameter to the expandProductCFG() procedure.
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Even if finite number of candidate correlation possibilities are added to the frontier at each

step (i.e. each call to expandProductCFG() function), this incremental approach for simulation

relation construction results in significantly large (potentially exponential) number of possible

product-CFGs. In order to build a robust correlation procedure, an exhaustive search based

approach is used to find the required product-CFG in this exponentially-large space; it involves

iteratively choosing each of the enumerated partial product-CFGs until the required product-

CFG that yields a provable bisimulation relation is found or the complete exponential search

space is exhausted. Dahiya et al. [14] used a depth-first order (removeDepthFirstOrder()) to

iteratively pick a product-CFG from the frontier. This approach exhaustively explores a subtree

in the backtracking search tree before attempting another subtree of possible correlations. In

section 5.2, we empirically show that the depth-first search based correlation becomes intractable

for aggressive optimizations that result in large structural differences between the program-pair.

We present techniques to efficiently find the required product-CFG from the exponential search

space in our proposed counterexample-guided correlation algorithm. The algorithm proposes a

counterexample-based pruning and ranking strategy that can efficiently search (best-first search)

this space to identify a provable bisimulation relation. The details of these counterexample-based

pruning and ranking algorithms are presented in section 3.3. We also make empirical comparison

of the depth-first order used by the prior work and the proposed best-first search procedure in

section 5.2.

An alignment condition (also referred as correlation criterion) is checked for the newly added

edge (checkCriterionForNewEdge()) in the chosen partial product-CFG πcur. Since the corre-

lation criterion is checked for each new edge being added as part of the incremental construction

algorithm, more sophisticated heuristics which may depend on the specific edge being correlated

can be used. This lends robustness to the algorithm and simulation relation for more complex

program-transformation pairs can be established using the incremental approach. If the newly

added edge satisfies the alignment condition, then the algorithm updates the node-invariant at

the target node of the newly added edge through a call to inferInvariants() procedure. Note

that, the invariant inferred at a product-CFG node refers to the strongest inductive relation be-

tween variables (state-elements) of the program-pair at that node in the chosen grammar and

is not guaranteed to be strong enough to prove equivalence for the complete product-CFG. If
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the chosen correlations and the inferred inductive invariants ensure equivalent observable behav-

ior, then we obtain a proof (or witness) of equivalence; otherwise the algorithm backtracks and

tries to prove equivalence using the other possible correlation candidates. We have chosen our

invariant-inference grammar carefully so that the invariants drawn from it are usually sufficient

to complete equivalence proofs across typical compiler transformations.

The node-invariants associated with product-CFG nodes other than the target node of the newly

added edge were inferred during the previous call to the inferInvariants() function. These

invariants may not be inductively provable now after the new edge has been added. Thus, the

inferInvariants() procedure also re-runs the inference and updates the invariants at these

nodes as well. Since the invariant inference algorithm is invoked multiple times during the

product-CFG construction, sophisticated invariant inference algorithms which do not have ter-

mination guarantees or which rely on a static product-CFG and are very expensive if re-run

on the updated product-CFG, cannot be used with incremental simulation relation construction

approach. At each incremental step, the invariant inference algorithm is re-run for all nodes in

the partial product-CFG to update the relations after adding a new edge.

Our proposed counterexample-guided invariant inference algorithm is based on a data-flow anal-

ysis framework and performs incremental computation (instead of starting from scratch) when

re-run for updating the already inferred invariants after adding the new edge. However, the pro-

posed algorithm is still powerful enough to infer expressive invariants (like affine invariants) using

a purely static approach. The details of our proposed invariant inference algorithm is presented

in section 4.2.

After invariant inference, the alignment condition (or the respective correlation criterion) for all

edges is checked again using checkCriterionForEdges() function, as the alignment conditions

may not hold after updating the invariants. If the alignment condition of any of the edge is not

satisfied after invariant inference then the algorithm backtracks and attempts the next potential

correlation candidate from the frontier. If the alignment condition still holds for all edges in

the partial product-CFG and all the paths are already correlated in the partial product-CFG

constructed so far (i.e. the product-CFG is complete) and the inferred invariants are strong

enough to prove equal observables across the two programs, then the product-CFG (including
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the inductive node-invariants) is returned by the algorithm and represents the proof (or witness)

of equivalence.

2.4 Counterexample

As discussed in section 2.3, the equivalence checking through product-CFG construction involves

two major steps:

1. The first step is to correlate transitions across the given program-pair such that the states

at the end-points of these transitions remain related. The correlated transitions are added

to the product-CFG as an edge and the end-points of these correlated transitions form the

product-CFG nodes.

2. The second step is to identify the relations between the state-elements of the program-pair

at the product-CFG nodes. These relations are referred as node-invariants.

The node-invariant at the start node of the product-CFG is formed by equating the program

arguments and non-temporary memory states of C and A programs. For example, the first row

in fig. 2.4f shows the node-invariant at the start node (C0,A0) of the product-CFG, where H

represents the non-temporary memory state. Also, as noted earlier, the node-invariants in a

well-formed product-CFG are inductive and thus given the node-invariant at the start node of

the product-CFG, the node-invariants at other nodes of the product-CFG are usually identified

through a sound and over-approximate inference procedure. This invariant inference procedure

involves guessing or inferring a possible invariant (or a relation between the state-elements) at

a product-CFG node and checking if the inferred invariant is inductively provable across all

incoming edges of that product-CFG node.

Given an inferred invariant Invn′ at the product-CFG node n′ and an incoming edge ω = n→ n′,

the check for the inductive property is represented as a relational Hoare triple {Invn}ω{Invn′}
at node n. Here, Invn represents the invariant at node n. This Hoare triple states that if the

machine starts at node n such that it satisfies {Invn}, and the edge ω is executed, then the

resulting machine state would satisfy {Invn′}. To discharge proof obligations, the Hoare triple
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{Invn}ω{Invn′} is converted (or lowered) to a propositional boolean logic formula at node n

of the form Invn ⇒ WPω(Invn′), where WPω(Invn′) computes the weakest precondition of Invn′

across ω. The proof obligation for this Hoare triple boolean formula is discharged through an

off-the-shelf SMT solver with quantifier-free bitvector, array and uninterpreted function theories.

If the proof succeeds, Invn′ is an inductively-provable invariant across the edge ω = n→ n′.

If the proof obligation does not succeed, then a counterexample γn at node n is returned by

the SMT solver. The generated counterexample γn has a concrete assignment to the program

variables or state-elements at the node n such that it satisfies the invariant at the node where it

is generated (i.e. Invn) and it represents a concrete machine state that may occur at that node

during real execution. In the context of a product CFG, the generated counterexample would

involve concrete valuations of variables for both the specification C and the implementation A

programs.

The generated counterexample is then propagated on the edge ω for which inductive query was

made by applying the concrete execution function pω for this edge. Since, the generated coun-

terexample γn does not satisfy the weakest-precondition of the candidate invariant across the

edge ω, i.e., WPω(Invn′), the propagated concrete machine state does not satisfy the candidate

invariant Invn′ and can be used to refine the guessed (or inferred) invariant. We will see details

for this later in section 4.2.

The propagation of a counterexample is quite similar to the interpreted execution of the product-

CFG on a concrete machine state, with two operational differences:

1. Counterexamples need not have concrete valuations for all live program variables — they

just contain valuations for those variables that were a part of the SMT query that generated

it. Thus, during propagation, if the program reads a variable that is not already present

in the counterexample, a random value is generated for that variable and added to the

counterexample.

2. The potential presence of UB in the specification program may interfere with counterexam-

ple propagation. If a counterexample triggers UB during propagation, we do not propagate

it any further — in other words, the counterexample transitions to the special “error” state



26 Preliminaries

meant to catch UB. Thus, a counterexample differs from inputs derived from real program

traces: while real traces must never trigger UB, a counterexample generated through an

SMT query has no such requirement.

The main insight of this thesis is that – Even though counterexamples cannot replace real execution

traces, a counterexample is still useful because it satisfies the inferred invariant at the node at

which it was generated, and it does not trigger UB on the paths on which it is propagated. Thus

it is safe to consider a counterexample at par with a real concrete machine state for these smaller

program segments where it does not trigger UB, because our reasoning power in these smaller

segments is constrained by the inferred invariants in any case.

Based on this insight, we propose a Counterexample-guided correlation algorithm that can ef-

ficiently find the correlation between program transitions for structurally significantly different

(but bisimilar) program-pairs and a Counterexample-guide invariant inference algorithm to find

a general class of relations between state elements of programs that have significant syntactic

gap across them. Using both these algorithms, we demonstrate the first black-box equivalence

checking tool that can automatically compute equivalence across the unoptimized intermediate

representation (IR) of a program and its optimized x86 assembly implementation generated ei-

ther by an optimizing compiler or developed by a human programmer. Our proposed black-box

equivalence checker can statically compute equivalence in less than 1% time for benchmarks used

by prior work [11] and is able to handle many more program-transformation pairs.



Chapter 3

Counterexample-Guided Correlation

Algorithm

3.1 Introduction

The problem of identifying the correlated program transitions across the specification program

CFG C and the implementation programs CFG A is NP-hard and is very challenging in the

presence of complex transformations like loop splitting, loop unrolling, and loop unswitching

because these transformations result in significant structural differences between the two pro-

grams. The space of possible product-CFGs to be considered to correlate these structurally apart

program-pairs is huge. This search space can be reduced using the following three observations:

• Observation-A: For most programs/compiler-transformations, the maximum length of a

path that needs to be correlated within a single product-CFG edge is bounded . For exam-

ple, compilers bound the unroll factor while transforming programs. To bound correlated

path lengths, we introduce a parameter, µC , which represents the maximum number of

times a PC may appear in a program path of C that is correlated through a product-CFG

edge. We only count a PC to “appear” in a program path if it is present as the target of an

27
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edge in that path. For example, the path (C4-C3-C4) can be correlated at µC = 1 because

both C3 and C4 appear only once in it. On the other hand, the path (C4-C3-C4-C3-C4)

cannot be correlated at µC = 1 because both C3 and C4 appears twice in it. Section 3.3.4

explains the parameter µ in more detail.

• Observation-B: It usually suffices to restrict the correlated PCs (that constitute the PC-

pairs) to the heads (first instruction) and tails (last instruction) of the basic blocks of

specification program’s CFG and to the loop heads of the implementation program’s CFG.

Intuitively, even if the “ideal” product-CFG (that yields a provable bisimulation) required

a PC n in the middle of a basic block to be correlated, in most cases a product-CFG that

instead correlates either the head or the tail of the corresponding basic block (that contains

n) also yields a provable bisimulation. A powerful invariant inference procedure that can

efficiently generate expressive invariants can bridge this gap between the ideal correlation

and a correlation that only considers loop heads in one program and basic block heads and

tails in the other.

• Observation-C: For a given PCpair, it is rare for an outgoing path in A to be correlated

with multiple paths in C such that these (multiple) correlated paths in C have different

endpoints, but not vice-versa. Intuitively, this is so because optimizers may specialize pro-

gram paths in the specification program to yield two or more versions of the same path

in the optimized implementation (e.g., loop splitting, peeling, unrolling, and unswitching).

Conversely, it is relatively rare for an optimizer to combine two different paths in unop-

timized program C into a single path in optimized program A. This latter category of

“de-specializing” transformations are usually only relevant while optimizing for code size,

and are relatively rare.

In a nutshell, the above observations (A-C) reduce the number of possible correlations by (a)

using an upper bound for the maximum length of path used for correlation in a single product-

CFG edge; (b) restricting the correlated nodes in the product-CFG to be formed by pairing the

nodes drawn from a chosen set of PCs for each input CFG; and (c) adding a single product-CFG

edge for a given path in A. Although these three observations significantly reduce the number of

possible correlations at each step of an incremental correlation algorithm, the whole search space

still remains exponential in the size of the program and unroll factor. For example, the number of
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potential product-CFGs are in the order of 1014 for µC = 8 for the pair of programs in fig. 2.4. If

we optimistically assume that for a given product-CFG, it takes an average of only one second to

infer the invariants (and check equivalence of observables), a naive exhaustive search algorithm

(as shown in fig. 2.5) can take close to 106 years to compute equivalence for this small example.

In this section, we present a counterexample-guided best-first search algorithm, called Counter

to efficiently search the space of potential product-CFGs to yield a provable bisimulation rela-

tion. The name Counter is intended to represent two facts about the algorithm: (1) it uses

counterexamples to identify the most promising correlation, and (2) it counts the number of re-

lated variables across the two programs to rank the potential correlations in the order of their

promise. In section 5.2, we empirically show that the exhaustive search based correlation becomes

intractable for aggressive optimizations that result in significant structural differences between

the program-pair and compare our proposed best-first search procedure with the depth-first order

used by the prior work [14].

3.2 Related Work and Motivating Examples

The identification of the product-CFG (or correlation) for the construction of a bisimulation proof

has been investigated by multiple researchers previously.

Early efforts used simple branch correlation heuristics [52, 77] to construct the product-CFG.

Subsequently, data-driven heuristics were proposed [63] to identify a one-to-one correspondence

between the loop heads in C and A. All these approaches identify a relation between program

PCs instead of program transitions and hence are inadequate for transformations involving loop

peeling and unrolling.

Dahiya et al. [14] proposed the incremental simulation construction algorithm discussed in sec-

tion 2.3.2. It involves a step-by-step construction of the required product-CFG and at each

incremental step a new edge is added and invariants are inferred for the partially-constructed

product-CFG. They used an exhaustive search based approach to identify the required transition

pair among the various correlation possibilities. A correlation criterion is used by the algorithm
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to restrict these correlation possibilities at each step: a new edge (representing a correlation

of paths in C and A) is added to the incrementally-constructed product-CFG only if the path

conditions (the weakest conditions under which the paths are taken) are provably identical from

the invariants inferred so far. The proposed algorithm due to its incremental approach is robust

and can be used for programs with multiple loops. But we identify two shortcomings of this

algorithm:

1. The first shortcoming is that the number of paths that need to be correlated for an edge in

the product-CFG can be exponential in the size of the program and the loop unroll count.

2. The second shortcoming is the identical path conditions requirement for correlation; we find

this condition too restrictive and cannot accommodate transformations like loop splitting

or all transformations that involve code specialization like loop unswitching.

This second shortcoming of the correlation algorithm proposed by Dahiya et al. [14] was addressed

by Churchill et al. [11] through a data-driven algorithm named semantic program alignment

(SPA). SPA algorithm starts by first “guessing” an alignment predicate (AP) that must hold at

all nodes of the required product-CFG. It uses the concrete execution traces such that, if for a

given input, the program C takes path ηC and program A takes path ηA such that the alignment

predicate (AP) is satisfied by the machine states of C and A at the endpoints of ηC and ηA

respectively, then a transition (product-CFG edge) that correlates the two paths, ηC and ηA,

is added to the Program Alignment Automaton (PAA). In other words, an edge e = (ηC , ηA) is

added to the PAA only if the states at the two (start and stop) endpoints are related by AP

and the programs C and A are known to take these paths ηC and ηA respectively for the same

input (for all input concrete execution traces). In a nutshell, the key idea is to extrapolate the

behavior of the two programs on a small set of concrete traces by using a “good” AP guess, to all

possible executions on C and A. For all possible PAAs that can be constructed using the chosen

AP, inductive invariants are inferred on the PAA (which is identical to a product-CFG) and the

equivalence proof is completed if the inferred invariants guarantee observable equivalence for any

one of these possible PAAs.

This approach is best-effort because it requires execution traces with adequate path coverage on

both C and A; we find that adequate coverage may require traces that exhibit an exponential



Counterexample-Guided Correlation Algorithm 31

number of distinct behaviors. Further, it relies on a good AP guess: an AP that is too strong would

ignore the required product-CFG while an AP that is too weak would result in too many satisfying

product-CFGs, of which most would be incapable of yielding a provable bisimulation. The authors

synthesized potential APs through a syntactic grammar and evaluated their technique on mostly

single-loop source programs with no control flow within the loop bodies of the source program.

Churchill et al. acknowledge in their paper [11] that they leave the problem of synthesizing the

required AP for programs with multiple loops (in the source program) for future work.

We motivate our algorithm by using examples that provide more details for the above mentioned

shortcomings of state-of-the-art correlation algorithms, especially the correlation algorithm pro-

posed by Dahiya et al. [14] and the SPA algorithm [11], which we think are our closest competing

algorithms in terms of its capabilities.

3.2.1 Motivating Example 1

The first shortcoming of the state-of-the-art correlation algorithms is that these algorithms iden-

tify correlations for each program path individually, which is not scalable because the number

of potential program paths can be exponential in program size and unroll factor. Further, SPA

algorithm [11] correlates a path in the PAA only if it is seen to be taken in one of the concrete ex-

ecution traces. Thus, for exponential number of paths, SPA algorithm would require traces with

an exponential number of distinct behaviors to arrive at the required product-CFG (or PAA).

Consider the example program from TSVC suite [45] listed in fig. 3.1. The loop body in the C

program shown in fig. 3.1a is unrolled four times and vectorized in the assembly code in fig. 3.1b.

The edge in the product-CFG is required to correlate this loop edge in the assembly program

with four unrolled loop body in the specification (or source) program. Due to 3-way control flow

in the loop body in the source program, the four unrolled loop consists of 34 = 81 distinct paths.

For ease of exposition, we show an assembly program with four unrolling in fig. 3.1, even though

the actual unrolling that can be performed by a compiler can be eight or even higher, in which

case the number of paths in C that need to be correlated can be 38 = 6561 (for 8 unrolling) or

higher. Thus, state-of-the-art correlation algorithms would require to correlate a single edge in
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int LEN , a[LEN], b[LEN];

int c[LEN], d[LEN];

C0: void s441() {

C1: for (int i=0; i<LEN; i++){

C2: if (d[i] < 0) {

C3: a[i] += b[i] * c[i];

C4: } else if (d[i] == 0) {

C5: a[i] += b[i] * b[i];

C6: } else {

C7: a[i] += c[i] * c[i];

C8: }

C9: }

EC:}

(a) C program.
LEN is a positive multiple of 4.

A0: s441:

A1: r1 = 0

A2: xmm1 = a[r1 .. r1+3]

A3: xmm2 = xmm1 + b[r1 .. r1+3]*c[r1 .. r1+3]

A4: xmm3 = xmm1 + b[r1 .. r1+3]*b[r1 .. r1+3]

A5: xmm4 = xmm1 + c[r1 .. r1+3]*c[r1 .. r1+3]

// pcmpgtd

A6: xmm0 = (d[r1] < 0), .. , (d[r1+3] < 0)

A7: xmm1 = xmm0 ? xmm2 : xmm1 // pblendvb

// pcmpeqd

A8: xmm0 = (d[r1] == 0), .. , (d[r1+3] == 0)

A9: xmm1 = xmm0 ? xmm3 : xmm1 // pblendvb

// pcmpgtd

A10: xmm0 = (d[r1] > 0), .. , (d[r1+3] > 0)

A11: xmm1 = xmm0 ? xmm4 : xmm1 // pblendvb

A12: a[r1 .. r1+3] = xmm1

A13: r1 += 4

A14: if (r1 != LEN) goto A2

EA: ret

(b) (Abstracted) Assembly as generated by GCC

C0,A0 C1,A2 EC,EA
A0-A1-A2

C0-C1

A2-EA

((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4-EC

A2-A2

((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4

(c) Product-CFG

Figure 3.1: An example program-pair taken from TSVC suite such that the product-CFG across
them requires an exponential number of paths in an edge.

the assembly program (A2-A2) (edge from A2 to A14 and back to A2) with exponential number

of distinct paths 34 = 81 (or 38 = 6561 in case of 8 unrolling) in the specialization program C,

which is inefficient and expensive. Further, being a data-driven algorithm, SPA would require

traces with at least 6561 distinct behaviors (where each behavior corresponds to the traversal
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of a different path in C) to be able to propose the required PAA. We find that none of the

28 benchmarks used to evaluate SPA involved control flow inside the loop bodies of the source

program, and so this exponential-path problem could not get exposed during SPA’s evaluation.

To address these limitations of the prior work, our proposed correlation algorithm, Counter, at-

tempts to correlate a pathset in C with a pathset in A, where a single pathset may potentially

represent a large number of program paths. It uses a series-parallel digraph representation for

pathsets to correlate them efficiently across C and A in a single step. In this representation,

the + operator indicates parallel composition, and the serial composition is denoted by simply

concatenating the edges consecutively using - operator in a string. ε represents the empty path

and a numeric superscript P n is used to indicate P serially composed with itself n times. For ex-

ample, (C1-(C2-C3)2-(ε+C4)-C5) represents a set of two paths, namely (C1-C2-C3-C2-C3-C5)

and (C1-C2-C3-C2-C3-C4-C5). We present a detailed discussion on pathset correlation in sec-

tion 3.3.3. The product-CFG generated using the proposed pathset correlation based Counter

algorithm for the pair of programs in figs. 3.1a and 3.1b is shown in fig. 3.1c.

3.2.2 Motivating Example 2

The second motivating example discusses in more detail the limitation of the identical path-

conditions requirement of the correlation algorithm proposed by Dahiya et al. [14]. We find this

correlation condition too restrictive as it cannot accommodate transformations like loop splitting

or all transformations that involve code specialization like loop unswitching. Figure 3.2 shows

an example program-pair which undergoes loop splitting and unswitching transformation and

the required product-CFG across the program-pair. The product-CFG shown here correlates a

pathset in the assembly program with a pathset in the C program and the conditions for the

correlated loop pathsets are not equal in this product-CFG. For instance, the pathset condition

for the loop (A2-A2) in assembly program is (r1 < LEN/2), whereas the pathset condition for the

correlated loop (C3-C3) in the unoptimized C program is (i < LEN) (where the inductive node-

invariant at PCpair (C3,A2) relates (i = r1)). Since the required product-CFG (which yields

a provable bisimulation) violates the equal path(set) condition requirement, it will be rejected
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int LEN , a[LEN], b[LEN];

C0: int loopSplitting () {

C1: int sum = 0;

C2: int mid = LEN /2;

C3: for (int i = 0; i < LEN; i++) {

C4: if (i < mid) sum += a[i];

C5: if (i >= mid) sum += b[i];

C6: }

C7: return sum;

EC: }

(a) C program.
LEN is a positive multiple of 4.

A0: loopSplitting:

A1: r1 = 0; r2 = 0;

A2: r2 += a[r1]

A3: r1++

A4: if (r1 != mid) goto A2

A5: r3 = 0

A6: r3 += b[r1]

A7: r1++

A8: if (r1 != LEN) goto A6

A9: r0 = r2

A10: r0 += r3

EA: ret r0

(b) (Abstracted) Assembly code

C0,A0 C3,A2 C3,A6 EC,EA
A0-A2

C0-C3

A2-A2

(C3-C3)

A2-A6

C3-C3

A6-A6

(C3-C3)

A6-EA

(C3-C3)-EC

(c) Product-CFG

Figure 3.2: An example program-pair and the required product-CFG for loop splitting and loop
unswitching optimizations.

by the correlation algorithm proposed by Dahiya et al. and the algorithm will not be able to

establish equivalence in this case.

The proposed Counter algorithm uses a more general correlation criterion which can handle a

much larger class of transformations including loop splitting (bisimilar cases) and loop unswitch-

ing. The correlation criteria is discussed in more detail in section 3.3.5.



Counterexample-Guided Correlation Algorithm 35

3.2.3 Motivating Example 3

int in1[LEN][LEN], in2[LEN];

int out1[LEN], out2[LEN];

C0: void kernel_mvt () {

C1: int i, j;

C2: for (i = 0; i < LEN; i++) {

C3: int sum1 = out1[i];

C4: int sum2 = out2[i];

C5: for (j = 0; j < LEN; j++)

C6: sum1 += in1[i][j] * in2[j];

C7: for (j = 0; j < LEN; j++)

C8: sum2 += in1[j][i] * in2[j];

C9: out1[i] = sum1;

C10: out2[i] = sum2;

C11: }

EC: }

(a) C program.
LEN is a positive multiple of 4.

