
AUTOMATIC BLACKBOX EQUIVALENCE
CHECKING

Sorav Bansal
IIT Delhi and CompilerAI Labs

Joint work with Manjeet Dahiya, Shubhani, Abhishek Rose
and several other past members of our research group

Hello everyone. This is a talk on automatic blackbox equivalence checking.
This is joint work with Manjeet Dahiya, Shubhani, and Abhishek Rose, all of
whom are current or past PhD students at IIT Delhi. Also there are several
past Masters and Bachelors students who have contributed to the work that I
will present today.

DETERMINISTIC FINITE AUTOMATON

1

2

3

4
$

I will start with a Deterministic Finite Automaton (DFA) that I will assume you
are already familiar with. Here I show a cartoon of a DFA where a person,
representing a machine, starts at state 1 and starts consuming input. If he
finds an apple, he moves to state 2; then if he finds a cherry, he moves to
state 3, and then if he finds a banana, he moves to state 4. Thereafter, if he
has reached the end of input (indicated using the dollar sign), he stops and
exits. Otherwise, if he sees another cherry, he moves back to state 2. If he
sees any other sequence of input fruits, the machine gets stuck which is
equivalent to an error state.

TWO DFAS

1

2

3

4
$

A

B

$

Now here is another machine where there are only two states A and B. The
person simulating the machine execution starts at state A. If he eats an
apple, he moves to state B, then if he sees a sequence of a cherry banana
cherry, then he stays at state B; and if he sees a sequence of a cherry banana
and an end-of-input (marked by dollar), then he successfully exits the
machine.

EQUIVALENCE

1

2

3

4

A

B

$

$

$

We are interested in showing that the two machines are equivalent. In this
case, this means that the language of the sequence of input fruits accepted
by the two machines are identical. In other words, a sequence of fruits is
accepted by the first machine if and only if it is accepted by the second
machine. In this simple example, this can be done by summarizing the
language accepted by each DFA, through regular expressions and then
computing their equivalence. However, in general, it may not be possible to
summarize the machine’s behaviour, and so we need easier ways to
determine equivalence.

 BISIMULATION AS A PRODUCT DFA
1

2

3

4 Lockstep
Execution

A

B

$

1A

2B

1-2 A-B

2-3-4-2
B-B

2-exit B-exit

$

$

One approach to identifying such equivalences is bisimulation. Here try to
find a lockstep execution of the two machines which specifies that whenever
the first machine transitions through a sequence of states, the second
machine transitions through a corresponding sequence of states. And
vice-versa. The third automaton drawn on the right shows a DFA that
demonstrates this lockstep execution. If the first machine starts at state 1,
then the second machine starts at state A and vice-versa. This is encoded by
the state 1A. Similarly, the first machine transitions across the edge 1-2 if
and only if the second machine transitions across the edge A-B. To reach
state 2B. The second machine transitions from B to itself if and only if the
first machine cycles through the states 2, 3, 4, and back to 2. And finally the
second machine transitions from state B to exit if and only if the first machine
transitions from 2, 3, 4, to exit. This third automaton is also called a “product
DFA” because it involves nodes and edges drawn from the product graph of
the first two DFAs.

IMPERATIVE LANGUAGE SYNTAX

if eat() != apple //Head1
 ERROR
loop forever { //Body 1
 if eat() != cherry
 ERROR
 if eat() != banana
 ERROR
 next = eat()
 if next == cherry
 CONTINUE
 if next == $
 STOP
}

if eat() != apple //Head2
 ERROR
loop forever { //Body 2
 n1 = eat()
 n2 = eat()
 n3 = eat()
 if n1 == cherry
 && n2 == banana
 && n3 == cherry
 CONTINUE
 else if n1 == cherry
 && n2 == banana
 && n3 == $
 STOP
 else ERROR
}

Head1
Head2
loop forever {
 Body1
 Body2
}

These automata can also be specified in an imperative language syntax. I
use the “eat” function to simulate input consumption. For example, the first
program involves eating one fruit at a time: it first expects to eat an apple,
then it expects to eat a cherry