A0: kernet_mvt:

A1: r1 = 0

A2: r2=0; r3=out1[r1]; r4=out2[r1]; xmm0=0

A3: xmm0 += in1[r1][r2..r2+3]* in2[r2..r2+3]

A4: r2 += 4

A5: if (r2 != LEN) goto A3

// shift right by 8 bytes

A6: xmm0 += (xmm0 >> 8)

// shift right by 4 bytes

A7: xmm0 += (xmm0 >> 4)

A8: r3 += xmm0 [31:0]

A9: r5 = 0

A10: r4 += in1[r5][r1] * in2[r5]

A11: r5++

A12: if (r5 != LEN) goto A10

A13: out1[r1] = r3 , out2[r1] = r4

A14: r1++

A15: if (r1 != LEN) goto A2

EA: ret

(b) (Abstracted) Assembly Program

C0,A0 C2,A2 C5,A3 C7,A10 EC,EA
A0-A2

C0-C2

A2-A3

C2-C5

A3-A3

(C5-C5)4

A3-A10

(C5-C5)4-C7

A10-A10

(C7-C7)

A10-EA

C7-C7-C10-EC

A10-A2

C7-C7-C9-C2

(c) Product-CFG

Figure 3.3: An example program-pair with multiple loops taken from polybench suite and the
required product-CFG across them with different alignment conditions for different loops.
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The third motivating example discusses the limitation of the SPA approach [11] due to its de-

pendence on the availability of a common AP (alignment predicate) for the complete program.

Consider the pair of programs in fig. 3.3 taken from the Polybench suite [57]. The C program

contains three loops with two-level maximum nesting depth. Its corresponding assembly program

also has three loops where the first inner loop has been unrolled four times.

An ideal AP precisely identifies the correlated transitions; in this example, the ideal AP is different

for each loop. For example, the ideal AP for the outer loop may need to relate variables i and r1

while the two inner loops may need to relate variables j and r2, and j and r5 in their respective

APs. However, the SPA algorithm accepts a single AP, which in this case is : (i = r1) ∧ ((j =

r2)∨ (j = r5)). Such APs are outside the scope of grammar used for synthesizing the AP in the

SPA algorithm.

A strong AP which can be synthesized from the grammar used by SPA algorithm would prune

out the required PAA, while a weaker AP may result in too many spurious potential PAAs and

the algorithm for finding the required PAA from these spurious potential PAAs is unclear. For

instance in this example, if the AP is too strong, such as (i = r1) ∧ (j = r2), we will miss the

required correlation, e.g., we will never be able to correlate the transitions for the PC (C7,A10)

in the second inner loop. On the other hand, if the AP is too weak, such as HC = HA (i.e. the

equality of the non-temporary memory state H), then we would get a lot of spurious correlations,

e.g., a single iteration of the C program’s loop would get correlated with a single iteration of the

assembly program’s loop which would be incorrect.

Churchill et al. acknowledge in their paper [11] that they leave the problem of synthesizing a

complex AP for programs with multiple loops for future work. In general to handle programs

with multiple loops, the correlation must be developed incrementally: each loop may have its

own alignment properties and using a single alignment predicate (AP) for the whole program

is unlikely to succeed. The proposed Counter algorithm incrementally constructs the product-

CFG through counterexample-guided pruning and ranking algorithms, and does not depend on

a common alignment predicate for the whole program. The proposed counterexample-guided

pruning and ranking algorithms are discussed in more detail in section 3.3.7.
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3.3 Counter Algorithm

We identify the following improvement opportunities with respect to the state-of-the-art correla-

tion algorithms:

1. An algorithm that needs to identify correlations for each program path individually is not

scalable because the number of potential program paths is exponential in program size and

unroll factor. To tackle this problem, an algorithm should potentially identify correlation

for a set of program paths, or pathset, in a single step.

2. In the presence of multiple loops, the correlation must be developed incrementally: each

loop may have its own alignment properties and using a single alignment predicate (AP)

for the whole program is unlikely to succeed in general.

3. An exhaustive search in depth-first order to identify the required product-CFG from the

exponentially large search space is not scalable and becomes intractable in the presence

of aggressive optimizations that result in significant structural differences between the

program-pair. To handle these optimizations, a more robust approach to efficiently find

the required product-CFG is required.

We propose a counterexample-guided best-first search algorithm, called Counter to efficiently

search the space of potential product-CFGs to yield a provable bisimulation relation.

3.3.1 Top-level Procedure for Counter Algorithm

Counter algorithm is based on the incremental correlation approach discussed in section 2.3.2.

The pseudo code for the top-level procedure, bestFirstSearch(), is shown in fig. 3.4. In this

pseudo code, the procedures that are new as compared to the incremental algorithm proposed by

Dahiya et al. [14] (fig. 2.5) are shown in boldface.

bestFirstSearch() takes as input the CFG for the specification program C and the CFG for

the implementation program A. It also takes a parameter µC as input which is used to bound the

length of the candidate correlations in C. The procedure starts with a partial product-CFG πinit
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Algorithm 2: Top-level Procedure of Counter Algorithm

1 Function bestFirstSearch(C, A, µC)
2 πinit ← initProductCFG(C, A);
3 Ω ← { };
4 expandProductCFG(πinit, C, A, Ω, µC);
5 while Ω is not empty do
6 πcur ← removeMostPromising(Ω);
7 if checkCriterionForNewEdge(πcur) then
8 inferInvariantsAndCounterExamples(πcur);
9 if checkCriterionForEdges(πcur) then

10 isComplete ← expandProductCFG(πcur, C, A, Ω, µC);
11 if isComplete ∧ ProductCFGisProvableBisim(πcur) then
12 return πcur;
13 end

14 end

15 end

16 end
17 return null;

Figure 3.4: Pseudo code for the top-level procedure of Counter algorithm

that has only a single node (C0,A0) formed by pairing the start node C0 in C and the start node

A0 in A. The algorithm then incrementally expands the partial product-CFG πinit by adding a

new edge to it through a call to expandProductCFG() function till a complete product-CFG is

obtained (line number 4,10 in fig. 3.4). If a product-CFG that is both complete and has strong

enough invariants to prove equivalent observable behavior is found, then the top-level procedure

returns this product-CFG (along with the invariants) as the bisimulation proof of equivalence

across the input specification and implementation CFGs (line number 11-12 in fig. 3.4).

As motivated in section 3.2.1, in order to achieve scalability, the product-CFG constructed using

the proposed Counter algorithm differs from the product-CFG presented in section 2.3.1 and

constructs each product-CFG edge by pairing a pathset (instead of a single path) from the

two input CFGs C and A. The expandProductCFG() procedure enumerates multiple potential

pathset pairs for each product-CFG edge to be added and uses a backtracking search tree to store
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(C0,A0)

1

(C0,A0) (C2,A2)
A0-A2

C0-C2

2 . . .

(C0,A0) (C2,A2) (C5,A3)
A0-A2

C0-C2

A2-A3

C2-C5

3

. . .

(C0,A0) (C7,A2)
A0-A2

C0-C2-C5-C7

. . .

. . .

. . .

(C0,A0) (C5,A2)
A0-A2

C0-C2-C5

. . .

. . .

. . .

Figure 3.5: A snapshot of the backtracking search tree for the program-pair shown in fig. 3.3

these possible correlations. The top-level procedure initializes the frontier Ω of the backtracking

search tree through a call to expandProductCFG() function for the initial product-CFG πinit

(line number 3-4 in fig. 3.4). A snapshot of the search tree for the pair of programs in fig. 3.3 is

depicted in fig. 3.5. Each node in the search tree represents a partially-constructed product-CFG,

and the outgoing edges at a node in the search tree represent the potential possibilities for the

next product-CFG edge to be added.

At each incremental step, unlike prior work that uses a depth-first order to choose a par-

tial product-CFG πcur from the frontier Ω of the backtracking tree, the proposed Counter al-

gorithm uses a best-first search algorithm to pick the most promising partial product-CFG

(removeMostPromising()). The proposed best-first search is based on Counterexample-Guided

Pruning and Ranking algorithm described in section 3.3.7.

After choosing the most procedure correlation πcur, the top-level procedure through the call to

checkCriterionForNewEdge() function (line number 7 in fig. 3.4) checks that the correlation

criterion is met for the new edge in the chosen product-CFG πcur (i.e. the last edge added

through the call to expandProductCFG() function). Unlike prior work [14], that uses a strong

correlation criterion based on equality of correlated paths conditions (or pathset conditions in

this context), in section 3.3.5, we propose a more general correlation criterion that can handle

a larger space of transformations. Since the correlation criterion is checked individually for each
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product-CFG edge being added, the algorithm can thus handle program-transformation pairs that

have different alignment properties for different edges in the required product-CFG (for example

the program-pair in fig. 3.3).

If the last added edge to the chosen partial product-CFG πcur passes the correlation criterion then

inductive invariants are inferred at each node of πcur using an off-the-shelf invariant inference

procedure (inferInvariantsAndCounterExamples()). The invariant inference procedure used

should be powerful enough to find expressive invariants between state elements of programs that

have large syntactic gap across them. Simultaneously, the algorithm should be efficient enough

to be re-run multiple times at each incremental step for every product-CFG node. We propose

such an invariant inference algorithm in section 4.2.

In addition to the inductive node-invariants, Counter also requires a set of concrete machine

states (data) that may be observed at each product-CFG node for the best-first search. The

concrete machine state in the product-CFG is formed by assigning concrete values to the state

elements of the abstract machine state for the product-CFG. The machine state of the product-

CFG, as detailed in section 2.3.1, is formed by combining the individual abstract machine states

of C and A. The Counter algorithm does not rely on actual execution traces, but generates

these concrete machine states through not-provable SMT queries made during invariant inference

(inferInvariantsAndCounterExamples()). For example, the potential machine states at the

start node (C0,A0) may be identified through SMT queries that assert the invariants at that node

(e.g., equivalence of input values and non-temporary memory states). Because these concrete

states are created from the models generated by SMT solver for not-provable queries, we also

refer to them as counterexamples.

By construction, a counterexample at a product-CFG node must satisfy the inductive invariants

at that node. Notice that, both in the presence of UB or without UB, a counterexample need not

necessarily be an actually occurring concrete machine state for real inputs because the invariant

at a node could be weaker than the strongest set of possible concrete states at a node for real

inputs. As long as the counterexamples satisfy the inferred inductive invariants at the respective

nodes, using these counterexamples is sound and is precise enough.
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After invariant inference, the alignment condition (or the respective correlation criterion) for all

edges is checked again using checkCriterionForEdges() function, as the conditions may not

hold for the updated invariants. If the alignment condition of any of the edge is not satisfied

after invariant inference then the algorithm backtracks and chooses the next most promising

correlation candidate from the frontier (line number 5-6 in fig. 3.4). If the alignment condition

still holds for all edges in the partial product-CFG constructed so far (πcur) then the algorithm

“expands” this partial product-CFG by adding a new product-CFG edge to it through call to

expandProductCFG() function (line number 10 in fig. 3.4).

3.3.2 Incremental Procedure to add a new product-CFG edge

At each incremental step of the top-level bestFirstSearch() procedure, the expandPro-

ductCFG() procedure, that takes a partial product-CFG π as input and enumerates multiple

pathset-pair candidates for the next edge to be added to it, is called. The pseudo code for the

expandProductCFG() procedure is shown in fig. 3.6. In this pseudo code, the sub-procedures that

are different (or new) as compared to the incremental expandProductCFG() procedure (fig. 2.5)

used by the prior work [14], are shown in boldface.

The first step in the expandProductCFG() procedure is to identify an incomplete PCpair (or

node) n = (nC , nA) in π through a call to findIncompleteNode() function. Section 2.2.2 pro-

vides the definition of an incomplete node as a non-exit node in the CFG for which the union of

edge-condition of all outgoing edges at that node is not a tautology. In the context of the product-

CFG, an edge is formed by correlating pathsets in C and A and a non-exit PCpair is incomplete

if the union of pathset-condition of the pathset in A for all outgoing edges at that PCpair is not

true. This definition of an incomplete non-exit PCpair may not hold for any general product

program construction technique and is true only for the lock-step execution based correlation

which requires that, for any product-CFG edge ω = (ξC , ξA), if any of the paths in ξA is traversed

in program A, then one of the paths in ξC in program C must be traversed. If all the paths

are already correlated in the input product-CFG π (i.e. the product-CFG is complete), then

the findIncompleteNode() procedure returns a nullptr and the expandProductCFG() func-
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Algorithm 3: Incremental Procedure to add a new product-CFG edge

1 Function expandProductCFG(π, C, A, Ω, µC)
2 if ¬ ((nC , nA)← findIncompleteNode(π)) then
3 return True;
4 end
5 ξA ← getNextPathsetRPO(nA, A);
6 κC ← getCandCorrelations(nC, C, ξA, µC);
7 foreach ξC ∈ κC do
8 if actionsAreCompatible(ξC,ξA) then
9 πnew ← π;

10 addEdgeAndPropCEs(πnew, (ξC, ξA));
11 if CEsSatisfyCorrelCriterion(πnew) ∧

InvRelatesMemAtEachNode(πnew) then
12 Ω ← Ω ∪ {πnew};
13 end

14 end

15 end
16 return False;

Figure 3.6: Pseudo code for the incremental procedure to expand a given partial product-CFG

tion returns to the caller which will eventually check if the inferred invariants ensure equivalent

observable behavior (ProductCFGisProvableBisim()).

If there exists an “incomplete node” (i.e., a node which requires a new correlation for an out-

going pathset in A), n = (nC , nA), the algorithm identifies the next pathset ξA starting at

node nA in A in Reverse Post-Order (RPO) that has not yet been correlated. The algorithm

then through a call to getCandCorrelations() function enumerates all possible correlations

(or pathsets) in C for the chosen pathset ξA starting at node nC in a set of pathsets κC . For

each of the pathsets ξC ∈ κC , the algorithm first checks if the actions are compatible with ξA

(actionsAreCompatible()), i.e., ξc should have exit PC as target iff ξA has exit PC as tar-

get, as the program exit edge could potentially produce an “observable action”. If the action

compatibility check passes, a new product-CFG πnew is created which additionally includes a

new product-CFG edge encoding the new candidate correlation between ξC and ξA. Counterex-
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amples are propagated on the newly added edge (addEdgeAndPropCEs()) before applying the

pruning criteria: CEsSatisfyCorrelCriterion() implements pruning based on paths taken by

counterexamples, and InvRelatesMemAtEachNode() implements pruning based on memory re-

lations. The newly-created product-CFG πnew is added to the frontier (Ω) only if both these

subroutines return true. Note that the frontier Ω is passed as a call by reference parameter to

the expandProductCFG() procedure.

We next introduce the notion of a pathset formally in section 3.3.3 and present the algo-

rithm to enumerate the candidate pathsets in A and C CFGs in section 3.3.4. The detailed

discussion on the addEdgeAndPropCEs() function is presented in section 3.3.6. Section 3.3.7

presents the counterexample-guided pruning and ranking algorithm which corresponds to

CEsSatisfyCorrelCriterion(), InvRelatesMemAtEachNode() and removeMostPromising()

functions in the pseudocode.

3.3.3 Pathset Correlation

A pathset ξ can be thought as a set of paths where a path (as defined in section 2.3.1) is formed

by the series composition of edges. The notion of pathset is analogous to the composite path

defined in section 2.3.2. A valid pathset used for correlation by the Counter algorithm has the

following two requirements:

1. All execution paths in ξ start at the same node and end at the same node. For example, in

fig. 3.1a, the paths (C1-C3-C1) and (C1-C5-C1) may be a part of the same pathset; but

paths (C1-C3-C1) and (C1-C5-EC) may not be a part of the same pathset.

2. All execution paths in a pathset should be pairwise mutually-exclusive, i.e., for a given

input, if one path in the pathset is taken, then another path in the same pathset cannot be

taken simultaneously. In other words, for all possible machine states at the start node of

the pathset, the path condition of exactly one of the paths in the pathset can be true.

As an example, in fig. 3.1a, the paths (C1-C3-C1) and (C1-C5-C1-C3-C1) may be a part

of the same pathset. However, the paths (C1-C3-C1) and (C1-C3-C1-C5-C1) cannot be a
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part of the same pathset because the first path (C1-C3-C1) is a prefix of the second path

(C1-C3-C1-C5-C1) indicating that if the second path is taken, the first path is also taken

simultaneously.

We compactly represent a pathset as a directed series-parallel graph (SP-graph1) of individual

edges of the CFG. An SP-graph (SPG) is formed using series and parallel composition operators

through a context-free grammar as follows:

SPG ::= ε | e | (SPG-SPG) | (SPG + SPG)

Here, ε represents the empty path (a path with no edges), and e represents an edge in the

CFG. + operator indicates parallel composition, and the serial composition is denoted by sim-

ply concatenating the edges consecutively using - operator in a string. A numeric superscript

P n is used as a shorthand notation for P serially composed with itself n times. For example,

(C1-(C2-C3)2-(ε+C4)-C5) represents a set of two paths, namely (C1-C2-C3-C2-C3-C5) and

(C1-C2-C3-C2-C3-C4-C5).

The set of individual paths that are represented in a compact form using the SP-graph can be

enumerated through the recursive enum procedure as follows:

enum(ε) = ε ; enum(e) = e

enum(spg1 + spg2) = enum(spg1) ∪ enum(spg2)

enum(spg1 − spg2) = χ(enum(spg1), enum(spg2))

where χ(x, y) forms a Cartesian product of the paths in pathsets x and y, composing each ordered

pair in series. As an example, if the pathset x consists of two paths (a-b-d) and (a-c-d) and

the pathset y also consists of two paths (d-e-g) and (d-f-g) then χ(x, y) is formed by taking

the Cartesian product of paths in the pathsets x and y while composing the paths in series. In

this example, χ(x, y) consists of following four paths: (a-b-d-e-g), (a-c-d-e-g), (a-b-d-f-g)

and (a-c-d-f-g).

Figure 3.7a shows the SP-graph representation of an example pathset and fig. 3.7b shows the ex-

panded representation formed by enumerating all individual paths for the same pathset obtained

1The term SP-graph may suggest that it represents an undirected graph but it is used as a shorthand for
“directed series-parallel graph”.
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Figure 3.7: SP-graph and expanded representation of a 2-unrolled pathset starting from node a

to node a.

after applying the recursive enum procedure. The total number of paths in this example pathset

are four, and the length of the longest path is seven.

If enum∗(ξ) represents the set of individual paths obtained after applying the recursive enum

procedure on a pathset ξ then the two requirements for a well-formed pathset can be formally

defined as:

1. All execution paths in ξ start at the same node and end at the same node.

∀{p1, p2} ∈ enum∗(ξ) : (start(p1) = start(p2) ∧ end(p1) = end(p2))

Here, pi represents an individual path in the expanded set of paths enum∗(ξ), start(pi)

denotes the start (or source) node of the path and end(pi) denotes the end (or target) node

of the path.

2. All execution paths in a pathset should be pairwise mutually-exclusive.

∀{p1, p2} ∈ enum∗(ξ) : (pathCond(p1) 6= pathCond(p2))

Here, pathCond(pi) denotes the path condition of pi. As dicussed in section 2.3.1, the path

condition is computed as the weakest-precondition of the True predicate on the given path.

As motivated in section 3.2.1, an algorithm that needs to identify correlations for each program

path individually is not scalable because the number of potential program paths to be correlated

can be exponential in program size and unroll factor. To tackle this problem, our proposed

correlation algorithm, Counter, attempts to correlate a pathset in C with a pathset in A. An
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edge ω = (ξc, ξa) in the product-CFG constructed using the Counter algorithm is formed by

pairing pathsets ξC and ξA in C and A respectively. The lock-step execution represented by a

product-CFG edge in the context of pathset is defined as: if the abstract machine traverses the

product-CFG edge ω = (ξc, ξa), then it would have traversed one of the paths in pathset ξC in C

and it would have traversed one of the paths in pathset ξA in A. The number of paths in a pathset

ξ for the required product-CFG can potentially be exponential in the size of the program and

unroll factor (µC). For example, in fig. 3.1, the product-CFG correlates a pathset in C formed

by 34 = 81 paths represented as series-parallel digraph ((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4

with pathset (A2-A2) (having a single path) in program A. Our decision to allow a single edge in

the product-CFG to represent a pair of pathsets and not just single paths in C or A thus reduces

the number of edges required in the product-CFG.

3.3.4 Algorithm for Enumerating Candidate Pathsets

For a given partial product-CFG π and an identified incomplete PCpair n = (nC , nA) in π,

expandProductCFG() identifies the potential candidates for the next edge ω[n → nd] = (ξC , ξA)

to be added. Here ξC represents a pathset in C, ξA represents a pathset in A and the product-CFG

edge ω represents a lock-step execution based correlation across the (ξC , ξA) pathset-pair.

Anchor Nodes in A and C

To reduce the number of candidate correlations for each product-CFG edge to be added, we

restrict the nodes (PCs) of a program that may be correlated in the product-CFG. We call the

restricted set of PCs as that program’s anchor nodes.

For programs without function calls (as considered in our work), A’s anchor nodes are restricted

to one of the following possibilities:

1. The start and exit nodes of A.

2. Loop heads in A for loop bodies that do not already contain an anchor node on one of

the cyclic paths. We use depth-first search to identify the loop heads on cyclic paths.

Considering loop heads as anchor nodes ensures that there is at least one PC in every cyclic
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path in A that may get correlated in the product-CFG.

Similarly, for the programs without function calls, the anchor nodes in C include all basic block

head and tail nodes in C. Considering all basic block head and tail nodes in C instead of just

loop heads as anchor nodes results in robustness and maximizes the probability of finding the

required product-CFG with the same invariant inference procedure. Our choice of anchor nodes

for A and C appeals to Observation-B in section 3.1, so that we still expect the space of potential

product-CFGs to contain the required solution.

In fig. 3.3b, A0, A2, A3, A10, and EA form the set of anchor nodes for program A. Similarly, in

fig. 3.3a, C0, C1, C2, C3, C5, C6, C7, C8, C9, C11, and EC form the set of anchor nodes in C.

(µ, δ)-Unrolled Pathset

To tackle different possible unrollings, we introduce two parameters (µ, δ) to characterize a path-

set. A given pathset (or the equivalent set of paths in the expanded representation) from node

‘s’ to node ‘t’ can be called as a (µ, δ)-unrolled pathset, if no node other than t is repeated more

than µ times on any path in the pathset and t is repeated exactly δ times on all paths. We

denote a (µ, δ)-unrolled pathset as FP
µ,δ
s t. Here FP is used to represent a Full Pathset, i.e. for a

given program if there exist a path P between s and t such that no node other than t is repeated

more than µ times on P and t is repeated exactly δ times on P , then P must be a part of the

enumerated FP
µ,δ
s t. For example, in fig. 3.3a, the pathset FP

2,2
C2 C7 must contain all three paths

(C2-C5-C7-C7), (C2-C5-C5-C7-C7), and (C2-C5-C7-C2-C5-C7),

In our algorithm, we are interested in enumerating all pathsets where δ ≤ µ. To achieve tractabil-

ity, we use an under-approximate algorithm to construct (µ, δ)-unrolled pathsets. In other words,

the (µ, δ)-unrolled pathsets enumerated using our algorithm may miss some of the possible paths

in the program that have no node repeated more than µ times and t is repeated exactly δ times

on those paths. We observe that it is very rare that the paths not enumerated by our algorithm

in the pathsets are relevant for correlation across compiler transformations and have not come

across any instance yet. We also define FPsets
µ
s t = {FPµ,δs t|1 ≤ δ ≤ µ}. The maximum number

of pathsets in FPsets
µ
s t can be µ, where each element in the set may represent the pathset FPµ,is t

(for 1 ≤ i ≤ µ).
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Algorithm 4: Algorithm for (µ, δ)-unrolled pathset enumeration

1 Function getUnrolledSubgraph(s, G, µ, vMap)
2 subGraph ← getUnrollOneSubgraph(s, G, vMap, µ);
3 if (¬ Edges(subGraph)) then
4 return { };
5 end
6 if (snew ← chooseMostPromisingSink(subGraph)) then
7 vMapnew ← updateVistedMap(vMap, G, subGraph, snew);
8 if (vMapnew(n) ≤ µ, ∀n ∈ Nodes(G)) then
9 subGraph � getFullPathset(snew, G, µ, vMapnew);

10 end

11 end
12 return subGraph;

13 Function getPathsetAtAllDeltas(s, t, G, µ)
14 vMap ← {n← 0, ∀n ∈ Nodes(G) };
15 unrolledG ← getUnrolledSubgraph(s, G, µ, vMap);
16 pathsets ← SPgraphReduction(unrolledG, t);
17 return pathsets;

Figure 3.8: Pseudo code for the (µ, δ)-unrolled pathset enumeration algorithm used in Counter.

In fig. 3.3a, FPsets2C5 C7 is a set of two elements: {FP2,1C5 C7, FP
2,2
C5 C7}. Here, FP

2,1
C5 C7 con-

tains (C5-C7), (C5-C5-C7), and (C5-C5-C5-C7). Similarly, FP
2,2
C5 C7 contains (C5-C7-C7),

(C5-C5-C7-C7), (C5-C5-C5-C7-C7), (C5-C7-C2-C5-C7), (C5-C5-C7-C2-C5-C7), and (C5-C7-

-C2-C5-C5-C7). Note that FP2,1C5 C7 and FP
2,2
C5 C7 are disjoint (they do not have a common path).

In general, two full pathsets with different values of δ are disjoint by definition. Further, all paths

within a single pathset (say FP
2,2
C5 C7) are pairwise mutually-exclusive by construction.

Algorithm to enumerate (µ, δ)-Unrolled Pathsets

Figure 3.8 shows the pseudo code for the algorithm used to enumerate (µ, δ)-unrolled pathsets

starting at node s and ending at node t in CFG G for a given unroll factor µ. The top-level

procedure getPathsetAtAllDeltas() computes the set of (µ, δ)-unrolled pathsets i.e. FPsetsµs t

where each individual pathset in this returned set represents FPµ,δ
s t, where 1 ≤ δ ≤ µ. This top-
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level function starts by initializing a visited count map vMap to 0 for all PCs (aka nodes) in the

input CFG G. It passes this visited count map vMap along with the start node s, the CFG G,

and the unroll factor µ to a recursive helper function getUnrolledSubgraph().

The pseudo code for the helper function getUnrolledSubgraph() is shown in fig. 3.8. The

helper function starts by constructing a subgraph of the CFG (subGraph) rooted at PC

‘s’ through a call to getUnrollOneSubgraph() function. While constructing this subgraph,

getUnrollOneSubgraph() function only adds those edges for which the target node is reachable

from the node ‘s’ and its visited count (stored in vMap) is less than the input unroll factor

µ. Further, the subgraph is constructed as a directed-acyclic-graph (DAG) by adding multiple

versions of the same PC belonging to the original CFG, one for each unrolled iteration. If the

subgraph returned by getUnrollOneSubgraph() function does not have any edges then either

all the reachable PCs from node s have been visited µ times already or a terminal node (i.e. exit

node) is reached. The recursive function returns with an empty subgraph in this case.

If the subgraph returned by getUnrollOneSubgraph() function (subGraph) has non-zero edges,

then the helper function proceeds by heuristically choosing the “most promising sink” in this

subgraph (chooseMostPromisingSink()). This is the node which we expect to dominate the

unrolled iterations (i.e., all unrolled iterations must go through the chosen most promising sink).

Based on the heuristic, if an incorrect most promising sink is selected by the algorithm, then

the desired correlation candidate which can potentially yield a bisimulation proof may not get

enumerated. For most program-transformation pairs, we use the heuristic that chooses the head

of the loop that is being unrolled as the most promising sink.

For each PC, that appears as a target node in an edge in subGraph and the chosen sink node is

reachable from that PC, the value in the visited count map (vMapnew) is incremented by one. If the

value in the updated visited count map vMapnew is greater than the unroll factor µ for any PC, then

the function returns the subGraph constructed so far. Otherwise, the getUnrolledSubgraph()

function make a recursive call to itself with the chosen (most promising) sink as the new ‘s’ and

the updated visited count map vMapnew as arguments. The returned graph from the recursive

call is rooted at the chosen sink snew and is appended to the subGraph enumerated so far before

returning it.
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The unrolled subgraph (unrolledG) returned by getUnrolledSubgraph() function is a general

DAG (directed acyclic graph) and a a series-parallel decomposition (i.e. a set of SP-graphs) is

constructed from it through a call to SPgraphReduction() function. A well-formed SP-graph is

a directed graph that can be formed using the context-free grammar based on series and parallel

composition operators introduced in section 3.3.3. We adapt the reduction algorithm presented

in [70] for generating the set of well-formed SP-graphs from a given DAG. When the input DAG

is not SP-reducible (i.e. cannot be reduced to set of SP-graphs), we duplicate nodes to make it

suitable for the reduction procedure (§9.6.4 in [2]). We use heuristics to minimize the duplication

of nodes and call the resulting SP-graph, a Minimal Series-Parallel Digraph (MSP).

The MSP representation enables linear-sized SMT proof obligations while determining cor-
relations across pathsets, even when a single pathset may contain an exponential number
of individual paths. For example, the MSP representation of the pathset from (C2-C2) i.e.
((C1-C3-C1)+(C1-C5-C1)+(C1-C7-C1))4 shown in fig. 3.1c results in the following linear-sized
expression for the memory during the proof obligation:

data1 = a[i] + ite(d[i] < 0, b[i] ∗ c[i], ite(d[i] == 0, b[i] ∗ b[i], c[i] ∗ c[i]))

data2 = a[i + 1] + ite(d[i + 1] < 0, b[i + 1] ∗ c[i + 1], ite(d[i + 1] == 0, b[i + 1] ∗ b[i + 1], c[i + 1] ∗ c[i + 1]))

data3 = a[i + 2] + ite(d[i + 2] < 0, b[i + 2] ∗ c[i + 2], ite(d[i + 2] == 0, b[i + 2] ∗ b[i + 2], c[i + 2] ∗ c[i + 2]))

data4 = a[i + 3] + ite(d[i + 3] < 0, b[i + 3] ∗ c[i + 3], ite(d[i + 3] == 0, b[i + 3] ∗ b[i + 3], c[i + 3] ∗ c[i + 3]))

mem out = store(store(store(store(mem, a[i], data1), a[i + 1], data2), a[i + 2], data3), a[i + 3], data4)

(3.1)

The discharge of these linear-sized SMT proof obligations generated due to the control-flow

transformations performed by a typical compiler, are usually fast and are slightly slower than

the time taken for smaller queries generated while correlating each individual path separately.

Also, even though, the discharge of linear-sized SMT proof obligations generated for the complete

pathset (having exponential number of paths) remains worst-case exponential-time, an algorithm

that attempts to correlate each individual path separately would require an exponential amount

of time for an exponential number of paths, even for computing equivalence across trivial trans-

formations.

In give an empirical comparison, the above shown linear-sized proof obligation (eq. (3.1)) for the

memory for the example program in fig. 3.1c (with 4 unrolling) is 4x slower than the average time
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taken by the smaller queries generated while correlating each individual path separately. But,

since an exponential number of queries (34 = 81) are generated while correlating each individual

path separately, the total time taken is appox. 20 times more than the time taken to discharge

the linear-sized proof obligation for the MSP representation of the pathset. Also, the time taken

to discharge the above shown linear-sized proof obligation (eq. (3.1)) is only 1.25x slower than

the maximum time taken by any of the smaller queries generated while correlating each individual

path separately.

The reduction algorithm adapted from [70] involves an outer loop that performs one of the

following reduction operations (in the same precedence order) repeatedly until the entire graph

reduces to a single edge. For this reduction procedure, we associate each node of the DAG with

all SP-graphs that have been collected as sink starting at that node. Further, we associate with

each edge of the DAG an SP-graph to each of the “reduced PCs”, i.e. nodes that were reduced (or

eliminated) while constructing this edge. Further, the edge is also associated with the SP-graph

to the target node of the edge.

Reduction Operations:

1. Parallel Reduction: Merge two edges that have the same source and target nodes to

result in a single edge. The new edge is associated with the SP-graphs (one per reduced

node or target node) formed by the parallel composition of the SP-graphs associated with

the two edges with the same reduced or target node

PARALLEL(ω1[a→b], ω2[a→b]) =⇒ (ω1 + ω2)[a→b];

∀ n ∈ {Rω1, Rω2, b} : PARALLEL(SPG1(a→n), SPG2(a→n)) =⇒ (SPG1 + SPG2)(a→n)

Here Rω represents the set of reduced PCs associated with the edge ω.

2. Series Reduction: Merge two edges composed in series, where the common node has only

one incoming and one outgoing edge, into a single edge. The SP-graphs associated with the

new edge are formed by the union of SP-graphs at the first edge and the serial composition

of the SP-graph from source to target of the first edge with the SP-graphs associated with

the common node and the SP-graphs associated with the second edge. Here, union can be

thought as the application of the parallel reduction operation on the resulting SP-graphs

after the series composition.
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SERIES(ω1[a→b], ω2[b→c]) =⇒ (ω1 ω2)[a→c];

SERIES(SPG1(a→b), SPG2(b)) =⇒ (SPG1 SPG2)(a→b)

∀ n ∈ {Rω2, c} : SERIES(SPG1(a→b), SPG2(b→n)) =⇒ (SPG1 SPG2)(a→n)

∀ n ∈ {Rω1, Rω2, b, c} : UNION(SPG1(a→n), SPG2(a→n)) =⇒ (SPG1 + SPG2)(a→n)

3. Reduction of sink node with only one incoming edge: Collect a “sink” (i.e., a

node with no outgoing edges) with only one incoming edge, which involves removing the

only incoming edge (ωic[nfrom → nsink]) to the sink node and removing the sink node

itself. If ωic is also the only outgoing edge from the source node nfrom, then the SP-graphs

associated with nfrom are updated by the union of original SP-graphs associated with nfrom,

SP-graphs associated with the incoming edge (ωic) and the application of series reduction

on the SP-graphs at the sink node nsink and the SP-graph at ωic corresponding to nsink PC.

If nfrom has another outgoing edge except ωic, then reduction operation instead of modifying

the SP-graphs associated with the from PC nfrom, updates the SP-graphs associated with

the other outgoing edge.

4. Reduction of sink node with more than one incoming edge: This case occurs

when the input DAG is not SP-reducible and requires duplication of nodes and edges to

make it suitable for the reduction procedure. Although most high-level languages (includ-

ing C-language) encourage structured control flow (for example, by avoiding use of goto

statement) and thus the graphs generated from such programs are SP-reducible. However,

the compiled programs in assembly are often unstructured and may have arbitrary control

flow; the graphs generated from most of these assembly programs are thus not SP-reducible.

The reduction step in this case involves collecting a “sink” (i.e., a node with no outgoing

edges) by removing one of the multiple incoming edges to it (ωic[nfrom → nsink]). The

required duplication of nodes and edges involves taking the series composition of the SP-

graph for the sink node (nsink) associated with the edge ωic with each SP-graph associated

with the sink node. The SP-graphs associated with the edge to be removed (i.e. ωic) are

then modified by taking their union (i.e. parallel reduction) with the SP-graphs resulting

from the series composition.

Rest of the steps involved in this reduction operation are same as the above reduction

operation with only one incoming edge. The only difference is that the modified SP-graphs
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Algorithm 5: Algorithm for enumerating the candidate pathset ξA in A

1 Function getNextPathsetRPO((nC , nA), A, π)
2 foreach hA ∈ nexthops of nA in A in RPO do
3 ξA ← getPathsetAtAllDeltas(nA, hA, A, 1);
4 if notAlreadyCorrelated(π, (nC , nA), ξA) then
5 return eliminatePathsWithOtherAnchorNodes(ξA);
6 end

7 end
8 NotReached();

Figure 3.9: Pseudo code for the algorithm to enumerate the pathset in the implementation CFG.

as discussed here are used during the reduction operation and the sink node nsink is not not

removed in this case.

The fixed-point loop of reduction operations results in a graph with single edge and the required

(µ, δ)-unrolled pathsets FPsetsµs t = {FPµ,δs t|1 ≤ δ ≤ µ} are formed by the union of the SP-graphs

at the only remaining edge, the remaining edge’s from-node, and the remaining edge’s to-node.

Enumerating the possible pathset-pairs (ξC , ξA) from C and A CFGs

For an incomplete product-CFG node n = (nC , nA) the expandProductCFG() function proceeds

by choosing a pathset ξA in A through a call to getNextPathsetRPO() function. The enumer-

ated pathset ξA starts at the chosen incomplete node nA in A and the possible target nodes for

ξA are restricted to nexthop anchor nodes of nA. A nexthop anchor node of nA is an anchor node

which can be reached from nA through a program path in A without having to go through any

other anchor node in A.

The pseudo code for the getNextPathsetRPO() function is shown in fig. 3.9 and involves the

following two steps:

1. For each nexthop anchor node hA of nA, we compute FPsets1nA hA
(i.e., unroll factor =

1, indicating no unrolling) through a call to getPathsetAtAllDeltas() function. No-

tice that for a fixed hA, FPsets1nA hA
will be a singleton set whose only element repre-
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Algorithm 6: Algorithm for enumerating the candidate pathsets ξC in C

1 Function getCandCorrelations(nC, C, ξA, µC)
2 κC ← {ε};
3 foreach wC ∈ C do
4 κC ← κC ∪ getFullPathsetAtAllDeltas(nC, wC, C, µC);
5 end
6 return κC ;

Figure 3.10: Pseudo code for the algorithm to enumerate the candidate pathsets in the specifi-
cation CFG

sents the full pathset FP1,1
nA hA

. For example, in fig. 3.3b, FP1,1A3 A3 can be represented as

((A3-A3)+(A3-A10-A2-A3)).

2. As a second step, the function eliminatePathsWithOtherAnchorNodes() removes those

paths from FP1,1
nA hA

that contain edges incident to any other anchor node in A (except

hA). The resulting pathset ξA is the correlation candidate for the next edge to be added

to the partial product-CFG constructed so far. For example, in fig. 3.3b, FP1,1A3 A3 can be

represented as ((A3-A3)+(A3-A10-A2-A3)). After the second step, ξA reduces to only

(A3-A3) and the other path incident to A3 through A10 is removed.

By construction all candidate pathsets ξA for all nexthop anchor nodes hA in A are mutually

exclusive and the complete product-CFG should have correlations for all such ξA pathsets. Our

algorithm proceeds by correlating one such ξA that is not already correlated in the input partial

product-CFG π at each step. To reduce backtracking, we pick these nexthop nodes hA (and

associated candidate pathsets) in Reverse Post-Order (RPO); choosing nexthop nodes in RPO

order maximizes the likelihood that a node is correlated only after its predecessor nodes are

already correlated. For example, in fig. 3.3, starting at product-CFG node (C5,A3), the nexthop

anchor nodes in program A in reverse post-order are A3 and A10.

After choosing a pathset ξA in A, the expandProductCFG() procedure, through a call to

getCandCorrelations(), enumerates the candidate pathsets in C starting at node nC . The

pseudo code for the getCandCorrelations() function is shown in fig. 3.10. It identifies

FPsetsµCnC wC
for all anchor nodes wC in C that are reachable from node nC . It adds all such
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pathsets to an accumulator κC , i.e., κC = {ε} ∪ (
⋃
wC

FPsetsµCnC wC
) (ε represents the empty

path). Each non-ε element in κC represents a (µ, δ)-unrolled pathset from node nC to an anchor

node wC in C. Notice that unlike the pathsets enumerated for A, here we do not restrict the

anchor node wC to be the nexthop of nC .

Consider the example specification program in fig. 3.3a and assume that we are enumerating

pathsets in C starting at node C5 for µC = 2. Based on the procedure described in this sec-

tion, we would consider all reachable anchor nodes from C5 as wC , which are C2, C3, C5, C6,

C7, C8, C9, C11, and EC. For each possible wC , the FPsetsµCnC wC
is computed through call to

getPathsetAtAllDeltas() function.

For each of the pathsets ξC ∈ κC , the expandProductCFG() function checks if the actions are

compatible with ξA (actionsAreCompatible()), i.e., ξA should have exit PC as target iff ξC has

exit PC as target, as the program exit edge could potentially produce an “observable action”.

If the action compatibility check passes, a new product-CFG πnew is created which additionally

includes a new product-CFG edge encoding the candidate correlation between ξC and ξA.

3.3.5 Criterion for Correlating Pathsets

By definition, if an edge ω = (ξC , ξA) is traversed in the product-CFG, it implies that one of

the paths in pathset ξC is traversed in program C and one of the paths in the pathset ξA is

traversed in program A. While this property defines the general space of potential correlations,

we restrict this space further through a correlation criterion to achieve better tractability. We

restrict correlations by requiring that ξC can be correlated with ξA through a product-CFG edge

ω = (ξC , ξA) only if the following property holds: if any of the paths in ξA is traversed in program

A, then one of the paths in ξC in program C must be traversed. For example, our algorithm does

not allow ξA =(A2-A2) to be correlated with ξC =(C1-C3-C1)4 for the pair of programs in fig. 3.1

because if ξA is traversed in A, then paths outside ξC may be traversed in C (e.g., (C1-C5-C1)4).

This restriction that mandates that ξA must represent a specialization of ξC is a direct reflection

of Observation-C introduced in section 3.1. We argue, through empirical evaluation, that this
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restriction significantly reduces the product-CFG search space without hurting robustness.

To compare this restriction with previous work, the SPA algorithm [11] has no such requirement:

given the required AP (alignment predicate), it could potentially correlate any path in C with any

path in A theoretically. However, for the APs and the transformations considered in their paper,

there is no program-pair and associated PAA (or product-CFG) that violates this requirement.

This is unsurprising because 27 out of 28 programs evaluated in their work have a single loop in

the source program and none of them have control flow within the loop body. This restriction

on the other hand allows us to scale to larger programs, while still retaining robustness to a very

high degree.

As we discuss later in section 5.3, while this restriction may preclude certain code size transfor-

mations, it caters to almost all runtime optimizations that do not attempt to minimize code size.

We leave the development of scalable algorithms that overcome this restriction for future work.

3.3.6 Counterexample Propagation

A set of counterexamples (Γ) is associated with each node in the product-CFG and includes

the models (or concrete assignments) generated by SMT solver for not-provable queries during

invariant inference. As noted in section 2.4, even though counterexamples cannot replace real

execution traces, a counterexample is still useful because it satisfies the inferred invariant at the

node at which it was generated, and it does not trigger UB on the paths on which it is propagated.

Thus it is safe to consider a counterexample at par with a real concrete machine state for these

smaller program segments where it does not trigger UB, because our reasoning power in these

smaller segments is constrained by the inferred invariants in any case.

Counter relies on the counterexamples in this set to prune the infeasible correlation candidates

(ξC , ξA) and to rank the remaining candidates resulting in a best-first search procedure that

can scalably handle aggressive transformations. Since, more counterexamples at each product-

CFG node are desirable for a more effective pruning and ranking, we additionally propagate

(or execute) every generated counterexample in the product-CFG in the forward direction to
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populate the set of counterexamples at downstream nodes. To ensure termination, we bound

the maximum number of times a counterexample propagation may encounter a node — we call

this the propagation bound and use 3 as the default propagation bound in our algorithm. If the

counterexample visits a node more than thrice during propagation, we do not propagate it any

further. Using a propagation bound of 3 is meaningful because it is small enough to result in

efficient propagations, and yet it is usually able to produce new useful counterexamples from an

existing counterexample (e.g., over a loop edge) without requiring more SMT queries.

Given a pathset pair (ξC , ξA) and a partial product-CFG πnew, the addEdgeAndPropCEs()

function adds a new product-CFG edge encoding the new candidate correlation between ξC and

ξA and propagates the counterexamples at the source node of the new edge to the target node

and further (subject to propagation bound). It additionally calls the invariant inference pro-

cedure to update the invariant at the target node of the edge to the strongest invariant cover

of the counterexample set obtained after propagation at the target node of the new edge. The

strongest invariant cover of a given counterexample set is the strongest invariant such that all

concrete states present in the counterexample set satisfy the invariant. Notice that this strongest

invariant cover for a counterexample set need not be inductive across the newly added edge,

but serves as a lower bound on the inductive invariant cover (which would be computed later

by the call to inferInvariantsAndCounterExamples()). A more detailed discussion on the

strongest invariant cover of a given counterexample set is presented in section 4.2.1. Counterex-

amples also get generated during the invariant inference procedure for not provable SMT queries

(inferInvariantsAndCounterExamples()). Counterexample propagation (subject to propaga-

tion bound) is attempted for these counterexample as well and the strongest invariant cover is

recomputed for the nodes for which the set of counterexamples has changed after propagation.

In the next section (section 3.3.7), we demonstrate that the strongest invariant cover for the

propagated counterexample set across the newly added edge is helpful in pruning and ranking

the candidate partial product-CFGs to implement a best-first exploration of the search space. It

is important to note that the computation of the invariant cover is significantly cheaper than an

SMT query; thus pruning based on such computation instead of an SMT query is meaningful.
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3.3.7 Counterexample-Guided Pruning and Ranking

At every incremental step, the expandProductCFG() function, for a chosen partial product-CFG,

enumerates multiple candidate correlations for the new edge to be added by pairing an outgoing

pathset in A with one of the candidate pathset in C. These correlation candidates are added back

to the frontier of the backtracking search tree. To keep the backtracking search tractable, it is

crucial to carefully prioritize more promising correlations over others. This prioritization allows

us to realize a best-first search.

At a high level, we first enumerate all possibilities for pathsets in C (in an arbitrary order)

using the getCandCorrelations() function. We then prune out certain possibilities through

call to CEsSatisfyCorrelCriterion() and InvRelatesMemAtEachNode() functions because the

current set of counterexamples decisively indicate that those possibilities cannot yield a provable

bisimulation under the constraints of the invariant inference algorithm used. Next, we use the

counterexamples to rank the remaining possibilities from most promising to least promising.

For the following discussion on counterexample-guided pruning and ranking strategy in this sec-

tion, we consider an incomplete PCpair n = (nC , nA) in the product-CFG and the new product-

CFG edge ω[n→ nd] represents the candidate correlation added to the given product-CFG from

the incomplete node n. This newly-created edge ω[n → nd] = (ξC , ξA) is formed by correlating

the pathset ξC (starting at node nC in C) with the pathset ξA (starting at node nA in A). The

counterexample set at node n is represented by Γn.

Further, counterexamples in Γn are propagated across ω[n→ nd] to add counterexamples at node

nd, and potentially nd’s successors, subject to the propagation bound. During counterexample

propagation, as the counterexample sets are updated, the strongest invariant covers at nd (and

other downstream nodes) are recomputed. In our following discussion on the ranking procedure,

we assume that we are comparing two partial product-CFGs π1 and π2 which are otherwise

identical, but differ in the most-recently added ω edge. We later generalize this discussion to

comparison between arbitrary partial product-CFGs.
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Pruning Based on Paths Taken by Counterexamples

If there exists a counterexample γ ∈ Γn such that, when propagated on the outgoing paths, γ takes

a path in ξA but does not take any of the paths in ξC , then that candidate correlation is discarded.

This pruning strategy appeals to our correlation criterion (section 3.3.5) which requires that if

program A takes a path in ξA, then program C must take one of the paths in ξC . If an existing

counterexample violates this criterion for a candidate correlation, that candidate correlation

is evidently incorrect. The CEsSatisfyCorrelCriterion() function implements this pruning

strategy and checks the following condition for every product-CFG edge ω[n→ nd] = (ξC , ξA):

Invn ⇒ (pscondξA → pscondξC )

where pscondξ represents the pathset condition of pathset ξ, which is equivalent to the disjunction

of the path-conditions (i.e., the weakest condition under which the path must be taken) of the

individual paths in ξ.

Pruning Based on Memory Relations

If the non-temporary memory states HC and HA are not related by the (re)computed invariant

cover at nd (or any other downstream node), we eliminate that candidate product-CFG.

This is based on the premise that the memory states need to be correlated at program exit,

and if they are not correlated at an intermediate PCpair, then there is little hope for them

to be correlated at exit. Thus it is safe to eliminate all such partial product-CFGs. The

InvRelatesMemAtEachNode() function implements this pruning strategy.

Ranking on Number of Affine-Related Live Bitvector Variables in A

To compare two candidate correlations, represented as two candidate partial product-CFGs, π1

and π2, we count the number of live bitvector variables in A that are related through affine (or

linear) relations at nd. If the number of live bitvector variables in program A related through

affine relations in INVnd is more in π1 than in π2, then π1 is ranked higher than π2, and vice-versa.
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Notice that nd may be different in π1 and π2.

This ranking strategy is based on the heuristic that an incorrect correlation would likely cause

some of the live bitvector variables in A to not have any relation to the program values at the

correlated PC in C.

Ranking on Number of Affine-Related Live Bitvector Variables in C

If the first ranking step results in a tie (i.e., the number of affine-related live bitvector variables in

A is identical in both correlations), we compare the number of live bitvector variables in program

C that are related through affine relations in INVnd : if the number of live bitvector variables in

C with affine relations is more in π1, then π1 is ranked higher, and vice-versa.

This ranking strategy is also based on the heuristic that a correct correlation is likely to relate

more C variables than an incorrect correlation.

Static Heuristic as Tie-Breaker

If both correlations behave identically on the two ranking criteria listed above, we use the following

static heuristic as a tie-breaker:

• Recall that all correlated pathsets in C are (µ, δ)-unrolled full pathsets. Also recall that for

the pathset ξC between nodes nC and ndC , the node ndC is repeated exactly δ times on all

paths (indicating δ unrollings). We prioritize the correlation that correlates a pathset with

a lower value of δ.

This heuristic is based on the observation that most program transformations do not involve

unrolling, and so it is more efficient on average to prioritize correlations at smaller unroll

factors.

• If the unroll factors of the two candidate correlated pathsets ξC are identical, then we

prioritize the correlation that has ξC with a longer pathset length. The pathset length is the

length of the shortest path in that pathset. This tie-breaker is meaningful because longer

paths would generally entail stronger path conditions and thus have a higher likelihood of
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Function computeRank(π)
rA ← 0 rC ← 0
foreach node n = (nC , nA) ∈ nodes(π) do

liveA ← getLiveVariables(nA, A) liveC ← getLiveVariables(nC , C)
rA ← rA+ getVariablesWithNoAffineRelations(liveA, INVn)
rC ← rC+ getVariablesWithNoAffineRelations(liveC , INVn)

end

return (rA, rC)
Function staticHeuristic(π1, π2)

ξC1 ← lastCorrelatedSrcPathset(π1) ξC2 ← lastCorrelatedSrcPathset(π2)
µ1 ← getUnrollFactorForPathset(ξC1 ) µ2 ← getUnrollFactorForPathset(ξC2 )
len1 ← getPathSetLength(ξC1 ) len2 ← getPathSetLength(ξC2 )
return (µ1,−len1) ≤ (µ2,−len2)

Function comparePromiseForProductCFGs(π1, π2)
(rA1 , r

C
1 ) ← computeRank(π1) (rA2 , r

C
2 ) ← computeRank(π2)

if (rA1 , r
C
1 ) 6= (rA2 , r

C
2 ) then

return (rA1 , r
C
1 ) < (rA2 , r

C
2 )

end
return staticHeuristic(π1, π2)

Figure 3.11: Comparison function used to rank product-CFGs during best-first search. The
comparison operators <,≤ for tuples compare lexicographically starting with the first element.

failing our correlation criterion (described in section 3.3.5) in case of an incorrect correlation.

In other words, this heuristic of prioritizing the longer path over shorter paths resembles a

“fail fast” strategy.

So far, we have described the ranking strategy in the context of a single correlation of ξA with ξC .

However, a product-CFG is made up of multiple edges, each denoting a separate correlation. For

our best-first search algorithm, we need to compare one product-CFG with another even if they

may involve multiple different correlations. To allow such comparisons, we extend these ideas

to the whole product-CFG by accumulating the number of live bitvector variables (in A and C)

that have not been correlated at every PCpair, and then comparing these accumulated counts.

This comparison function is shown in fig. 3.11.

The comparePromiseForProductCFGs() function compares two product-CFGs for their rel-

ative promise towards yielding a provable bisimulation. This function returns true iff π1
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holds more promise than π2. This comparePromiseForProductCFGs() function is used by

the removeMostPromising() procedure to choose the most promising partial product-CFG from

the frontier of the backtracking tree.

3.3.8 Pruning and Ranking Algorithms Through Examples

Consider the example program-pair in fig. 3.3. Suppose we are considering the partial product-

graph 3 in the backtracking search tree for this example program-pair shown in fig. 3.5. The

algorithm would next try to correlate the pathset ξA = (A3-A3) in A starting at the incomplete-

node (nC , nA) = (C5,A3), based on RPO.

For µC = 4, the candidate pathsets (κC) enumerated for C would include the ε path and (µ, δ)-

unrolled pathsets starting from nC = C5 and ending at one of the following nine reachable anchor

nodes in C: wC = { C2, C3, C5, C6, C7, C8, C9, C11, and EC}. In other words, we get 34 candidate

pathsets, which includes an ε path, a pathset to EC and four pathsets (one for each δ ≤ 4) to each

of the other eight anchor nodes in wC set: {{ε}⋃ FPsets4C5 C2

⋃
FPsets4C5 C3

⋃
FPsets4C5 C5

⋃
FPsets4C5 C6 . . .}.

To keep our following discussion simpler, we restrict our attention to only those pathsets that

end at loop heads in C (even though the algorithm considers pathsets to all basic block head

and tail nodes and still operates efficiently). The loop heads in C are C5, C7, and C2, and

hence the candidate pathsets that we will consider for (A3-A3) belong to {{ε}⋃ FPsets4C5 C5

⋃
FPsets4C5 C7

⋃
FPsets4C5 C2}, for a total of 13 (out of 34) possibilities.

Pruning Based on Paths Taken by Counterexamples

Recall that our path condition based pruning discussed in section 3.3.7 checks that: starting at

PCpair (C5,A3), if pathset ξA is correlated with pathset ξC , then a counterexample at (C5,A3)

that takes one of the paths in ξA must also take one of the paths in ξC (to satisfy our correlation

criterion in section 3.3.5). Let’s assume that one of the counterexamples at (C5,A3) that may
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have been added either during invariant inference or counterexample propagation is

{ i 7→ 0, sum1 7→ 10, j 7→ 0, r1 7→ 0, r2 7→ 0, r3 7→ 10, xmm0 7→ 0, out1 7→ 0, in1 7→ 200, in2

7→ 2000, LEN 7→ 12, HC
2 7→ (0 7→ 10, 200 7→ 1, 204 7→ 2, 208 7→ 3, 212 7→ 4, 2000 7→ 5, 2004 7→

6, 2008 7→ 7, 2012 7→ 8, () 7→ 0), HA 7→ (0 7→ 10, 200 7→ 1, 204 7→ 2, 208 7→ 3, 212 7→ 4, 2000 7→
5, 2004 7→ 6, 2008 7→ 7, 2012 7→ 8, () 7→ 0), . . .}.
This counterexample would traverse the path (A3-A3) in program A because it satisfies the

corresponding path condition, (r2+4 6= LEN). However, of the 13 candidate pathsets in C, only 5

would be taken by this counterexample (those that end at C5 at different unrollings and ε path).

Thus, path condition pruning reduces the candidate correlations from 13 to 5 based on just a

single counterexample in this case.

Counterexample-Guided Ranking

After path condition pruning, we are left with five candidate correlations for (A3-A3), namely

ε, (C5-C5), (C5-C5)2, (C5-C5)3, and (C5-C5)4. Thus, we create five different product-CFGs,

each with a different newly added product-CFG edge ω[(C5, A3) → (C5, A3)] (the difference is

in the correlated pathset) and for each of these newly created product-CFGs, we propagate

the counterexamples at (C5,A3) across ω, adding more counterexamples to (C5,A3). All the

five product-CFGs are then added to the backtracking search tree. Notice that the same set

of counterexamples when added to the product-CFG node (C5,A3) after propagation would be

different for each of the product-CFGs because they would have traversed different program paths

in C while being propagated across the new product-CFG edge ω[(C5, A3)→ (C5, A3)].

As an instance, for the product-CFG that correlates (A3-A3) with (C5-C5)2, the counterexample

used above for discussing the pruning based on paths taken by counterexample, would yield a new

propagated counterexample at (C5,A3) obtained by simply propagating it once over the newly

added product-CFG edge ω[((A3− A3), (C5− C5)2]):

{ sum1 7→ 27, j 7→ 2, r2 7→ 4, r3 7→ 10, xmm0 7→ 0x20000000150000000C00000005, . . .}.
2The concrete state for memory array is represented using mappings of the form (addr 7→ data), which implies

that the value (byte) stored in memory at address “addr” is “data” and (() 7→ data) represents the default value
“data” for the remaining address space.
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Similarly, for the product-CFG that correlates (A3-A3) with (C5-C5)4, the counterexample after

propagating once would be:

{ sum1 7→ 80, j 7→ 4, r2 7→ 4, r3 7→ 10, xmm0 7→ 0x20000000150000000C00000005, . . .}.

After propagation, we compute the strongest invariant cover for the updated set of counterex-

amples at (C5,A3) for each of the five candidate product-CFGs. Now, we claim that for the

correct correlation, the updated invariant cover at (C5,A3) would likely relate more variables

in A to variables in C through affine relations. Conversely, for incorrect correlations, the in-

variant cover at (C5,A3) would likely relate fewer variables in A. To see this more concretely,

consider the live variables xmm00, xmm01, xmm02, and xmm03 in A, where xmm0i is shorthand for

xmm0[(32*i+31):(32*i)]. For the incorrect correlations, only some of these four variables may

get related by the invariant cover at (C5,A3) — e.g., for the product-CFG that correlates (A3-A3)

with (C5-C5)2, the variables xmm00 and xmm01 would be related to sum1 through (sum1 = xmm00

+ xmm01 + r3), but xmm02 and xmm03 would not get related to any variables in C. However, for

the product-CFG that correlates (A3-A3) with (C5-C5)4, all four parts of xmm0 would get related

to sum1 through the invariant cover (sum1 = xmm00 + xmm01 + xmm02 + xmm03 + r3). For this

reason, this latter product-CFG would be ranked higher than the other four product-CFGs in

our algorithm.

Thus, ranking helps the algorithm in arriving at the correct correlation in the first attempt during

the best-first search procedure in this example.

Pruning Based on Memory Relations

To demonstrate our pruning based on memory relations, consider a partial product-CFG that has

almost all the required correlations, as shown in fig. 3.3c, except that it has not yet correlated

the pathset (A10-A2) starting at PCpair (C7,A10). Among the various correlations for ξA =

(A10-A2), two candidates pathsets ξC in C are (C7-C2) and (C7-C2-C5-C7-C2). However we

see that while the first candidate updates the memory only once (through writes to out1[i] and

out2[i]), the second candidate updates the memory twice. Thus, the latter candidate correlation

(C7-C2-C5-C7-C2) is likely to generate an invariant cover (for the propagated counterexamples)
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that does not relate the two memory states HC and HA, causing it to be pruned out.

In general, such pruning is very effective in the presence of writes to the memory where the ad-

dresses of the writes cannot be characterized at compile time. This pruning strategy is somewhat

similar, albeit more flexible and general, to the correlation strategy used in Necula’s translation

validator [52] where the algorithm required one-to-one correspondence between accesses to the

memory for correlation.

3.3.9 Contrast with SPA Algorithm

SPA algorithm [11] is one of the closest competing correlation algorithm to Counter in terms of

its capabilities. Both SPA and the proposed Counter algorithm are data-driven because they rely

on data (or counterexamples) to predict (or prioritize) the correlations through path correlations

or relations on machine state values. However, Counter represents a significant generalization

and improvement over the SPA approach because:

• Counter does not restrict the correlation condition to be one of the enumerated alignment

predicates. Instead it takes a more flexible approach where it simply uses the number of

relations in the strongest invariant cover for the concrete counterexamples known so far.

This flexibility in Counter eliminates the dependence on the availability of the required

alignment predicate (which can be quite complex as shown for the example program-pair

in fig. 3.3).

• Instead of proposing a single product-CFG (or PAA), Counter formulates the algorithm as a

best-first search strategy to avoid getting stuck inside a local search subspace. However, our

experimental evaluation discussed in (section 5.2) demonstrate that the algorithm converges

to the required product-CFG in the first attempt with a very high probability.

• Correlation of pathsets (instead of individual paths) avoids the explosion in the number

of required correlations. Our experiments confirm that our method of using (µ, δ)-unrolled

pathsets (section 3.3.4) along with our correlation criterion (section 3.3.5) does not compro-

mise robustness.
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Chapter 4

Counterexample-Guided Invariant

Inference

We introduced the notion of the inductive node-invariants i.e. invariants associated with the nodes

of a given CFG in section 2.2.2. In the context of product-CFG, the node-invariants represent the

relations between the state-elements of the program-pair and the node-invariant at the start node

of the product-CFG is initialized by equating the program arguments and non-temporary memory

states of the input program-pair. The inductive invariants at other nodes of the product-CFG

are identified through a sound and over-approximate inference procedure. Given a correlation

algorithm, the robustness and applicability of an equivalence checker is largely determined by

the capabilities of this invariant generation procedure. If the inferred node-invariants are strong

enough to prove equivalent observable behavior, then the product-CFG along with the inferred

invariants represent the witness (or proof) of equivalence.

As an instance, the first row in fig. 2.4f shows the node-invariant at the start node (C0,A0) of

the product-CFG shown in fig. 2.4e. The second and third rows in fig. 2.4f (corresponding to

product-CFG nodes (C2,A2) and (C4,A4) respectively) show the invariants inferred using an

invariant generation procedure and are strong enough to inductively prove the equivalence of

observables at exit represented using the invariant at exit-node (EC,EA). The observables at exit

67
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in this case include the return values sum and r3, and the non-temporary memory state denoted

using HC and HA for specification program C and the implementation program A respectively.

The problem of automatically identifying these inductive node-invariants that result in an equiva-

lence proof for (a series of) complex compiler transformations is challenging and is undecidable in

general. Further, as noted in observation-B in section 3.1, the equivalence checkers usually restrict

the choices for correlated PCs that constitute the product-CFG nodes to achieve tractability. If

the “ideal” product-CFG that yields a provable bisimulation requires a correlated PC outside

these choices, the equivalence checker relies on the invariant inference procedure to efficiently

generate expressive invariants to bridge this gap between the ideal correlation and a correlation

that only consider the restricted choices for correlated PCs.

For an important class of equivalence checkers that are based on incremental correlation (like

[14, 28]), invariant inference procedure is called multiple times at each incremental step for

the partial product-CFG constructed so far and the inductive invariants inferred for the partial

product-CFG are used to guide the search for future correlations. For instance, the incremental

correlation algorithm Counter presented in this thesis in section 3.3 uses the invariants inferred for

the partial product-CFG for guiding the best-first search procedure at each step through pruning

and ranking strategies.

In this section, we present a static invariant inference algorithm that is both powerful enough to

find inductive invariants between state elements of programs that have large syntactic gap across

them and is efficient enough to be used with incremental correlation algorithms. We first discuss

the prior work on invariant inference techniques in section 4.1 and then present the details of our

proposed invariant inference algorithm in section 4.2.

4.1 Prior work on Invariant Inference Techniques

The broad area of formal verification can be classified into two different verification problems:

(1) Safety verification [16, 12, 7, 30] where the goal is to verify that the given program adheres to

the specified assertions, (2) Relational verification [63, 11, 14, 40, 25, 26, 17, 49] which attempts
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to verify a given property across a pair of programs or different runs of the same program.

The literature on invariant inference techniques used in formal verification is vast and can also

be broadly categorized into techniques used for invariant inference for safety verification and

techniques used for invariant inference for relational verification. Since equivalence checking

involves verifying equivalent observable behavior across two input programs, it belongs to the

relational verification domain. We thus briefly discuss here the state-of-the-art invariant inference

techniques used for relational verification.

4.1.1 Program Execution Based Techniques

Program execution-based techniques involve executing the two programs on real inputs and using

linear-algebraic techniques on the observed values to guess invariants [63, 41, 23, 11, 53]. These

techniques although powerful, require high-coverage execution traces. However, this requirement

of access to execution traces limits the potential applications of equivalence checking. For ex-

ample, an important application of equivalence checking is translation validation (e.g., within

a compiler): unless the programmer is exercising profile-guided optimizations, it is rare for the

compiler (or the validator) to have access to real (user-provided) high-coverage testcases. Sim-

ilarly, for superoptimization and synthesis purposes [3, 60, 4, 46, 55, 62], the search algorithm

usually employs random testcases and access to user-provided high-coverage testcases is seldom

assumed. In absence of high-coverage execution traces, the invariants inferred using data-driven

techniques can be imprecise and their completeness depends on the coverage of the execution

traces.

Recent work on data-driven program alignment for equivalence checking [11] suggests that these

testcases may be generated randomly or through bounded model-checking. However, this seems

impractical for most cases. Figure 4.1 shows an example program to demonstrate that random

testcases would usually provide very low coverage (insufficient for use by the verifier), and bounded

model-checking has severe scalability issues.

The input to the program in fig. 4.1 includes the state of the non-temporary memory (where the

link list is stored). The non-temporary memory includes the heap memory and the memory for



70 Counterexample-Guided Invariant Inference

C0: void linkListCount(node *head) {

C1: int count = 0;

C2: for (; head; head = head ->next) { count++ }

C3: if (count > 1000) {

C4: ...

C5: }

C6: }

Figure 4.1: A C program that counts the number of elements in a linked list.

the global variables. In this example program, the identification of an input memory-state that

would allow the program to reach program location C4 seems hard. It is highly improbable for

random memory-states to provide the desired coverage, and model-checking algorithms would

face severe scalability challenges in trying to identify inputs with the desired coverage for this

example. In general, identifying high-coverage tests for any program which has multiple loops

and/or memory dependencies across loops/loop-iterations is usually hard (the general problem is

undecidable).

Sharma et al. [61] tried to address this shortcoming of the program execution-based techniques

using a “guess-and-check” algorithm that starts by guessing an invariant from a specified grammar

using the concrete values observed in the execution traces. In order to achieve precision, it refines

the invariant guess using SMT solver generated counterexamples for not-provable queries during

the checking phase. One of the shortcomings of prior work by Sharma et al. [61] is that it

does not handle the bitvector arithmetic for invariant inference between the program variables

and models the variables as integers; such representation using integers may result in imprecise

UB assumptions (based on overflow/wrap-around semantics) that may not be able to prove a

transformation correct. Representing the program variables using bitvectors lends robustness in

the translation validation context.

A pure data-driven invariant inference procedure (that only uses the program execution traces for

actual inputs for inference) based on bitvector representation of the state-elements can potentially

infer precise invariants using integer arithmetic because developers usually do not write programs

that rely on wrap-around semantics of the program variables. The concrete values generated
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using program execution on real inputs, thus, do not exhibit wrap-around behaviors. But the

concrete models generated using SMT solver queries (aka counterexamples) may not be restricted

to avoid the wrap-around semantics and integer arithmetic based invariant inference would result

in weaker (or imprecise) invariants in this case.

For example, consider the program-pair shown in fig. 3.3. One of the required inductive invariant

at product-CFG node (C3,A6) to prove equivalence is (r2 + r3 - sum = 0). The execution

traces observe the values {r2←[ 0, r3←[ 4, sum←[ 4} and {r2←[ 4, r3←[ 0, sum←[ 4}. Here, r2,

r3 and sum are 32-bit variables. The integer arithmetic based invariant inference algorithm using

these two concrete assignments would result in {(r2 + r3 = 4); (sum = 4)} invariant, which is

not inductive and shows the imprecision of the program execution-based invariant inference. One

of the counterexample returned by the SMT solver for queries to check if the inferred invariant (i.e.

{(r2 + r3 = 4); (sum = 4)}) is inductively provable is {r2 ← [ 2147483649, r3 ←[ 2147483649,

sum ←[ 2}. When this SMT solver generated counterexample is given to an invariant inference

procedure that is based on integer arithmetic and not bitvectors, it would fail to infer the required

invariant (r2 + r3 - sum = 0) and hence the equivalence checker will not be able to generate

the required proof.

Our proposed invariant inference algorithm uses a high-level approach similar to the “guess-and-

check” algorithm [61], except we only use the SMT solver’s satisfying examples as “data” and do

not rely on execution traces. Further, the invariant inference algorithm uses bitvector arithmetic

in order to generate precise invariants using the SMT solver generated counterexamples.

4.1.2 Syntax/Enumeration Based Techniques

Syntax/Enumeration based techniques [25, 14, 40, 27] generate invariant guesses based on a

grammar, followed by a fixed-point checking phase in which these guessed invariants are iteratively

eliminated until only the inductively-provable invariants remain. In order to achieve scalability,

the guessing grammars used with these techniques are finite and tractable, typically involving

equality or inequality relations between two program variables. Invariants generated using these

simple equality and inequality relations based grammars do not suffice for programs that have
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large syntactic gap across them. The required invariants across the source program written in

high-level language like C and the implementation program in assembly are usually of affine

shape i.e. (
∑n

i=1 ci.vi + c0 = 0), where vi represents a state-element in either the specification or

implementation program and ci represents an arbitrary constant. This happens due to various

types of arithmetic simplifications and value-to-register mappings performed by an optimizing

compiler (e.g. during vectorization). Inferring such invariants using enumeration based techniques

is not tractable. In contrast, our proposed counterexample-guided invariant inference algorithm

can be used to infer affine-invariants in an efficient manner.

Recurrence based approaches like [33, 37] can infer non-linear invariants, but they work for

simplified affine abstractions of programs. Optimized code generated through compilers would

usually contain several logical, shift, branching, bit-manipulation, load-store, function-call, etc.

opcodes, none of which would fit in their framework of affine programs, and they would usually

report equivalence failures for such programs.

4.1.3 Constraint-Solving Based Techniques

Prior work on relational verification [26, 17, 49, 74] has also attempted to reduce the relational

verification problem ( including the equivalence checking problem) to a safety verification problem

by first composing the two given programs into a single program and then using the constraint

solving based safety verification techniques on the composed program. In other words, in order

to prove that a relation (or equivalence) holds between two given programs P and Q, these

techniques show that a pair of pre-condition (Φ) and post-condition (Ψ) holds for the composed

program {Φ}P ∼ Q{Ψ}. This hoare-triple formula is encoded a set of constrained Horn clauses

(CHCs) in a chosen constraint theory. CHCs represent the state-of-the-art logical formalism used

for safety verification problems and the satisfiability of the verification conditions is encoded as a

set of CHCs (which in this case also guarantees that the relational property holds) can be checked

by using off-the-shelf CHC solvers, such as Eldarica [32], Z3 [18] or Data-driven CHC solver [76].

The two main challenges in this constraint solving based relational verification approach are:
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1. The techniques required to compose the two programs in order to reduce the relational

verification problem to the safety verification problem are non-trivial. Prior-work has either

used a manual reduction strategy [5, 26] or have used domain-specific heuristics [74, 17]

for obtaining a suitable reduction. Further, given the complexity of the reduction problem,

reinforcement-learning based techniques [9] have also been proposed for the same. Using all

these techniques, the prior work is only able to handle structure-preserving transformations

and none of these techniques have been demonstrated across program-pairs that have large

structural differences across them. In contrast, our proposed invariant inference algorithm

can be used along with a correlation algorithm (like Counter) to prove equivalence across

transformations like loop unswitching, loop unrolling, loop peeling, loop splitting, etc., that

can result in programs with significant structural differences.

2. The constraint-solving based verification involves summarizing the entire execution of the

composed program using constrained Horn clauses such that the loop invariants and function

summaries for the composed program are encoded as unknown predicates. An off-the-

shelf CHC-solver [32, 76] is used to solve the generated set of CHCs and identify loop

invariants and relational predicates between the two programs to establish equivalence.

Counterexample-guided abstraction refinement (CEGAR) based advanced algorithms like

IC3 [8], PDR [22] and Horn-ICE [24] have been proposed for these CHC solvers to solve

the system of CHCs generated by the verification problems. But, as shown empirically in

their evaluation, even after using these advanced algorithms, these techniques work only for

small programs which have small syntactic gap across them. In contrast, our experiments

in section 5.2 compare programs that are syntactically significantly different because of

composition of multiple compiler transformations and can scale for large programs with

multiple loops/loop-nesting. The key difference in our approach is: we do not summarize

the entire execution in one go and try to infer the invariants incrementally at each product-

CFG node and use these inferred invariants to guide future correlation and inference.

It is interesting to note that our algorithm is a dual to iterative refinement based CEGAR tech-

niques used by CHC-solvers. CEGAR based techniques usually start with a high level abstrac-

tion (or over-approximation) and perform iterative abstraction refinement until a property (or

assertion) is validated or falsified; whereas our algorithm starts with an under-approximation of
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program behaviors and adds more behaviors based on counterexamples. CEGAR based invariant

inference techniques do not have strict termination guarantees; using such techniques with incre-

mental correlation algorithms (that can handle program-pairs with large structural differences)

is not straightforward and has not been demonstrated yet. Our proposed invariant inference

algorithm, on the other hand, is incremental and has bounded runtime guarantees for finite in-

variant grammars and hence can be used to construct a robust translation validator along with

an incremental correlation algorithm.

4.2 Sifer Algorithm

We identify the following improvement opportunities with respect to the state-of-the-art invariant

inference algorithms:

1. The algorithm should work in a static equivalence checking setting i.e. it should not require

any input execution traces.

2. The algorithm should be powerful enough to find inductive invariants between state elements

of programs that have significant syntactic gap across them and hence do not rely on syntax-

based heuristics for inference.

3. The algorithm should be scalable and should have a bounded runtime, so that it can be

used with incremental correlation algorithms in an equivalence checker. The invariant

inference procedure needs to be efficient enough to be invoked multiple times as a part of

an incremental correlation algorithm.

In this section, we present a counterexample-guided invariant inference algorithm, called Sifer 1

to address the limitations of the prior work. The Sifer algorithm uses the following key ideas:

1. It is based on a data-flow analysis (DFA) framework. For incrementally constructed graphs

(such as the product-CFGs constructed by Counter correlation algorithm), the use of DFA

formulation allows incremental and efficient invariant inference. At each incremental step,

1The name Sifer represents a Static, Scalable, and Simple Invariant inFERence algorithm.
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when a new product-CFG edge is added to the partial product-CFG, the invariant inference

computation at all nodes does not start from scratch (or the strongest possible invariant,

namely false) but is refined using the DFA transfer function and meet operators from the

invariants inferred at the previous step.

2. It is a static invariant inference algorithm which results in high applicability in an equiv-

alence checking context. Further, such an algorithm has higher scope for automation and

practical implementation as it does not depend on availability of high-coverage execution

traces for precise invariant inference.

3. Despite absence of execution traces, the algorithm can efficiently infer expressive invariants

like affine invariants by using the counterexamples (aka concrete models) generated by the

SMT solver. In contrast, most of the prior static invariant inference techniques used in

equivalence checking were limited to enumeration of predicates drawn from simple grammars

based on equality or inequality relations.

4. It also maintains the set of counterexamples (generated or reached after propagation) at

each (product-CFG) node. This set of counterexamples are used by the algorithm itself to

infer complex invariants in a tractable manner and can be used by other procedures like

the correlation algorithm simultaneously.

5. It models the state-elements of the program-pair using bitvectors instead of integers for

invariant inference. This results in precise invariants which can prove equivalence for more

program-transformation pairs.

4.2.1 Strongest Inductive Invariant Cover

Given a (partial) product-CFG, the Sifer algorithm computes the strongest inductive invariant

cover (Invn) at each node n of the product-CFG, where the invariant Inv is formed by conjuncting

atomic predicates drawn from a grammar G. The Sifer algorithm restricts the potential grammars

G such that the candidate invariants Inv formed by conjuncting atomic predicates drawn from

G form a semi-lattice.

In the equivalence checking context, these invariants Inv associated with the product-CFG nodes
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int a[20][10];

C0: void foo() {

C1: for (int i=0; i<20; i++){

C2: for (int j=0; j<10; j++){

C3: a[i][j] = i + j;

C4: }

C5: }

C6: }

Figure 4.2: An example C program that initializes an array a.

are mostly used to prove equivalent observable behavior across the specification program C and

the implementation program A. Thus, the atomic predicates in these invariants should relate all

variables/state-elements in the implementation program A that affect the observable behavior of

that program with some variables/state-elements of the specification program C. Although the

problem of identifying the required invariants to prove equivalence across any given program-

pair is undecidable, invariants formed by conjuncting these atomic predicates relating the state-

elements usually suffice for the transformations performed by the modern optimizing compilers.

Since the invariant Inv inferred at a product-CFG node n by the the Sifer algorithm represents

the strongest inductive invariant cover within the constraints of the chosen grammar G, in this

section, we formally introduce the notion of a strongest inductive invariant cover.

Invariant Cover: The node-invariant Invn associated with the (product-)CFG node n is also

termed as an invariant cover because it is an over-approximate representation of the set of all

concrete machine states that are possible at a node n in the abstract domain represented by the

grammar G.

For example, consider the program shown in fig. 4.2 and the grammar G as {v ≤ c}, where v is

a program variable and c is an integer constant. Then the invariant {i ≤ 100 ∧ j ≤ 200} is an

invariant cover at node C2 because the invariant is an over-approximation of the set of all possible

concrete values of variable i and j at node C2.

Henceforth, we will use the term invariant cover and invariant interchangeably.
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Inductive Invariant Cover: An invariant-cover Invnd at the (product-)CFG node nd is in-

ductive across an edge ω[n→ nd] in the CFG, if the following relation holds:

{(σω ∧ Invn ∧ econdω)⇒ WPω(Invnd)}

This is equivalent to:

{(SPω(Invn)⇒ Invnd)}

Here, σω denotes the UB condition and econdω denotes the edge condition for the edge ω. Also,

WPω(p) represents the weakest precondition of predicate p and SPω(p) represents the strongest

postcondition of predicate p across the transition through edge ω.

The above condition for inductive invariant cover states that the set of concrete states represented

by the invariant cover Invnd is a superset of the set of concrete machine states reachable at node

nd through node n. For the example program shown in fig. 4.2 and the invariant cover {i ≤ 20}
at node C1, the invariant cover {i ≤ 100 ∧ j ≤ 200} is an inductive invariant cover at node C2.

Strongest Invariant Cover: The invariant cover Inv is the strongest invariant cover for a

given set of concrete machine states Γ (i.e. SInvCover(Γ)) if the following relation holds:

Inv = SInvCover(Γ) if @Inv′ | (Inv ; Inv′ ∧ Inv |= Γ ∧ Inv′ |= Γ ∧ Inv′ ⇒ Inv)

where Inv |= Γ represents that all concrete states in the set Γ satisfy the invariant Inv.

The above condition states that there does not exist another invariant cover Inv′ drawn from the

grammar G such that it is both strictly stronger than the invariant cover Inv and satisfies all

concrete models in the set Γ. In other words, it is not possible for an invariant cover Inv′ that

the set of concrete states represented by it is a superset of the set Γ and is a strict subset of the

set of concrete machine states represented by the invariant cover Inv.

For example, if the set Γ = {(i ← 0); (i ← 5); (i ← 17)} and the grammar G = {v ≤ c}, the

invariant cover {i ≤ 20} is not the strongest invariant cover for the set Γ because there exists an

invariant cover Inv′ = {i ≤ 19}. The strongest invariant cover for the set Γ is {i ≤ 17}.
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Strongest Inductive Invariant Cover: The invariant cover Invnd is the strongest inductive

invariant cover if Invnd is both an inductive invariant cover and is the strongest invariant cover

of all possible concrete machine states at the node nd.

For the example program shown in fig. 4.2 and the invariant cover {i ≤ 20} at node C1, the

invariant cover {i ≤ 100 ∧ j ≤ 200} is not the strongest inductive invariant cover at node C2

because there exists an inductive invariant cover Inv′nd = {i ≤ 50 ∧ j ≤ 100}. The strongest

inductive invariant cover at node C2 is {i ≤ 19 ∧ j ≤ 10}.

4.2.2 Data-Flow Analysis Framework

Sifer algorithm is based on a forward Data-Flow Analysis (DFA) [2] and uses the Kildall’s worklist

algorithm to compute the maximum fixed-point (MFP) of the data-flow formulation. The worklist

algorithm is an optimized algorithm as compared to the naive iterative algorithm for solving the

data-flow formulation for a given CFG. It is based on the premise that input data-flow value

at a CFG node is directly determined by the output values at its predecessor nodes and will

remain same if the output value of any of the predecessors has not changed. Therefore, instead

of re-computing the values for all nodes at each iterative step, the Kildall’s worklist algorithm

maintains a list of nodes to be processed as a worklist. The algorithm initializes the worklist

with the start nodes (or exit nodes in case of a backward data-flow analysis). In each iteration, a

node is removed from the worklist and the output value is computed for that node. If the newly

computed output value is different from the previous output value for that node, its successors

are added to the worklist. For efficiency, a node should not be present in the worklist more than

once. The DFA formulation for the Sifer algorithm is described in table 4.1.

Domain of DFA Values

The values computed through the DFA are represented by a tuple (Invn,Γn) where Invn denotes

the invariant at node n and Γn denotes a set of counterexamples at node n. As noted in sec-

tion 3.3.1, a counterexample refers to a concrete machine state in the product-CFG formed by

assigning concrete values to the state elements of the abstract machine state for the product-CFG.
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Table 4.1: Data-flow formulation of Sifer algorithm for inference of inductive invariants drawn
from the input grammar G.

Domain

{
(Invn,Γn) Invn is a conjunction of predicates drawn

}
from G and Γn is a set of counterexamples

Direction Forward

Boundary condition out[nstart] = (Pre,{})
(Pre represents the precondition at start node)

Initialization to > in[n] = (False,{}) for all non-start nodes

Transfer function fω as specified in fig. 4.3

Meet operator ⊗
(Invn,Γn)← (Inv1n,Γ

1
n)⊗ (Inv2n,Γ

2
n)

Γn ← Γ1
n ∪ Γ2

n,

Invn ← SInvCover(Γn)

We refer to these concrete machine states as counterexamples because these are created from the

models generated by SMT solver for not-provable queries such as those made during invariant

inference shown at line number 4 in fig. 4.3.

The Sifer algorithm is parameterized for an input grammar G such that the invariant Invn

is formed by conjuncting atomic predicates drawn from G. The atomic predicates relate the

variables/state-elements of the specification program C and the implementation program A. The

Sifer algorithm restricts the potential grammars G to be used such that the candidate invariants

enumerated from G form a semi-lattice with a finite height. The proposed DFA converges in a

bounded runtime for such finite grammars making it amenable for incremental correlation based

equivalence checkers.

At any node n (other than the start node), the invariant Invn represents the SInvCover of the

set of counterexamples Γn at that node, where the SInvCover(Γn) is defined as the strongest

invariant generated by conjuncting atomic predicates drawn from the input grammar G such that

all concrete models in set Γn satisfy that invariant. The background on the strongest invariant

cover is presented in section 4.2.1. Since the possible invariants Invn at a node n form a semi-

lattice and an invariant Invn and the set of counterexamples Γn are related by the SInvCover

relation, the candidate set of counterexamples at a node also form a semi-lattice and are related

by a partial order operator ≤ defined as: (Γ1 ≤ Γ2) ⇔ (SInvCover(Γ2) ⇒ SInvCover(Γ1)). In
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other words, Γ1 is above Γ2 in the lattice if the SInvCover of Γ1 is stronger than the SInvCover

of Γ2. The top (>) value of Γ in this semi-lattice defined by partial order operator (≤) is an

empty set because the SInvCover of an empty set of counterexamples is the strongest possible

invariant i.e. False. The bottom value of Γ in this semi-lattice depends on the input grammar

G such that the SInvCover for that Γ is the weakest possible invariant cover i.e. True.

Initialization of DFA Values

The boundary condition initializes the invariant Invnstart at the start node (for example the node

(C0,A0) in the product-CFG shown in fig. 3.1c) to the precondition that asserts the equality

of non-temporary memory states (H) and input arguments while considering ABI and calling

conventions. The boundary condition also initializes the counterexample set Γnstart to the empty

set. For each node n other than the start node, the tuple (Invn, Γn) is initialized to the top-most

values in their respective semi-lattices. Thus, the invariant Invn is initialized to False (i.e. the

strongest possible invariant cover) and the counterexample set Γn is initialized to an empty set

(as the SInvCover of empty set is the strongest possible invariant False).

Transfer Function and Meet Operator

The evaluation of the transfer function fω for an edge ω[n→ nd] in the CFG involves a fixed-point

procedure as shown in fig. 4.3. It takes as input the invariant Invn and counterexample set Γn at

node n. The transfer function fω also involves the application of the meet operator ⊗ with the

old DFA value (Invnd ,Γnd) at the target node nd of the edge. The output of the transfer function

is the new DFA value of the tuple (Invnd ,Γnd) = fω(Invn,Γn, Invnd ,Γnd) at the target node nd.

At a high-level, the DFA transfer function across an edge ω[n → nd] from node n to node

nd involves: (1) Identifying the strongest invariant Invnd that is weaker than the strongest-

postcondition of the invariant at n, Invn across edge ω (inductive invariant), and (2) Adding

counterexamples to the set Γnd based on the proof obligations generated during invariant inference

such that their strongest invariant cover is Invnd .

The DFA’s meet operator ⊗ at the node nd involves computing the union of the input counterex-

ample sets (Γ1
nd ∪ Γ2

nd) and then updating the strongest invariant cover Invout
nd accordingly.
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Algorithm 7: Transfer function for edge ω[n → nd] along with the meet operator at
the target node nd

1 Function fω(Invn,Γn, Invnd ,Γnd)

2 Γp
nd ←[ pω(Γn);

3 (Invcan
nd ,Γ

can
nd )←[ (Γnd ⊗ Γp

nd); // Meet operator

4 while SAT(Invn ∧ ¬WPω(Invcan
nd ), γn) do

5 γnd ←[ pω(γn);

6 (Invcan
nd ,Γ

can
nd )←[ (Γcan

nd ⊗ {γnd}); // Meet operator

7 end

8 return (Invcan
nd ,Γ

can
nd );

9 Function (Γ1
nd ⊗ Γ2

nd)

10 Γout
nd ←[ Γ1

nd ∪ Γ2
nd ;

11 Invout
nd ←[ SInvCover(Γout

nd );

12 return (Invout
nd ,Γ

out
nd );

13 .

Figure 4.3: Transfer function and Meet operator for Invariant Inference DFA in table 4.1.
SInvCover() computes the strongest invariant cover for a set of counterexamples. pω repre-
sents the concrete execution function for edge ω. γn is the counterexample returned by the SMT
solver for a SAT() query.

The fixed-point algorithm implemented by the function fω starts by propagating (or executing)

the input counterexample set Γn across the edge ω using its concrete execution function pω. The

set of propagated counterexamples at node nd is denoted by Γp
nd . The propagation of the coun-

terexample set Γn across the edge ω to result in the counterexample set Γp
nd is an optimization

step in the algorithm to potentially reduce the number of iterations of the fixed-point loop (line

number 4-7 in fig. 4.3). By application of the meet operators ⊗, the set of propagated counterex-

amples Γp
nd is added to the existing set Γnd , and a new candidate set Γcan

nd is obtained. The meet

operator also returns the new candidate invariant Invcan
nd at node nd by computing the strongest

invariant cover of the counterexample set Γcan
nd .

To check the inductive property of the new candidate invariant Invcan
nd , a proof obligation rep-

resented through a relational Hoare triple [6, 31] as {Invn}ω{Invcannd } is generated at node n.
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This Hoare triple states that if the machine starts at node n such that it satisfies {Invn}, and

the edge ω is executed, then the resulting machine state would satisfy {Invcan
nd }. To discharge

proof obligations, the Hoare triple {Invn}ω{Invcannd } is converted (or lowered) to a propositional

boolean logic formula at node n of the form Invn ⇒ WPω(Invcan
nd ), where WPω(Invcan

nd ) computes

the weakest precondition of Invcan
nd across ω. Since in the context of a product-CFG, an edge ω

represents a finite pathset of paths with a finite length, we use standard formulations [21, 26] for

inferring the weakest-precondition (WPω) across the edge ω.

The proof obligation for this Hoare triple boolean formula is discharged through an off-the-shelf

SMT solver with quantifier-free bitvector, array and uninterpreted function theories. If the proof

succeeds, Invcan
nd holds the strongest-possible inductive invariant at node nd for the grammar G

and Γcan
nd holds the output set of counterexamples at nd, both of which are then returned by the

algorithm.

If the proof obligation for the current candidate invariant Invcan
nd does not succeed, then a coun-

terexample γn at node n is returned by the SMT solver. The counterexample γn represents a

concrete assignment to the program variables or state-elements at the node n such that it satisfies

the invariant Invn but does not satisfy the weakest-precondition of the candidate invariant across

the edge ω, i.e., WPω(Invcan
nd ). This new counterexample γn is propagated to node nd by applying

the concrete execution function pω for the edge ω[n → nd] and the propagated counterexample

γnd is added to the counterexample set Γcan
nd (line number 5 and 6 in fig. 4.3).

Unlike the counterexample propagation performed at line number 2 of the algorithm (fig. 4.3),

the propagation of the newly generated counterexample γn across the edge ω[n → nd] at line

number 5 to result in γnd is not an optimization but is necessary to weaken the not-provable

candidate invariant Invcan
nd by recomputing the strongest invariant cover (SInvCover) of the new

counterexample set Γcan
nd . The fixed-point procedure then again discharges the proof obligation

for checking the inductive property of this new candidate invariant. The fixed-point procedure

exits either when the candidate invariant Invcan
nd is proven inductive or it reaches the bottom of

the semi-lattice in which case the computed invariant Invcan
nd is True.



Counterexample-Guided Invariant Inference 83

4.2.3 Characteristics of the Algorithm

Precise Invariant: The invariant Invcan
nd returned as solution by the data-flow analysis formu-

lation in section 4.2.2 is the strongest inductive invariant cover at the node nd that can be

constructed by conjuncting the atomic predicates drawn from the input grammar G.

The proof of this claim follows from the following properties of the algorithm:

(a) The output of the transfer function fω is an inductive invariant because when the fω com-

putation shown in fig. 4.3 returns, (Invn ∧¬WPω(Invcan
nd )) is UNSAT and there is no concrete

model that both satisfies Invn and does not satisfy WPω(Invcan
nd ). In other words, all possible

states at node n that satisfy Invn also satisfy WPω(Invcan
nd ), i.e. Invn ⇒ WPω(Invcan

nd )

(b) The inductive claim stated in the above point also implies that when the fω computation

for an edge ω[n→ nd] exits, the counterexample set Γnd is a superset of the concrete states

reachable at node nd from node n, i.e. ConcreteStates(SPω(Invn)) ⊆ Γnd .

(c) The invariant Invcan
nd is computed by the application of the SInvCover on the counterex-

ample set Γnd . As discussed in section 4.2.1, SInvCover(Γ) returns the strongest invariant

cover Inv such that there does not exist another invariant cover Inv′ drawn from the gram-

mar G that is both stronger than the invariant cover Inv and satisfies all concrete models

in the set Γ. Thus for the edge ω[n→ nd],

@Inv′nd | (Invnd ; Inv′nd ∧ Invnd |= Γnd ∧ SPω(Invn)⇒ Inv′nd ∧ Inv′nd ⇒ Invnd).

Thus, the invariant Invcan
nd represents both an inductive invariant cover and the strongest invariant

cover at the node nd.

Termination: If the semi-lattice formed by the candidate invariants drawn from the grammar

G has finite height, then the transfer function computation is guaranteed to converge in a bounded

number of steps.

This holds because in each iteration of the fixed-point transfer function algorithm, the new

counterexample γnd added to the counterexample set Γnd does not satisfy the current candi-
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date invariant Invcan
nd at nd. As a result, the next generated invariant candidate new-Invcan

nd =

SInvCover(γnd∪Γnd) would always be strictly weaker than the previous Invcan
nd = SInvCover(Γnd).

In other words, new-Invcan
nd < Invcan

nd always because the new-Invcan
nd includes an extra point γnd

that was absent in Invcan
nd . In the worst case, the number of steps or counterexamples required

is upper bounded by the height of the semi-lattice formed by the candidate invariants Invcan
nd

because at each step (or by adding each new counterexample) the candidate invariant Invcan
nd gets

strictly weaken and at least goes one step down in the semi-lattice till it reaches the weakest

possible invariant, i.e. True. The height of the semi-lattice formed by the candidate invariants

Invcan
nd depends on the grammar G from which the atomic predicates for the invariant are chosen.

Monotonicity: The transfer function fω across an edge ω[n→ nd] is always monotonic. Thus,

if the invariant cover Inv1n given as input to the function fω is weaker than the invariant cover

Inv2n, then the output fω(Inv1n) is weaker than the output fω(Inv2n).

The proof of this claim follows from the monotonicity of the strongest postcondition, i.e.,

{Inv1n ≤ Inv2n ⇒ SPω(Inv1n) ≤ SPω(Inv2n)},

and from the Precise Invariant claim, i.e. the transfer function output is the strongest inductive

invariant cover such that

{SPω(Invn) ≤ fω(Invn)} and {SPω(Inv1n) ≤ SPω(Inv2n)⇒ fω(Inv1n) ≤ fω(Inv2n)}

Both the monotonicity of the strongest postcondition computation and the Precise Invariant

claim together imply that: Inv1n ≤ Inv2n ⇒ fω(Inv1n) ≤ fω(Inv2n)

As an aside, we note that while our data-flow analysis algorithm computes the maximum fixed-

point of the semi-lattice, the generated solution may be weaker than the “meet-over-paths”

solution. This is true because our transfer functions, though monotonic, are not necessarily

distributive.
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Algorithm 8: Algorithm to find the most precise inductive A-invariant

1 Function ◊�Post[τ ](Invn)

2 Invcannd ←[ False;

3 while SAT(Invn ∧ ¬WPω(Invcannd ), γn) do

4 γnd ←[ pω(γn);

5 Invcannd ←[ Invcannd t β(γnd);

6 end

7 return Invcannd ;

Figure 4.4: SMT solver based algorithm to find the most precise inductive A-invariant proposed
by the abstract interpretation based prior work [68, 58]. Here, A denotes the abstract domain.

4.2.4 Comparison with the abstract interpretation based prior work

Abstract interpretation based theoretical framework was proposed by [58, 68] to compute the most

precise abstraction of a program in a given abstract domain using an SMT solver. The transfer

function algorithm fω in our data flow analysis formulation can be considered as an adaption

of this theoretical framework, where the grammar G corresponds to the abstract domain A, the

execution function pω corresponds to the application of the concrete transformer Post[τ ] and the

transfer function fω to compute the strongest inductive invariant cover Inv corresponds to the

application of the ◊�Post[τ ] operator to find the most precise inductive A-invariant. However, the

proposed transfer function fω shown in fig. 4.3 has significant improvements as compared to the

theoretical ◊�Post[τ ] operator used by the prior work shown in fig. 4.4.

Worst Case Bound: The first major difference is that the ◊�Post[τ ] operator always initializes

the candidate invariant Invcannd to False and weakens it till it is provably inductive. In contrast,

the transfer function fω in the proposed DFA framework does not necessarily begin the invariant

computation from the topmost element in the semi-lattice (i.e. False). It first propagates

(or executes) the counterexamples in the set Γn over the edge ω using its concrete execution

function pω and adds the resulting counterexamples to the set Γp
nd (line number 2 in fig. 4.3).

The transfer function fω then initializes Invcannd with the invariant cover obtained after applying

the meet operator on the old DFA value at the node nd and the concrete set Γp
nd obtained after
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propagation (line number 3 in fig. 4.3).

If “h” denotes the height of the semi-lattice formed by the candidate invariants drawn from

the grammar G and ‘N ’ denotes the number of nodes in a given product-CFG then the total

number of computations (or SMT solver queries) required by the Sifer algorithm (using fω as

DFA transfer function) for computing the strongest inductive invariant cover at each node of

the given product-CFG is upper-bounded by O(N ∗ h). In contrast, the ◊�Post[τ ] operator based

invariant inference algorithm would always start from the False invariant and has the worst case

bound O(N ∗ h2).

Further, the average number of computations (or the SMT solver calls) required are much less

because other than starting from the previous invariant cover DFA value instead of False, the

proposed fω operator also maintains the counterexamples at the (product-CFG) nodes and exe-

cutes these counterexamples using the concrete execution function pω (line number 2 in fig. 4.3)

across the edge ω to obtain new concrete mappings at the target node of the edge. These coun-

terexamples reduce the number of iterations or SMT solver queries required till the inductive

invariant is reached. Further, the set of counterexamples maintained at each (product-CFG)

node by the proposed DFA formulation can also be used by other procedures like the correlation

algorithm and brings the static equivalence checkers more close to the data-driven equivalence

checkers in terms of available data to guide the search for the proof.

Practical Algorithm: Another important difference is that the ◊�Post[τ ] operator does not

provide insights on the practical implementation of the representation function β that converts

a given concrete assignment to an abstract value and t operator that joins two given abstract

values. Our proposed transfer function, on the other hand, performs set union to join two DFA

values and uses the SInvCover operator explained in section 4.2.1 to find the strongest invariant

cover for a set of concrete states. We present the algorithm used to find the SInvCover for

selected grammars in section 4.2.5.

Incremental Algorithm: For incrementally constructed graphs (such as the product-CFGs

constructed by Counter algorithm or [14]), the Sifer algorithm as compared to the ◊�Post[τ ] oper-

ator allows incremental yet precise invariant inference.
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The incremental correlation algorithms, at each step take a partial product-CFG π as input

and construct a new product-CFG πnew by adding a new edge ω[n → nd] to it. Based on the

proposed DFA formulation discussed in section 4.2.2, Sifer algorithm does not start the invariant

computation from scratch after adding a new edge to the partial product-CFG π, but re-uses the

DFA values (Inv,Γ) computed for π to initialize the DFA values at the nodes of πnew. Since, the

addition of a new edge can only increase the number of behaviors (or constraints) at the target

node nd of the newly added edge and the reachable nodes from the target node nd in the product-

CFG πnew. Thus, the strongest invariant cover at the nodes of the new product-CFG πnew after

adding the edge could only get weakened, as compared to the invariant cover at the same nodes

in the old product-CFG π. The strongest inductive invariant cover Invn{π} at the node n in the

partial product-CFG π is stronger than the strongest inductive invariant cover Invn{πnew} at the

node n in the partial product-CFG πnew, i.e. ∀n ∈ π, (Invn{π} ⇒ Invn{πnew})

Starting from the DFA values at the respective nodes of the previous product-CFG π, the

data-flow analysis construction ensures that the Maximum Fixed Point (MFP) solution i.e. the

strongest inductive invariant cover is obtained at every node of the new product-CFG πnew. Fur-

ther, the nodes that are not reachable from the target node of the newly added edge, the invariant

cover in the old product-CFG π is also the strongest invariant cover in the new product-CFG

πnew and no computation needs to be performed for these nodes. Thus, the data-flow analy-

sis formulation of the invariant inference algorithm while performing incremental computation

towards invariant computation remains precise for all (product-CFG) nodes at each step of an

incremental correlation algorithm [14, 28].

4.2.5 Computation of the SInvCover()

SInvCover() for Affine Invariant Grammar

The atomic predicates belonging to an affine invariant grammar are of the form

n∑
i=1

ci ∗ vi + c0 = 0 (4.1)
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where, vi represent state-elements of the program (including e.g., values in variables and/or

registers/memory locations) and ci represent constant values satisfying the above equation. In

case of an equivalence checker, the program variables v may belong to the specification program

C or the implementation program A and an atomic predicate thus represents a relation between

variables across the two programs. The precise modeling for programming languages like C and

assembly involves using bitvector representation for the state-elements instead of a real number

or integer representation. In this modeling, for an atomic predicate as specified in eq. (4.1), all

program variables vi and the constants ci are bitvectors of the same width (say w). For example,

the program state-elements vi and the constants ci satisfying the affine relation can be bitvectors

of width 32. Further, the multiplication (∗) and addition (+) operators in this modeling represent

two’s complement bitvector-multiplication and bitvector-addition respectively with wrap-around

semantics for overflow.

In the geometrical representation, for real numbered values, i.e. vi ∈ R (i ∈ [1, n]), an affine-

invariant represents the basis for a linear subspace (e.g., point, line, plane, etc.) of Rn [61].

For bitvector arithmetic, the geometrical interpretation is less clear: e.g., consider two program

variables v1, v2 ∈ B32 (where Bw represents the set of all bitvectors of width w). Also, consider

two affine-invariants Inv1 = ((v1 = 231) ∧ (v2 = 0)) and Inv2 = ((v2 = 2.v1) ∧ (v2 = 4.v1)).

While Inv1 represents a singleton point = (231, 0) in B2
32, Inv2 represents an intersection of two

“bitvector lines” of slopes 2 and 4 respectively; these two lines intersect on two points, namely

(v1 = 0 ∧ v2 = 0) ∨ (v1 = 231 ∧ v2 = 0). However, we will still call the bitvector invariant formed

by conjuncting atomic predicates of the form specified in eq. (4.1), affine-invariant, even though

they may not actually represent a linear subspace for bitvectors.

If matrixM is formed by using the concrete points in the counterexample set Γ as its rows, then

for real number program values, i.e. vi ∈ R (i ∈ [1, n]), the SInvCover(Γ) involves computing

the basis of the column space of the matrixM. For bitvector domain, the algorithm presented by

Müller-Olm et al. [50] computes the nullspace basis of the matrixM having bitvector values and

thus can be used for SInvCover() computation for bitvector valued counterexample set. Given

the matrixM with n bitvector variables of width w, i.e. M∈ Bnw, the time taken by the nullspace

basis computation algorithm presented by Müller-Olm et al. [50] is O(n3 ∗ log(w)). Further, it

is proven by Müller-Olm et al. [50] that the length of a strictly increasing chain of Bnw-modules,
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which corresponds to the height of the semi-lattice formed by the affine bitvector invariants with

n number of variables of width w, is bounded by (n ∗ w + 1).

SInvCover() for Binary-Relation Invariant Grammar

The binary-relation invariant grammar has atomic predicates of the form (vi R vj), where, vi

and vj represent two bitvector state-elements of the program (including e.g., values in variables

and/or registers/memory locations) and R represents a binary relation such as inequality (≤) or

equality (=). If the total number of interesting program variables for which the binary relation R
needs to be computed is n, then the algorithm to compute SInvCover(Γ) across these variables

for a given counterexample set Γ involves enumerating all n2 atomic predicates of the form

∀(i, j) | i 6= j and (i, j) ∈ [1, n] : {vi R vj}

All atomic predicates that are not satisfied by the set of counterexamples (Γ) are then eliminated

and the conjunction of remaining atomic predicates is returned as the strongest invariant cover

by the SInvCover() procedure.

4.2.6 Explaining the Sifer algorithm through an example

Consider, one of the affine invariant required to be inferred at node (C3,A6) in the product-CFG

shown in fig. 3.2c is (r1 - b - 4*i = 0).

Prior static invariant inference techniques would generate the affine invariant guesses of the

form
∑n

i=1 civi + c0 = 0, where vi represents a bitvector program variable (including registers in

assembly) and ci represents a bitvector constant. The guessing phase is followed by a fixed-point

checking phase which iteratively prunes away the guesses which are not inductively provable.

For grammars like affine invariants (as required in this case), the total number of guesses and

the required proof queries are intractably large (in the order of 2w for program variables with a

bitwidth of w). For illustration, we discuss the inference of this invariant using the proposed Sifer
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algorithm which uses the counterexamples (aka concrete states) generated by the SMT solver to

tractably infer the required invariant. The SInvCover() computation procedure for the required

affine invariant grammar is already discussed in section 4.2.5.

Consider the partial product-CFG (π) which only has nodes (C0,A0) and (C3,A2) and two

edges ((C0,A0) → (C3,A2)) and ((C3,A2) → (C3,A2)). Also, consider the strongest invari-

ant cover Invn and the counterexample set Γn at node n = (C3,A2) computed by running Sifer

on π as

Invn =

(
(LEN = 1000); (r1− i = 0);

(r2− sum = 0); (b = 32);

)
, Γn =


LEN i r1 b

1000 498 498 32

1000 499 499 32


Here, the counterexample set is shown using the matrix representation and each counterexample

or concrete state is the set is shown as a row of the matrix. Also, the mappings for the memory

and other program variables are not shown for ease of exposition.

Edge ((C3,A2) → (C3,A6)) Added:

As a incremental step, the node (C3,A6) along with the edge ((C3,A2) → (C3,A6)) is added to

get the new partial product-CFG (πnew). Sifer being an incremental invariant inference algorithm,

reuses the DFA value computed for the product-CFG π to initialize the values for the product-

CFG πnew (as discussed in section 4.2.4). Also, the DFA value at the newly added node nd =

(C3,A6) is initialized to ( Invnd = False, Γnd = ∅ ).

Since, both the nodes (C0, A0) and (C3,A2) are not reachable from the target node of the newly

added edge ((C3,A2) → (C3,A6)), the invariant inference is not re-run for these nodes and only

involves computing the transfer function fω across the newly added edge ω[(C3, A2)→ (C3, A6)].

The first step in the fω computation is to execute (or propagate) the counterexamples in the

set Γn over the edge ω[(C3, A2)→ (C3, A6)]. The first counterexample has the concrete mapping

for register r1 = 498 and hence this counterexample does not satisfy the condition for the edge

(C3, A2)→ (C3, A6) (i.e. (r1 + 1 == LEN/2) ∧ (i < LEN)). The second counterexample (with con-

crete mapping for register r1 = 499) satisfies the edge condition and is executed successfully on
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the edge. Thus, in this case, a singleton set Γp
nd obtained after execution of the counterexamples

is: Γp
nd =

{
LEN i r1 b r3

1000 500 2032 32 4032

}

The new DFA value (Invcan
nd ,Γ

can
nd ) is obtained after applying the meet operator to the set Γp

nd

which is a singleton set in this case and the previous value of Γnd which is empty in this case.

Invcan
nd =

(
(LEN = 1000); (i = 500); (r1 = 2032)

(b = 32); (r3 = 4032);

)
Γcan
nd =

{
LEN i r1 b r3

1000 500 2032 32 4032

}

The algorithm then proceeds by checking if the candidate invariant cover (Invcan
nd ) is inductively

provable by discharging the proof obligation for the weakest precondition of the candidate in-

variant cover (Invcan
nd ) across the edge ω[(C3, A2)→ (C3, A6)]. In this case, the proof obligation

results UNSAT as the above inferred invariant cover from the propagated counterexample set itself

is inductively provable across the edge ω and the invariant inference DFA transfer function re-

turns the above obtained counterexample set and the invariant cover as output. This highlights

the advantage of the incremental characteristic to the Sifer algorithm that minimizes the SMT

solver queries by re-using the previous counterexamples through concrete execution.

Edge ((C3,A6) → (C3,A6)) Added:

At the next incremental step, the above partial product-CFG πnew is considered as the input

partial product-CFG π and a new edge ω[(C3, A6)→ (C3, A6)] is added to obtain the new product-

CFG πnew. Being an incremental algorithm, the evaluation of the transfer function fω across the

newly added edge starts with the DFA value computed at the previous step. Thus the invariant

Invn and the counterexample set Γn at node n = (C3,A6) is same as shown above as the return

values for the previous step. Also, for the edge ω[(C3, A6) → (C3, A6)], the node n and nd are

same, so the initial counterexample set Γnd at node nd = (C3,A6) is same as Γn.

The counterexample in the singleton set Γn satisfies the condition for the edge ω[(C3, A6) →
(C3, A6)] (i.e. (r1 + 16! = r3) ∧ (i < LEN)) and is executed successfully on the edge. The set Γp

nd

obtained after execution of the counterexample set Γn is:

Γp
nd =

{
LEN i r1 b r3

1000 504 2048 32 4032

}



92 Counterexample-Guided Invariant Inference

The new DFA value (Invcan
nd ,Γ

can
nd ) is obtained after applying the meet operator to this above Γp

nd

set and the previous value of Γnd both of which are singleton sets in this case.

Invcannd =

(LEN = 1000); (b = 32); (r3 = 4032);

(i ∗ 1073741824 = 0);

(r1− b− 4 ∗ i = 0);

 Γcan
nd =


LEN i r1 b r3

1000 500 2032 32 4032

1000 504 2048 32 4032


In this case, the inferred invariant cover Invcan

nd is inductively provable across the edge ω[(C3, A6)→
(C3, A6)] in the first iteration itself and has the required invariant: (r1 - b - 4*i = 0). But, in

general, if the inferred invariants are not inductively provable then a counterexample (γn) would

be returned by the SMT solver at node n = (C3,A6). The returned counterexample is then exe-

cuted over the edge ω[(C3, A6)→ (C3, A6)] and added to the candidate counterexample set. The

candidate counterexample set with this new concrete state would then result in a weaker invari-

ant cover candidate. The algorithm performs this inductive check followed by counterexample

execution loop until the inferred invariant cover becomes inductively provable.



Chapter 5

Unoptimized-IR-to-Optimized-

Assembly Translation

Validator

In the context of compilation of imperative programming languages, the equivalence needs to be

computed between the high-level program specification and the low-level assembly program im-

plementation. In this manifestation of the equivalence checking problem, there is a large syntactic

gap between the specification and the implementation and the required invariants to prove equiv-

alence corresponds to relationships between variable states in high-level program representation

and register/memory-location states in low-level hardware syntax. Further, computing these re-

lationships automatically across two different syntaxes in the presence of aggressive optimizations

is much more challenging.

In this section, we present an Unoptimized-IR-to-Optimized-Assembly translation validation tool,

COUNTER1, which can automatically compute equivalence across an unoptimized IR speci-

fication and the optimized 32-bit x86 assembly implementation of a program. COUNTER is a

robust and comprehensive equivalence checking tool as it can automatically compute equivalence

1We use the same name for the tool as our proposed correlation algorithm
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across a long and rich pipeline of transformations and optimizations at the scale of real-world

programs. Further, COUNTER is a cohesive tool as it uses both an advanced (and incremental)

correlation algorithm (Counter) to handle significant structural differences due to composition

of multiple transformations and an expressive (and purely static) invariant inference algorithm

(Sifer) to generate expressive invariants across two different syntaxes.

To our knowledge, our proposed COUNTER tool is the first demonstration of a completely au-

tomatic black-box equivalence checker that can successfully compute equivalence across the un-

optimized IR and the optimized x86 assembly program. This includes the long and rich pipeline

of transformations like loop unrolling, peeling, unswitching, versioning, loop inversion, vectoriza-

tion, register allocation, code hoisting, strength reduction, dead code elimination, etc. An online

demo of the proposed equivalence checking tool COUNTER is available at [1].

We begin the discussion on COUNTER tool by discussing the implementation details in section 5.1.

We present the evaluation for COUNTER tool in section 5.2 and its limitations in section 5.3.

We present a detailed comparison of our tool with respect to prior equivalence checking tools in

section 5.4.

5.1 Implementation Details

In this section, we present the implementation details of the tool.

5.1.1 Logical Representation

We convert the C program to a custom IR that resembles LLVM IR with the only major differ-

ence that our IR does not support LLVM’s undef and poison values and instead treats all error

conditions as UB. We represent the IR and x86 assembly programs as CFGs by adding a node

for each PC and an edge for each possible control-flow across PCs. A CFG’s machine state is a

symbolic representation of the abstract machine state encoded using bitvectors to represent IR

variables and x86 registers. Further, a byte-addressable array is used to represent memory.
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We use our own symbolic representation which is very similar to SMT’s QF AUFBV2 theory. The

primary difference is that our custom SMT representation uses higher-level select and store opera-

tors that have an associated sz parameter: selsz(arr, addr) returns a little-endian concatenation

of sz bytes starting at address addr in the array arr. Similarly, stsz(arr, addr, data) returns

a new array that has contents identical to arr except for the sz bytes starting at addr which

have been replaced by data in little-endian format. These higher-level operators help us reason

about equivalence of memory-regions through lightweight decision procedures that we have imple-

mented; offloading such equivalence proof obligations to an off-the-shelf SMT solver would require

reasoning about sub-arrays, which would involve universal quantifiers in our proof-obligation ex-

pressions. Instead, all our proof obligations to the SMT solver are encoded (through transla-

tion from our custom symbolic representation) in the more-tractable quantifier-free QF AUFBV

theory. Further, using our own symbolic representation allows us to codify pattern-matching

simplification passes on the expressions in the proof obligations (before offloading them to the

SMT solver), which helps improve performance [29]. Transfer function pω for edge transitions

in the CFG are directly derived from the operational semantics of the programming language:

most operations in the programming language translate directly to a combination of one or more

operators in SMT-like algebra (e.g., + to bvplus, read-memory-dereference to select, write-

memory-dereference to store, etc.). Similarly, edge-conditions econdω are derived from corre-

sponding control-flow conditions in the original program. Edges representing procedure returns

are labeled with their respective actions that encode the state-elements on which the observable

event depends.

5.1.2 Deterministic CFG Construction

While the original program may be non-deterministic, the CFG needs to be deterministic (by

definition). For example, the C language has several sources of non-determinism related to order

of evaluation, datatype bitwidths, etc., where the compiler is free to choose one of the many

possible legal behaviors. Fortunately, most such types of non-determinism in C get eliminated

at the time of lowering the source language program to LLVM-like IR (which is the input to

2Quantifier free theory for arrays, uninterpreted functions and bitvectors.
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our tool), e.g., the IR chooses a deterministic order of evaluation and a fixed data-layout for

all C types. Thus, if the non-deterministic choices made by the IR are the same as the choices

made by the compiler used to generate the x86 assembly, we can safely ignore these types of

non-determinism.

However, non-determinism due to undefined-behavior (UB) semantics is still present at the IR

level. As discussed in section 2.2.1, in order to determinize UB, we use a special Error node

in the CFG to indicate that UB was triggered. The Error node has no outgoing transitions

and once entered, the program stays in the Error node forever henceforth. To model undefined

behavior, the CFG representation associates each edge with UB assumptions σω, that encode the

conditions that assert the absence of undefined behavior. If at the source node of edge ω, the

condition σω is violated, then the CFG transitions into a special Error node. In other words,

the transition to the special Error node in the CFG indicates that UB was triggered. The edges

that transition into the Error node are labeled with a special observable Error action. Notice

that this construction always yields well-formed CFGs.

5.1.3 Observable actions

Observable actions are associated with each procedure exit edge. An observable action for an

edge ω, represented using τω takes as input the machine state at the start node of the edge and

returns the state-elements that uniquely determine the observables. This includes the value being

returned (e.g., argument to return instruction in (LLVM-like)IR program, eax for a 32-bit x86

program), and the state of the memory-regions that are live at function return (heap and memory

regions for global variables).

5.1.4 Memory Model

To prove equivalence, we need to reason about relations between various state-elements of the

programs which include the IR program variables, x86 assembly program registers, memory-

regions and stack-slots. We explain the latter two in more detail here.
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Memory-regions: The C abstract machine associates objects with memory regions; object

memory can be allocated through global and local variables or through procedures that manipu-

late the heap (e.g., malloc).

In our proposed COUNTER tool, the entire program memory is modeled as a single array. But,

in order to reason about compiler transformations that translate program variables to memory

locations, an equivalence checking tool needs to identify and model separate memory regions

for global and local variables, stack and heap. In our implementation, we model one contigous

memory region for each global variable in the program. For the x86 assembly program, we

identify these global variables through the symbol table in the ELF executable. The size of

this memory region corresponds to the variable size and is known at program entry. We do not

support Address-Taken Local variables (ATLs) and Fixed/Variable-length Local Arrays (VLAs).

We use LLVM’s mem2reg pass to promote other local variable allocations (i.e., the LLVM alloca

instructions) to IR variables.

Further, there is no notion of local variables in x86 assembly and instead we have a continous

memory region belonging to the stack that is used by the compiler to spill pseudo-registers.

The code to manage the stack region is generated by the compiler. The remaining memory

space, that neither belongs to one of the global variables, nor to the stack, is modeled as heap.

The heap memory region can be potentially discontigous. A single memory region for the entire

heap suffices because malloc and related procedures are independent of the C language. Also,

although modern compilers include logic to identify if the malloc function refers to the standard

“built-in” libc function; in our experimental setting, we disable such built-in assumptions through

appropriate compiler flags to avoid having to model similar semantics in our equivalence checker

and assume that the compiler does not distinguish between two different return values of the

malloc function.

Since the program memory containing all these regions is modeled as a single array, each of these

memory regions form non-overlapping sub-arrays inside this full array. Similar to prior work [15],

we represent all these sub-arrays in the full array using symbolic start and end addresses. We

also encode the non-overlapping constraints for these sub-arrays as described in [15].
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Stack-slots: The stack memory region is used by the compiler to temporarily spill pseudo-

registers and to pass arguments/return values for function calls. The stack memory for a 32-bit

x86 assembly program can be thus split into various stack-slots, where each stack-slot represents

a 8-bit, 16-bit or 32-bit value stored at a constant offset from the input stack pointer. The input

stack pointer is the value of the stack pointer register at the entry to the x86 assembly program,

and represents the top of the stack at function entry. To identify stack-slots, an available-

expressions analysis (discussed in section 5.1.5) is performed to identify registers that hold a

value that is at a constant offset from the input stack pointer. All memory accesses (i.e., select

and store operations) that are at these identified constant offset addresses from the input stack

pointer are then collected and are identified as the stack-slots that need to be tracked.

In this thesis, we use the term “state-elements” to collectively include the IR variables, x86

assembly registers, the memory-regions, and stack-slots.

5.1.5 Points-to and other standard data-flow analyses

Before proceeding with the proof construction, the following standard data-flow analyses are

performed on the CFG representation of the specification program C and the implementation

program A:

Available-expressions Analysis: It is a forward data-flow analysis that identifies the expres-

sions that are available at a given program point or node of the CFG. The values of this data-flow

analysis involve an available-expressions map from the “state-elements” to the “expressions”. The

transfer function of the DFA involves adding a mapping x7→e to the available-expressions map

for a statement x:=e in the transfer function of an edge in the CFG. The meet operator is

intersection, and the available-expressions map at program entry is initialized to an empty map.

For the implementation program A, the available-expressions analysis identifies all register values

that are always at a constant offset from the stack pointer value at function entry. The identified

registers are then used to identify the stack-slots in the assembly program. These stack-slots

may represent the pseudo-registers that were temporarily stored (spilled) in the memory due to
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a limited number of registers in the x86 target architecture. These stack-slots are considered

as bitvector variables during invariant inference which enables inference of relations between the

value stored at these stack locations and the corresponding variables in the IR. These stack-slots

are also considered during the alias-analysis to infer precise points-to information for the values

stored at these locations.

The results of the available-expressions analysis at a node are also encoded as node-invariants to

supplement the invariant inference algorithm.

Points-to Analysis: It is a forward intra-procedural, flow-sensitive, field-insensitive, untyped

data-flow analysis to identify the set of memory regions that a state-element may point to. The

potential memory regions for programs without local arrays (as considered in this work) include

a memory region to represent the heap, a memory region per global variable, and for the x86

program, a memory region for the stack. The values of this data-flow analysis represent the

aliasing information for each state-element at each program point and involves a points-to map

from a “state-element” to a “set of memory-regions” it may point to.

We use a sound and over-approximate algorithm for the points-to analysis that is similar to the

algorithm described in [15, 19]. It involves identifying C’s based-on relationships (§6.7.3.1 in [34])

and tracking the flow of values. At a high-level, the transfer function involves identifying (a) if a

state-element x is linearly-related to another state-element y (in which case the points-to set of

x becomes the points-to set of y), or (b) if a state-element x may depend-on the value of another

state-element y, in which case the points-to set of x is combined (set-union) with the points-to set

of y to obtain the new points-to set of x. The meet operator is union. Also, it is conservatively

assumed that the input arguments to a procedure can point to either the global memory regions

or the heap memory region.

Since our tool does not support Address-Taken Local variables and Fixed/Variable-length Local

Arrays, for the rest of the programs, our points-to analysis is able to categorize most memory

accesses as either accessing only the stack region or definitely not accessing the stack region (i.e.,

accessing global(s) or heap). This allows us to model these two regions as separate arrays during

the discharge of proof obligations, just before transmitting the proof query to the SMT solvers.
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Inv → {Gaffine Gmem GCineq Gleq Gineq}
Gaffine : {∑ civi + c0 = 0} Gmem : {HC = HA}

GCineq : {±v ≤ 2c} Gleq : {r1 ≤ r2} Gineq : {r1 < r2}

Figure 5.1: The grammars used by COUNTER tool for constructing the invariants.

Liveness Analysis: The liveness analysis is a standard backward data-flow analysis that iden-

tifies the state-elements that are live at any program point.

All three analyses discussed above are over-approximate and run in tandem within an outer

fixed-point iteration loop, because it is common for one analysis to improve the results of the

other, e.g., the available-expressions analysis may identify more stack slots, that may improve

the points-to analysis, which may further help the available-expressions analysis to identify more

stack-slots. Similarly, the points-to analysis may improve the results of the liveness analysis.

Reaching Definitions Analysis: A must-reach definitions analysis [2] is performed on C

and the output of this analysis is used during invariant inference, such that only those bitvector

variables are considered at a node n whose definition must reach n.

5.1.6 Invariant Inference Grammar

COUNTER tool instantiates multiple grammars as shown in fig. 5.1 for the invariant inference

algorithm Sifer. The grammar Gaffine enumerates affine invariants among the bitvector program

variables represented using vi. Here, ci represents a bitvector constant. The bitvector program

variables considered for invariant inference at a correlated PCpair (nC , nA) include the live reg-

isters and defined stack slots at the PC nA for the implementation program A and all defined

bitvector variables at the PC nC for the specification program C. Considering only live variables

(instead of all defined variables) for the specification program may not work for transformations

involving computation re-ordering; in the presence of such transformations the live variable(s) in

A may not get correlated with any live variable in C and is instead correlated with an intermediate

variable(s) in C.
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A similar affine invariants based grammar has been used by Churchill et al. [11] which uses this

grammar in the context of Assembly to Assembly equivalence checker. The number of registers

(or program variables) in an assembly program are very small as compared to the number of

defined variables at a PC in a LLVM-like IR program (which is a Static Single Assignment (SSA)

based representation) used as specification in our case. To achieve scalability in the presence of

large number of defined SSA program variables, we use program slicing based heuristics to reduce

the number of program variables to be considered for invariant inference at a product-CFG node.

The grammar Gmem represents the memory region equality predicate, where HC denotes the spec-

ification program’s non-temporary memory region (i.e., memory regions for heap and global

variables) and HA denotes the implementation program’s non-temporary memory region. The

grammars GCineq, Gleq and Gineq enumerate inequality predicates between the program variables

denoted by v and between the registers in the implementation program denoted by r.

The Sifer algorithm involves computing the strongest invariant cover for each of these grammars.

We use the first algorithm presented in section 4.2.5 to compute the strongest invariant for the

affine grammar Gaffine. We use the second algorithm (which is a Houdini-like approach [27])

presented in section 4.2.5 to compute the strongest invariant for the rest of the grammars.

5.1.7 Discharging proof obligations

For every SMT proof obligation generated by the COUNTER tool, three off-the-shelf SMT solvers

are spawned in parallel: z3-4.8.7, Yices2-45e38fc, and cvc4-1.7. For unsat results, we return

as soon as the first solver finishes. For sat results, we opportunistically try and collect multiple

counterexamples (to aid our counterexample-driven procedures): we wait for the first solver to

finish; if the first solver finishes with a sat result in time t, then we wait till time 2 ∗ t and

return the counterexamples generated by all solvers that finished in time 2 ∗ t (thus doubling

our query times in the worst case). In addition to improving efficiency and providing more

counterexamples, employing multiple SMT solvers also improves the reliability of our verifier

because it allows cross-checking of the results of one SMT solver against another. In fact, we

found a bug in Yices during our experiments, which was fixed immediately upon reporting [73].
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To avoid SMT solver timeouts, the simplifications and the query decomposition technique detailed

in [29] are used.

5.2 Evaluation

5.2.1 Experimental Setup

We evaluate COUNTER on a set of benchmarks involving extensive loop and vectorization

optimizations, which include all the benchmarks used in the prior work on assembly-to-assembly

equivalence checking [11]. In addition to the examples in figs. 2.4, 3.1 and 3.3, our evaluation

involves two sets of benchmarks: the first set of benchmarks includes programs (C functions)

from the TestSuite for Vectorizing Compilers (TSVC) [45], and the second set of benchmarks

is a set of 27 distinct vectorizable loop patterns that we have mostly taken from the LORE

repository [10]. The TSVC functions operate on global arrays of floating point values. Since the

current implementation of COUNTER tool does not support floating point types, similar to prior

work [11], we also systematically replace floating point types with integer types for the TSVC

functions. As a result, both the functions taken from TSVC and LORE repository operate on

statically-allocated fixed size global arrays of integers.

All programs are compiled using recent versions of production compilers, namely, GCC-8,

Clang/LLVM-11, and ICC-18.0.3 with -O3 -msse4.2 compiler flags to generate optimized x86

binaries. For experimental evaluation with each compiler, only those functions that are vectorized

by that compiler are selected. For each of these selected compiler-function pairs, we attempt to

prove equivalence across the unoptimized LLVM IR (generated by clang -O0) and 32-bit x86

assembly program generated by an optimizing compiler. We use a global timeout of five hours to

generate the equivalence proof for the given program-pair, an SMT-solver timeout of five minutes

for each SMT proof query, and a memory limit of 12GB for a single equivalence check.

As discussed in section 3.3.1, the Counter algorithm takes a parameter µC as input to bound

the length of the candidate correlations in C. In general, we find that the required value of µC
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C0: void init1d(int n) {

C1: for (int i = 0; i < n; i++)

C2: a[i] = b[i];

EC: }

(a) C program

A0: init1d:

A1: r1 = 0

A2: if (n <= 0) ret

A3: r2 = n % 4; r3 = n - r2; r4 = 0

A4: if (r3 == 0) goto A8

A5: a[r4 , .. r4+3] = b[r4 , .. r4+3]

A6: r4 += 4

A7: if (r4 != r3) goto A5

A8: if (r2 >= 1) { a[r4] = b[r4]; r4++ }

A9: if (r2 >= 2) { a[r4] = b[r4]; r4++ }

A10: if (r2 == 3) { a[r4] = b[r4]; r4++ }

EA: ret

(b) (Abstracted) Assembly code

C0,A0 C1,A5 EC,EA
A0-A2-A4-A5

C0-C1

A5-EA

(C1-C1)4-((C1-C1)3+(C1-C1)2+(C1-C1)+ε)-EC

A5-A5

(C1-C1)4

A0-A2-EA

C0-C1-EC

A0-A4-A8-EA

((C1-C1)3+(C1-C1)2+(C1-C1)+ε)-EC

(c) Product-CFG

Figure 5.2: An example C-language program to initialize an array, its abstracted assembly after
loop unroll and vectorization, and the product-CFG across the two.

needs to be at least twice the unroll factor used by the compiler, to be able to handle the cool-

down loops in the vectorized assembly programs. This can be seen using a simple vectorization

example shown in fig. 5.2. In the assembly program shown in fig. 5.2b of this example, the path

from the loop head to the program exit (A5-EA) involves four unrolled iterations of the loop

body in the C program shown in fig. 5.2a. These four unrolled iterations are followed by up

to three residual iterations before reaching program exit. Thus, the loop head to the program

exit (A5-EA) path in the assembly program will be correlated with seven iterations of the loop
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in the C program (which can be captured only at µC ≥ 7) when the compiler used an unroll

factor of four. Since, using a higher value of µC increases the total number of possible correlation

candidates and hence the search space, we use µC = 2 ∗ µo, where µo represents the unroll

factor used by the optimizing compiler. By running our experiments with different values of

µC = {1, 2, 4, 8, 16, 32}, we empirically identify that both GCC and ICC perform loop unrolling

with a maximum unroll factor of four, while LLVM uses an unroll factor of eight. Thus, for our

evaluation results presented here, we use the value for the parameter µC as µC = 8 for GCC and

ICC and µC = 16 for LLVM.

5.2.2 Results

Benchmark Categories

We divide our benchmarks into three categories:

1. 28 TSVC functions that were a part of the benchmarks evaluated by [11].

2. TSVC functions for which COUNTER is the first tool to automatically generate equivalence

proofs (they were not included in [11] benchmarks).

3. Loop nest patterns taken from the LORE repository.

For TSVC benchmarks, we present results for all three compilers. For LORE loop nests, we

use one representative pattern for a set of structurally-similar program/transformation pairs,

irrespective of the compiler that generated it. The space of additional transformations performed

in the third category of benchmarks (that are not covered by the first two categories) include loop

splitting, loop fusion for bounded number of iterations, loop unswitching, and summarization of

loop with small and constant bounds. The number of loops per function and maximum loop

nesting depth varies between one and three for the loop patterns in this last category. Table 5.1

tabulates the results of our experiments with all these three categories of benchmarks.

Success and Failures

First set of benchmarks: For the 28 TSVC functions that were evaluated by prior work on
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Table 5.1: Evaluation results for the COUNTER tool for TSVC benchmark functions and LORE
loop nest patterns.

TSVC functions
demonstrated by
prior work

TSVC functions not
demonstrated by
prior work

LORE Loop Nests

All loops have
memory write

At least 1
loop with no
memory write

gcc llvm icc gcc llvm icc µo4 µo8 µo4 µo8

Total/Failing functions 28/1 28/0 28/3 28/7 30/4 60/22 11/0 11/0 16/0 16/0
Avg/Max ALOC 16/44 19/51 19/40 25/64 31/72 29/95 19/28 24/53 29/48 37/100
Avg/Max # of product-CFG nodes 3/4 3.1/5 3.2/5 3.5/5 3.4/5 3.5/6 4.4/7 4.4/7 4.8/7 5/8
Avg/Max # of product-CFG edges 3.2/7 3.3/7 3.6/9 4/7 3.9/8 4.2/11 5.2/9 5.2/9 5.9/9 6.8/18
Avg # of total CEs / node 17 27 16 18 28 18 16 24 20 30
Avg # of gen. CEs / node 13 22 11 12 22 13 10 17 10 16

BFS

Avg equivalence time (seconds) 209 70 15 201 3842 110 107 2243 131 676
Avg # of paths enumerated 44 89 53 95 160 103 179 344 232 469
Avg # of paths pruned 28 45 32 49 80 54 66 98 130 251
Avg # of paths expanded 3.3 3.9 3.8 4.6 5.3 5.8 7.1 8.5 8.9 14.8

DFS
Memory/timeout reached 0 2 0 1 6 1 0 1 12 16
Avg # of paths enumerated 173 3904 315 5776 14992 2635 301 561 17518 27727
Avg # of paths expanded 35 252 52 518 913 262 111 208 4582 3781

Avg # of paths expanded DFS/BFS 11 65 14 113 172 45 16 24 515 255

assembly-to-assembly equivalence checking [11] and across optimizations performed by the three

compilers (for a total of 84 program-pairs), the COUNTER tool is able to compute equivalence

proofs for all but four of these program-pairs (see row Failing functions of table 5.1). Three of

these four failing program-pairs — s176 compiled with GCC, s1112 and s243 compiled with

ICC — involve non-bisimilar transformations, namely loop tiling and interchange, which are

beyond the scope of transformations supported by the COUNTER tool. We confirm that the

prior work on equivalence checking from which this benchmark is drawn [11] is also unable to

compute equivalence proofs across these three program-pairs, and the reason these were reported

as successful equivalence checks in their paper is because the authors used older compiler versions

(which did not perform such transformations for these functions). One program-pair (s351 when

compiled with ICC) involves loop re-rolling which is out of scope for the COUNTER tool. The

next row in the table 5.1 shows the average and maximum Assembly Lines of Code (ALOC) in

the optimized assembly program across all these functions. It is important to note that the C

source code for all these 28 functions involve only a single loop and involve no control flow within

their loop bodies.
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Second set of benchmarks: We next consider the remaining TSVC functions and report only those

program-pairs that involve some form of vectorization in their optimized assembly code. There are

28, 30, and 60 such program-pairs (where vectorization was involved) for GCC, LLVM, and ICC

compilers respectively. Of these, the COUNTER tool is able to compute equivalence for all but 7,

4, and 22 program-pairs respectively. The primary cause for equivalence failures is the presence

of non-bisimilar transformations, namely loop interchange, fission, fusion, tiling, acceleration; an

unbounded number of memory writes are re-ordered through such transformations and so these

equivalences are difficult to establish through bisimulation relations. Only four of these failures

(one each in GCC and LLVM, and two in ICC) are due to SMT solver timeouts during invariant

inference. It is interesting to note that ICC is able to perform vectorization for a larger number

of programs (60 vs. 30) and that most such vectorizations involve non-bisimilar transformations

(20 failures).

Among the function-compiler pairs for which the COUNTER tool successfully computes equiva-

lence for: (1) six functions contain more than one loop in function body; (2) six functions have

nested loops of depth up to 2; (3) one function has both nested loops and multiple outer loops;

(4) nineteen functions have control flow inside the loop body; (5) eight functions use multi-

dimensional arrays potentially involving non-regular memory accesses; and (6) eleven functions

have at least one loop without a memory write. Recall that correlation identification becomes

easier if all the C program loops contain updates to the memory, because the pruning based on

memory relations is then able to reduce the search space.

Importantly, compilations of these TSVC functions are among the most challenging program-pairs

for equivalence checking because there is a large syntactic gap between the IR representation and

the assembly level implementation. Further, the rich and complex pipeline of transformations

from unoptimized IR to optimized x86 assembly implementation results in significant structural

differences between them. The proposed tool, COUNTER, is able to automatically compute the

equivalence between the IR specification and the assembly implementation for these programs

because of the robustness of the Counter algorithm which efficiently finds the required product-

CFG in an exponential search space and the incremental Sifer algorithm which infers expressive

invariants in a scalable manner.
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Table 5.2: List of passing vectorized TSVC functions. For a function-compiler pair, 7denotes
equivalence check failure and ⊗ denotes that the function is not vectorized by the compiler.
Here, the prior work refers to the work by Churchill et. al. [11]

TSVC functions demonstrated by prior work TSVC functions not demonstrated by prior work

Name ALOC Name ALOC Name ALOC Name ALOC

gcc llvm icc gcc llvm icc gcc llvm icc gcc llvm icc

s000 11 13 15 s243 21 51 7 s111 28 ⊗ ⊗ s271 ⊗ 43 19
s1112 12 17 7 s251 11 15 15 s1111 20 ⊗ 30 s2710 ⊗ ⊗ 44
s112 22 8 12 s3251 44 50 39 s1115 ⊗ 7 28 s2711 ⊗ 47 21
s121 18 32 20 s351 28 17 7 s1119 7 14 ⊗ s2712 ⊗ 43 19
s122 17 17 24 s452 14 19 18 s113 20 ⊗ 23 s272 ⊗ ⊗ 26
s1221 9 8 13 s453 11 13 15 s114 ⊗ ⊗ 50 s273 ⊗ 53 25
s1251 13 12 17 sum1d 15 16 18 s116 ⊗ 17 ⊗ s274 ⊗ ⊗ 23
s127 17 18 23 vdotr 17 19 21 s1161 ⊗ ⊗ 46 s276 ⊗ ⊗ 29
s1281 17 15 21 vpv 9 11 13 s119 27 31 28 s293 ⊗ ⊗ 13
s1351 9 11 13 vpvpv 10 13 14 s1213 ⊗ ⊗ 37 s311 15 15 19
s162 43 37 40 vpvts 12 15 16 s124 18 24 20 s3111 19 20 24
s173 9 8 15 vpvtv 10 13 14 s125 24 20 25 s319 22 30 27
s176 7 21 22 vtv 9 11 13 s1279 ⊗ 47 22 s352 ⊗ 22 ⊗
s2244 24 47 28 vtvtv 10 13 14 s128 20 ⊗ 23 s4115 ⊗ ⊗ 32

s131 15 29 20 s421 25 48 29
s132 28 43 26 s423 33 46 29
s1421 24 25 40 s441 28 ⊗ 34
s171 ⊗ 29 7 s442 ⊗ ⊗ 49
s174 64 35 52 s443 17 ⊗ 25
s2233 39 7 7 s471 28 26 7
s252 ⊗ 18 ⊗ va 8 9 12
s253 ⊗ ⊗ 24 vbor 7 7 95
s254 ⊗ 8 12 vif ⊗ 72 17

Table 5.2 lists out the TSVC functions along with their assembly lines of code (ALOC) belong-

ing to both the categories discussed above for which equivalence could be established by the

COUNTER tool.

Third set of benchmarks: This set of benchmarks includes 16 different loop nest patterns. For

each of these 16 patterns, we test two variations: one where the loop bodies involve a memory

write, and another where at least one of the loop bodies does not involve a memory write. Among

the 16 variations that involve a memory write in the loop bodies, the compilers produce non-
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C0: int loopSplitting () {

C1: int sum = 0;

C2: int mid = LEN /2;

C3: for (int i=0; i<LEN; i++) {

C4: if (i<mid) sum += c[a[i]];

C5: if (i>=mid) sum += b[i];

c6: }

C7: return sum;

EC: }

(a) C program.
LEN is a positive multiple of 4.

A0: loopSplitting:

A1: r1 = 0; r2 = 0;

A2: r2 += c[a[r1]]

A3: r1++

A4: if (r1 != mid) goto A2

A5: r1 = &b[mid]; r3 = &b[LEN]; xmm0 = 0

A6: xmm0 += *r1 , .., *(r1+12)

A7: r1 += 16

A8: if (r1 != r3) goto A6

A9: xmm0 += (xmm0 >>8) // shift right by 8 bytes

A10: xmm0 += (xmm0 >>4) // shift right by 4 bytes

A11: r2 += xmm0 [31:0]

EA: ret r2

(b) (Abstracted) Assembly code

C0,A0 C3,A2 C3,A6 EC,EA
A0-A2

C0-C3

A2-A2

(C3-C4-C3)

A2-A6

C3-C4-C3

A6-A6

(C3-C5-C3)4

A6-EA

(C3-C5-C3)4-EC

(c) Product-CFG

Figure 5.3: The C code, the optimized assembly (after loop splitting and unswitching) and the
product-CFG for an example loop nest from LORE benchmark

bisimilar transformations for five of them. Thus we show results for 11 loop nest patterns where

loop bodies have memory writes, and 16 loop nest patterns where the loop bodies don’t have

memory writes. Further, for each loop nest variation, we test across two different unroll factors

(µo = 4 and µo = 8). The patterns with unroll factor 8 are due to compilations generated by

LLVM or by GCC with the appropriate pragma switch. The COUNTER tool is able to compute

the required equivalence proof for all these (16+11)*2=54 program-pairs.

Most of these source programs (16 out of 27 total) have multiple loops with potential nesting

(and different variables in each loop). We find that the data-driven SPA algorithm [11], which

is the closest competing algorithm to our tool in terms of capability would not be able to guess
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the required alignment predicate in these cases using the restricted grammar proposed in that

work. Moreover, 17 benchmark programs use multi-dimensional arrays which are out of scope

for most of the prior work on equivalence checking. Six benchmark programs have control flow

inside the loop body for both source and generated assembly program, and it may be difficult

and expensive to identify execution traces with adequate code coverage in such programs (as

required by most of the prior work on equivalence checking). As an example of the complexity

of transformations involved in this set of benchmarks, fig. 5.3 shows a program-pair involving

multiple transformations including loop splitting, loop unswitching, unrolling, and vectorization.

The product-CFG generated by the COUNTER tool for this program-pair is shown in fig. 5.3c.

Equivalence Checking Statistics

Table 5.1 also shows the average and maximum number of nodes and edges in the product-CFG

generated by the COUNTER tool for each benchmark category. Further, it shows the average

number of counterexamples per final product-CFG node (Avg # of total CEs/node) and the

average number of counterexamples that were generated (not propagated) per node through SMT

queries (Avg # of gen. CEs/node). These counterexamples are used by both the correlation

algorithm Counter and the invariant inference algorithm Sifer. Note that the number of paths in a

pathset correlated in the final product-CFG can be exponential in the unroll factor (i.e., 8 and 16

for GCC/ICC and CLANG respectively), but the number of counterexamples required (ranging

from 16 to 30) are very few as compared to the number of paths. In contrast, the data-driven

techniques would require exponential number of traces to generate the required product-CFG for

such programs.

Similarly, the number of candidate invariants that can be enumerated through the grammars

(shown in section 5.1.6) that are used to enumerate the node-invariants in the COUNTER tool

are huge (potentially exponential) but the total counterexamples required to infer the strongest

invariant cover for such grammars are small in general (ranging from 16-30 for these bench-

marks) and bounded in worst-case. Sifer algorithm involves generating these counterexamples

on-demand as the satisfying model generated by the SMT solvers for intermediate not-provable

queries and contain specific concrete mappings for the state-elements which are hard to construct

using random input generation algorithms or model-checking techniques.
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In table 5.1, the first row in category BFS (which stands for best-first search) lists the average

time taken to generate an equivalence proof in each benchmark category (Avg equivalence

time). This average equivalence checking time is mostly dominated by the invariant inference

algorithm’s time, which is called at each incremental step (ranging from on average 3 to 15 steps

per program in a benchmark). Due to the incremental characteristic of the Sifer algorithm,

the average equivalence checking time for a function, even after calling the invariant inference

algorithm multiple times is small (as small as 15 seconds for a program-pair in the first category

of benchmarks for ICC compiler).

The next three rows demonstrate statistics for the best-first search (BFS) algorithm: we list the

number of correlation possibilities that were created (paths enumerated) before the complete

product-CFG was found, the number of correlation possibilities that were remaining after pruning

(paths pruned) and the number of correlation possibilities which were actually expanded further

(paths expanded). This last metric is a measure of the effectiveness of Counter algorithm’s

ranking strategy : the table shows that the average number of paths expanded is small, and

usually close to the average number of total product-CFG edges. Because each time a product-

CFG correlation is expanded, we add an edge to the product-CFG: this confirms that in most

cases, the correct correlation is ranked and picked first at each step of the backtracking search.

In other words, the ranking strategy ensures that there is minimal backtracking, if any.

Comparison with a Static Strategy: The three rows labeled DFS (for depth-first search) in

table 5.1 demonstrate the results of equivalence checking using a backtracking-based strategy

relying on the static heuristic, where counterexample-guided pruning and ranking is omitted.

This static backtracking strategy resembles the depth-first search approach used in [14]. In this

search one part of the search tree is exhausted (depth-first) before another part of the subtree is

attempted. We find that the average number of paths expanded in DFS is up to 515x more than

the average number of paths expanded in BFS (last row in table 5.1); this is evidently due to the

extra backtracking that occurs in the DFS strategy. In fact, the DFS strategy runs out of either

time or memory resources for 39 of the 219 program-pairs for which BFS is able to successfully

establish equivalence (Memory/timeout reached). It is worth noting that these improvements

produced by the Counter algorithm’s pruning and ranking strategies are more pronounced in

programs involving loops which do not update memory in their loop bodies. For loops that update
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C1: void *memccpy(void *dst , const void *src ,

int c, size_t count) {

C2: char *a = dst;

C3: const char *b = src;

C4: while (count --) {

C5: *a++ = *b;

C6: if (*b == c)

// missing (unsigned char) type casts;

// (*b) will get sign -extended before

// comparison and thus may not be

// equal to c when sign bit is set

C7: return (void *)a;

C8: b++;

C9: }

C10: return 0;

C11: }

(a) memccpy function of diet libc

const char src[] = { 255, 128 };

char dst [2] = { ’A’, ’B’ };

memccpy(dst , src , 255, 2);

if (dst [1] != ’B’)

printf("BUG!")

(b) Sample input for triggering the bug

Figure 5.4: The bug in diet libc identified using the COUNTER tool.

memory in their bodies, the InvRelatesMemAtEachNodes() check (in section 3.3.1) allows early

backtracking in situations where an incorrect correlation is chosen.

Other Explorations

In addition to these benchmarks, we have applied the COUNTER tool for verifying equivalence of

several benchmarks including all the examples used in previous papers on equivalence checking

[11, 14, 36]. We have also applied the COUNTER tool to verify libc string functions implementa-

tions, and in one such experiment, we compared the OpenBSD [54] libc implementation against

diet libc [20]. Through this exercise, we uncovered three subtle and serious bugs in diet libc

implementation, one of them shown in fig. 5.4; these bugs were acknowledged and fixed by diet

libc developers immediately upon reporting. All of the three bugs were related to missing type

casts in the C code. Surprisingly, these bugs had escaped years of testing and deployment.

Comparison of SMT Solvers for Counterexample Generation for Invariant Inference: Recall that

the COUNTER tool uses three off-the-shelf SMT solvers — Z3, Yices2, and CVC4 — that execute
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in parallel to discharge each SMT proof obligation. It is interesting to note that different SMT

solvers exhibit significantly different behavior in our experiments: while Yices2 is usually much

faster at discharging SMT queries (around 98% of queries are first answered by Yices2), the

other two solvers actually produce “better” counterexamples (satisfying assignments) for our

equivalence procedure.

To see this with an example: let’s say at some node n in the partial product-CFG, there exist

two unconstrained and independent 32-bit variables x and y. Also assume that we obtain (0, 0)

(short for {x 7→ 0,y 7→ 0}) as the first satisfying assignment (counterexample) through an

incoming edge at n. The strongest affine-invariant cover inferred by the Sifer algorithm for this

counterexample will be (x = 0) ∧ (y = 0). Now assume that the next query to the SMT solver

generates an assignment that does not satisfy this inferred invariant, and let’s say we get another

counterexample (0, 231). With these two counterexamples obtained so far, the strongest affine-

invariant cover will now be weakened to (x = 0) ∧ (2y = 0). Repeating this, let’s assume that

the third counterexample that we obtain through the SMT solver query is (0, 230); now, the new

affine-invariant cover would become (x = 0) ∧ (4y = 0). This pattern of counterexamples where

the satisfying assignments are successively decreasing powers of 2 can potentially go on — notice

that for this pattern of counterexamples returned by the SMT solver, we would require 64 SMT

queries (32 queries for different values of variable x and 32 queries for variable y) before reaching

the desired invariant, i.e., True (recall that x and y are unconstrained and independent). On

the other hand, if the SMT solver had returned counterexamples (0, 0), (3, 5), and (5, 7) in the

first three SMT queries, we would have inferred the required invariant True within just three

queries. Thus, the speed (or the number of steps in the fixed-point transfer function fω) of the

invariant inference algorithm, Sifer, also depends on the “quality” of counterexamples returned

by the SMT solver.

It turns out that Yices2 is more prone to the former behavior (returning counterexamples that

involve decreasing powers of 2), even though it is faster in discharging the individual queries

than Z3 and CVC4. This observation motivated our opportunistic counterexample collection

scheme described in section 5.1.7, wherein we opportunistically try to collect counterexamples

from multiple solvers for sat results.
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C1: if (a)

C2: while (i < m) S;

C3: else

C4: while (i < n) S;

A1: mn = a ? m : n;

A2: while (i < mn) S;

Figure 5.5: Example program-pair for which Counter algorithm will not be able to construct the
required product-CFG.

5.3 Limitations

The proposed Unoptimized-IR-to-Optimized-Assembly Translation Validator, COUNTER, is

based on the Counter algorithm for identifying the required correlation and the Sifer algorithm

for inferring expressive invariants. We discuss the limitations of both these algorithms here.

5.3.1 Counter Algorithm

The proposed Counter algorithm is not without limitations. We list the major limitation below:

1. For the example shown in fig. 5.5 the two near-identical loops in C are transformed into

a single loop in A. Here, the path (A1-A2) in A needs to be correlated with two distinct

pathsets in C: (C1-C2) and (C1-C4). Notice that this violates the Observation-C (sec-

tion 3.1) because the required pathsets in C have different endpoints, C2 and C4. Because

Counter algorithm only correlates a pathset in A with a single pathset in C (section 3.3.5),

it will be unable to identify the required product-CFG in this case. In other words, while

Counter supports path specialization transformations, in its current form, it cannot tackle

path merging transformations. It is possible to relax the correlation condition used by

the Counter algorithm and allow a pathset in A to correlate with multiple pathsets in C.

Such choices should carefully balance the algorithm’s common-case running time against

its ability to handle these corner cases.

2. In its current form, the Counter algorithm is only interested in identifying bisimulation

relations and a whole class of transformations that do not preserve program structure (aka
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non-bisimilar transformations) are out of scope for the algorithm. Some examples of non-

bisimilar transformations are loop fusion, loop fission, loop interchange, and loop tiling.

Prior work by Verdoolaege et. al. [71] can handle such transformations and is based

on summarizing the loops with a polyhedral model and comparing the polyhedral models

for the given unoptimized and optimized program-pair. However, it only supports affine

programs and the optimized code generated through compilers would usually contain several

logical, shift, branching, bit-manipulation, load-store, function-call, etc. opcodes, none

of which would fit in their framework of affine programs, and they would usually report

equivalence failures for such programs. Our work on the other hand is limited to bisimilar

transformations but supports a general class of program-pairs.

3. Finally, Counter is unable to compute equivalence if the unrolling performed in the compiler

transformation is out of range of the µC value considered in the algorithm. Larger µC

values result in larger sets of possible correlations at each step, and thus potentially make

the equivalence checking algorithm slower. As we discuss in our experiments, we find that

µC = 16 suffices for the transformations produced by the recent versions of GCC, LLVM,

and ICC compilers (specific versions are mentioned in section 5.2), but may not suffice for

the unrolling performed by the future versions of the compilers. We must point out that

Counter only unrolls paths in C through µC , and does not unroll paths in A — this may be

inadequate for computing equivalence across certain types of loop re-rolling transformations.

5.3.2 Sifer Algorithm

The major limitations of the proposed invariant inference technique are:

1. The proposed Sifer algorithm, as shown in grammar in fig. 5.1, computes only equality

invariants between the memory regions. This cannot handle transformations like store

sinking, which result in unequal memory states at the product-CFG nodes. An example

program-pair involving the store sinking optimization is shown in fig. 5.6. Here, the C

program shown at the left writes the updated value to memory region corresponding to

the global variable sum in each loop iteration, whereas the assembly program shown at the
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int sum , a[LEN];

C0: void storeSinking () {

C1: sum = 0;

C2: for (int i=0; i<LEN; i++) {

C3: sum += a[i]

c4: }

C5: }

(a) C program.The variable sum

and array a are global variables.

A0: storeSinking:

A1: r1 = 0; r2 = 0;

A2: r2 += a[r1]

A3: r1++

A4: if (r1 != LEN) goto A2

A5: mem[&sum] = r2

A6: ret r2

(b) (Abstracted) Assembly code after store
sinking optimization

Figure 5.6: An example C code and its optimized assembly obtained after store sinking opti-
mization

right updates the value in the register r2 in the loop and updates the memory region corre-

sponding to the variable sum (denoted by mem[&sum]) at the end of the loop. Thus, due to

store sinking optimization the equality relation between the memory regions corresponding

to the global variable sum would not hold at the loop head or at any other PC in the loop.

A more expressive grammar and a more sophisticated but efficient memory invariant infer-

ence algorithm would be required in this case to handle such transformations which result

in unequal memory states at the product-CFG nodes. Also, similar techniques are required

to handle transformations involving non-linear (including polynomial) invariants.

2. Transformations like code hoisting, software pipelining and loop invariant code motion

involve moving computations, that happen later in the specification program, ahead in the

implementation program. We currently use ad-hoc techniques involving use of lookahead

expressions which work for limited program structures and transformations only.

.
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5.4 Comparison with Prior Translation Validation Tools

The notion of translation validation as a technique for verifying the correctness of the compilations

produced by the optimizing compilers was introduced by Pnueli et al. [56]. Rather than verifying

in advance that the compiler always produces a semantic-preserving executable code (vis-a-vis

input specification source code), translation validation involves verifying the equivalence between

the input specification source code and the output executable code for every compilation.

In the context of compilation of imperative programming languages, the input specification repre-

sents the language-level semantics of the program, e.g., the C language semantics of a C program,

and the executable implementation models the semantics of the low-level assembly opcodes that

run directly on the hardware, e.g., the semantics of the x86 assembly instructions. Thus, equiv-

alence in this setting needs to be computed between the C program specification and the x86

assembly program implementation. Most prior work on translation validation has usually simpli-

fied the problem by computing equivalence only across a cross-section of the intermediate stages

of the translation pipeline and can be broadly divided into following categories:

IR-IR Equivalence Checkers: The prior work on equivalence checking in this category [52,

69, 25, 75, 44] verifies an IR implementation (treated as the program specification) against another

IR implementation, which is at a higher abstraction level than the actual implementation (e.g.,

x86 assembly).

One of the earliest IR-IR equivalence checking effort is by Necula et al. [52]. They presented

a translation validation infrastructure (TVI) to verify the equivalence across a few selected IR

transformation passes (like branch optimization, common subexpression elimination, register allo-

cation and code scheduling) in GCC. TVI constructs a simulation relation to establish equivalence

across the input and output IR for each of these selected transformation passes. It uses branch

heuristics for correlating the program fragments and cannot handle several structure altering

transformations like replacement of branches with conditional moves or other structure changing

loop transformations. Further, the weakest precondition based invariant inference used in TVI for

computing invariants for this pass-by-pass equivalence checking cannot be used for program-pairs

that are generated by a composition of multiple transformations.
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A pass-by-pass approach for verifying IR-level transformations has also been proposed by Tris-

tan et al. [69]. They propose semantic-preserving rewrite rules (similar to the transformation

rules used by an optimizing compiler) to transform the value graph of input and output IR pro-

grams. If the resulting normalized value graph for the input and output IR programs (after

applying the rewrite rules) match, then the equivalence is proven. They demonstrate this ap-

proach to prove equivalence across LLVM compiler transformation passes like advanced dead

code elimination, global value numbering, sparse-condition constant propagation, loop invariant

code motion, etc. A similar technique, based on applying equality preserving transformations on

Program Expression Graphs (PEGs) was proposed by prior work on equality saturation [67, 64].

They demonstrated their technique using a tool called Peggy, which as compared to prior work

[69], additionally supports a few more optimization passes like constant propagation, partial-

redundancy elimination, and basic block placement. However, these techniques are limited by

the rewrite rules available to the translation validator. Further, they do not support many loop

transformations like loop unrolling or loop inversion because formulating rewrite rules for such

transformations is non-trivial.

Zhao et al. [75] proposed a proof technique to verify the correctness of IR-level compiler transfor-

mations that rely on the SSA (i.e., Static Single Assignment) property of the IR. An example of

such transformation is the mem2reg pass that is responsible for promoting local variables stored

in memory to registers. A variant of this mem2reg pass in LLVM (i.e., vmem2reg) was proposed

and verified by Zhao et al. The verification involves proving the correctness of each step (or

“micro” transformation) involved in the proposed vmem2reg pass using COQ proof assistant and

composing the proofs to establish the equivalence of the complete transformation pass. This is

analogous to the prior work on verified compilers [42] which involve verifying the correctness of

each individual pass manually using a proof assistant.

Another important line of work involving IR-IR equivalence checking has been proposed to verify

the peephole optimizations in a compiler. Peephole optimizations perform algebraic simplifica-

tions for a sequence of IR-instructions to enable further optimizations and improve efficiency.

It is very hard to manually reason about the interactions of these algebraic simplifications with

the undefined behaviors present in the IR (for example poison and undef values in LLVM IR)

and hence potentially result in compiler bugs. Alive [44] is an automatic formal verification tool
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(along with a specification language) to verify the peephole optimizations in LLVM in the pres-

ence of undefined behavior. It involves specifying the peephole optimization to be verified in its

proposed specification language and then using a SMT solver to prove its correctness. Along

with verifying the specified peephole optimization, Alive can also generate the high-level (C++)

code for the optimization, if found correct. Similarly, Alive-FP [47] was proposed to automati-

cally verify the peephole optimizations involving bit-precise floating point operations in LLVM.

This involves adding floating point support to the specification language proposed by Alive [44]

and SMT modeling for the bit-precise floating point operations. Both Alive and Alive-FP have

identified several miscompilation bugs in LLVM’s InstCombine and InstSimplify passes and are

used by the compiler developers to verify new peephole optimizations. Alive2 [43] was proposed

later to verify other common intra-procedural IR-level transformations in LLVM. It uses bounded

translation validation to handle programs with loops and has uncovered several refinement bugs

across complex transformation passes including vectorization.

In comparison to these tools, COUNTER does not model the non-determinism (i.e poison and

undef values) in LLVM and only models the UB assumptions for the C-language. Further, the

target application for the COUNTER tool is to verify the (almost) end-to-end compilation from

unoptimized IR to optimized assembly across a rich and complex pipeline of transformations and

can be used for equivalence checking applications like program synthesis or superoptimization.

This is different from the target application of these IR-IR equivalence checkers [44, 47, 43] which

attempt to identify bugs in each individual IR-level transformation (these bugs may or may not

result in an end-to-end miscompilation). Unlike the COUNTER tool, the proposed Alive2 cannot

be used for program synthesis or superoptimization because Alive2 is unsound on two counts: 1)

it uses an imprecise modeling for non-determinism (as explained in section 3.2 in [43]); 2) it only

verifies the equivalence for bounded number of iterations for loops.

Assembly-Assembly Equivalence Checkers: Prior work in this line of research has ad-

dressed the computation of equivalence between two different assembly implementations (typi-

cally unoptimized vs. optimized) of the same program [63, 14, 60, 11].

Data-driven techniques [63, 60, 11] in this category execute both the unoptimized and the opti-

mized assembly programs on real inputs and use the execution traces for both correlating the pro-
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gram transitions and for invariant inference. These data-driven techniques require high-coverage

execution traces (which can potentially be exponential in the size of the programs) to complete

the equivalence proof. In comparison to this, COUNTER, is a static equivalence checking tool and

it generates the required concrete models on-demand using the SMT solver queries. Also, our tool

computes equivalence across two different syntaxes (IR vs Assembly) – generating the execution

traces required by data-driven techniques for programs at different levels of abstractions is riddled

with engineering subtleties and has not been demonstrated yet in any prior work.

A static assembly-assembly equivalence checker that does not rely on any execution data, was

proposed by Dahiya et al. [14]. It uses an incremental algorithm for simulation relation con-

struction and relies on the equality of path conditions to restrict the search space of possible

correlations in the absence of execution traces. The correlation criterion proposed in the Counter

algorithm, which is used by the COUNTER tool for correlating program transitions, is much more

general as compared to the path condition equality based correlation criterion used in this prior

work. As a result, the COUNTER tool can handle a larger set of transformations (like like loop

splitting or all transformations that involve code specialization like loop unswitching) that result

in structural differences between the input and output programs. Further, Dahiya et al. used an

enumeration based invariant inference algorithm which cannot be used in a scalable manner to

infer the affine invariants which are usually required to relate the state-elements of the high-level

IR representation and the low-level assembly implementation. In contrast, the Sifer algorithm

used in the COUNTER tool can infer affine-invariants in an efficient manner.

IR-Assembly Equivalence Checkers: The biggest shortcoming of an IR-IR equivalence

checker is that only a subset of the transformations is verified in this approach, e.g., some of the

most involved steps in code generation, such as assembly-level instruction selection are completely

missed in these checkers. These ignored low-level code-generation steps are especially complex

for CISC architectures that contain a large number of opcodes with rich semantics (e.g.,vector-

instruction in x86). Also, these low-level transformations often contain more bugs and are thus

critical for verification [72].

The assembly-assembly equivalence checkers intend to address the limitations of IR-IR equiv-

alence checkers, and cover a large part of the compiler transformation pipeline including the
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code-generation and optimization pipelines for complex x86-like CISC architectures. But, the

disadvantage of these equivalence checkers is that the input program specification to these tools

is in a “lowered” assembly form. A higher level specification (like IR) contains more information

to detect the undefined-behavior (UB) and the lowered assembly representations lose this crucial

information. To see this with an example, consider a simple C language for-loop:

for (int i = 0; i < n+ 1; i+ +) {...}

It is a common optimization to convert such a program pattern to:

for (int i = 0; i ≤ n; i+ +) {...}

However, this transformation is not legal unless we know that the variable n has a signed-integer

type, and hence arithmetic-overflow on variable n is an undefined behavior (UB) as per C-

language semantics. Through empirical evaluation, previous work on equivalence checking [44,

15] has shown that compilers heavily employ UB assumptions while making code transformations,

and an equivalence checker using the assembly program as specification would result in false

equivalence failures in these scenarios.

In comparison to prior IR-IR equivalence checkers and assembly-assembly equivalence checkers,

our proposed tool COUNTER is a more comprehensive (almost end-to-end) and robust equiva-

lence checker. It computes equivalence between a high-level program representation (IR) that

preserves type information and a low-level optimized assembly implementation potentially involv-

ing complex instruction opcodes. This includes the long and rich pipeline of transformations like

loop unrolling, peeling, unswitching, versioning, loop inversion, vectorization, register allocation,

code hoisting, strength reduction, dead code elimination, etc.

To our knowledge, the only other IR-Assembly equivalence checker has been demonstrated by

Kasampalis et al. [35]. They propose an equivalence checker, KEQ, that can compute equivalence

across the Instruction Selection compiler pass which takes an LLVM IR program as input and

generates an assembly program as output. The key idea used by KEQ involves dividing the

translation validation system into a transformation-independent module that is parameterized to
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the formal semantics of the input and output language and a transformation-dependent module

that is responsible for generating the proof obligations for establishing the equivalence. They

also formalized a weak bisimulation notion called cut-bisimulation which involves matching the

state-elements of the input-output programs only at selected synchronization (or cut) points. The

authors claim the proposed cut-bisimulation to be more general as compared to other simulation

relation variants like stuttering simulation used by prior work on witness generation [51]. The

notion of simulation relation used by the COUNTER tool involves identifying correlated pathsets

(which represents a set of program paths). This is analogous to the proposed cut-bisimulation, as

both involve matching states only at selected PCpairs (or synchronization points). Further, we

demonstrate the pathset correlation based simulation relation used by the COUNTER tool to verify

transformations like loop unrolling which can not be handled by the proposed cut-bisimulation

relation used by KEQ in its current form.

Cohesiveness of the Validator: The most common approach to equivalence checking involves

constructing a simulation relation across the given program-pair and involves two main sub-

procedures – 1) A correlation procedure that constructs the product-CFG by correlating program

transitions across the specification and the implementation programs in lock-step; 2) An invariant

inference procedure to identify inductively-provable invariants at each node of the product-CFG.

Prior work on equivalence checking [26, 25] has shown improvements in only one of these sub-

procedures in isolation without providing insights on the cohesion of these improvements with the

other sub-procedure. They have proposed automated tools based on constraint-solving to prove

equivalence across two structurally similar programs. As noted in section 5.1 in the paper on

regression verification [26], they manually modify the programs to make them structurally similar

before applying their tool. We find that using these constraint-solving based techniques along

with the automatic correlation algorithms (like Counter or [11]) is non-trivial and has not been

demonstrated yet. In contrast, the proposed tool COUNTER uses both a robust correlation algo-

rithm (Counter) that works for structurally significantly different program-pairs and an invariant

inference algorithm (Sifer) that is both efficient to be used with robust correlation algorithms

and powerful enough to infer expressive invariants across complex compiler transformations.

Black-Box Equivalence Checking: A contrasting technique to the black-box equivalence

checking (which makes minimal assumptions on the exact nature of transformations performed)
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involves modifying the compiler source code to either produce a witnesses (or proof) during com-

pilation itself [51] or to generate hints that can be used by a translation validator to construct

the required proof [35]. Access to the compiler source code or compiler generated hints simplifies

the proof construction because the exact semantics of the transformation being performed are

known to the validation tool and can be used to trivially correlate the program state-elements

and transitions. The biggest shortcoming of this technique is its limited applicability to closed

source compilers like Intel C Compiler (ICC). In contrast, COUNTER is a black-box equivalence

checking tool and does not have any such limitation. The evaluation results of the proposed

tool, COUNTER, for benchmarks compiled using ICC are presented in this thesis. Further, this

approach for verification which requires access to the information about the transformation be-

ing performed can not be used for constructing an equivalence checker for the application of

program synthesis/superoptimization; such an equivalence checker should be agnostic to the

transformations performed while proposing the (randomly chosen) optimized program. Also,

note that verification using the compiler generated witness or hints has been demonstrated for

only selected transformation passes for chosen compilers and involves repetitive and potentially

non-trivial manual effort to implement it for other passes and compilers. On the other hand, a

black-box equivalence checker like COUNTER is capable of deciding equivalence across a larger

and general space of transformations. Further, it also has a significant scope of automation and

can be reused to verify common off-the-shelf (COTS) compilers.



Chapter 6

Conclusion

The problem of equivalence checking, i.e. formally verifying the functional equivalence between

a program specification and its implementation has several important applications. A primary

application appears in the context of translation validation, which attempts to automatically gen-

erate a proof of equivalence across the transformations (translations) performed by an optimizing

compiler. This involves constructing an equivalence checker which after every run of the compiler

verifies the functional equivalence between the input source code and the generated executable

code.

The general equivalence checking problem is undecidable and is very challenging in the translation

validation context due to large syntactic gap between the source and assembly representation

and the large and complex nature of transformations/optimizations performed by the modern

optimizing compilers. These optimizations result in significant structural differences between the

input source code and the optimized output code. This thesis proposes algorithms that help make

significant progress in the space of automatic translation validation.

Chapter 3 presents a robust correlation algorithm, Counter, to identify correlated program tran-

sitions (represented as product-CFG) between program-pairs that may have significant struc-

tural difference across them. Counter uses an incremental approach for constructing the required

product-CFG, where an edge is added at each step to the partial product-CFG constructed so far.

123
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It is based on a best-first search procedure that uses counterexample-guided pruning to reduce

the search space of candidate product-CFGs and counterexample-guided ranking to prioritize

remaining correlation candidates.

Chapter 4 presents a scalable yet static invariant inference algorithm, Sifer, to infer precise and

expressive invariants between programs that have large syntactic gap across them. Sifer does

not depend on any execution data, but generates concrete assignments (aka counterexamples)

on-demand using SMT solver queries. It is implemented as a data-flow analysis and thus is

incremental in itself. It is parameterized using an input grammar G such that an invariant is

formed by conjuncting atomic predicates drawn from G. An important property of Sifer algorithm

is that, for grammars G with finite height, it infers the strongest inductive invariant cover in

bounded number of steps. Both the incremental property and the bounded runtime, make the

Sifer algorithm efficient enough to be used with advanced and incremental correlation algorithms

(like [14] or the proposed Counter algorithm). Unlike single-step correlation algorithms which

call the invariant inference procedure once after completing the correlation for whole program,

an incremental correlation algorithm invokes the invariant inference procedure multiple times at

each incremental step.

Using these algorithms, an unoptimized-IR-to-optimized-Assembly equivalence checking tool,

COUNTER is presented in chapter 5. To our knowledge, COUNTER is the first black-box equiv-

alence checker which can automatically compute equivalence across the long (almost full) and

rich pipeline of transformations from the unoptimized IR to the optimized x86 assembly program

generated using aggressive compiler flags with general purpose compilers like GCC, CLANG and

ICC. This includes optimizations like loop unrolling, peeling, unswitching, versioning, loop inver-

sion, vectorization, register allocation, code hoisting, strength reduction, dead code elimination,

etc. We evaluate the COUNTER tool on vectorized benchmarks taken from TSVC suite and

LORE repository.

A competing approach to translation validation for verifying the compiler correctness is certified

compilation (exemplified by the CompCert compiler [42]), which involves manually developing the

compiler from scratch along with the correctness guarantees using a proof assistant. As compared

to translation validation which involves verifying the input-output behavior for every compila-
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tion, certified compilation involves proving in advance that the compiler will always produce a

semantic preserving executable code, which is a huge manual effort and is non-trivial for many

loop optimizations. In comparison to this, a robust and comprehensive translation validation

tool (like COUNTER) has significant scope for automation and can be reused to verify common

off-the-shelf (COTS) compilers.

The proposed tool is categorized as black-box equivalence checker because it makes minimal as-

sumptions on the exact nature of transformations performed. Such an equivalence checker is capa-

ble of deciding equivalence across a larger and general space of transformations. Unlike witness-

generation based techniques that modify the compiler source code and puts undue burden of

verification on compiler developers, the black-box equivalence checker can be built independently

by formal verification experts. A robust black-box equivalence checker has high applicability in

other applications and significant scope for automation. For instance, a black-box equivalence

checker can be used for program synthesis, which requires the equivalence checker to consider

the transformations performed while proposing the optimized program as black-box. Further,

other than verification based applications like relational verification, program synthesis etc., it

can be used for other applications that involve analysis of binary executable code. For instance,

our proposed unoptimized-IR-to-optimized-Assembly equivalence checking tool, COUNTER, has

been used by recent work on improving the debug information using the proof generated by the

equivalence checker [39].

Future scope of work: Both the proposed correlation algorithm and the proposed invariant

inference algorithm heavily use the counterexamples generated through SMT solver queries and

this counterexample processing time can become a scalability bottleneck. Further, during an

equivalence check, most of the time is spent in discharging SMT proof obligations. Program

slicing is, although effective in reducing the number of program variables for invariant inference,

but high arity intermediate predicates can still appear and may lead to SMT solver timeouts

as well. We believe that future work towards scalable counterexample processing and towards

making the proof effort more efficient would enable the proposed equivalence checker, COUNTER,

to scale to larger programs and across more complex transformations.

Further, in its current form, the COUNTER tool does not support the non-bisimilar transforma-
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tions and a tool which can automatically verify these transformations has applications in auto-

parallelization and optimization. Also, automatically verifying the floating point optimizations

has applications in verifying the scientific computation programs which rely on the fastmath

floating point support and forms an important line of future work for equivalence checkers.

Another interesting line of future work is to generalize the proposed equivalence checking tool

COUNTER to handle LLVM UB (similar to [44, 47, 43]). The resulting equivalence checker can

then be used to verify equivalence across IR-level transformations for programs with loops in a

more precise manner as compared to the bounded translation validation used by prior work.
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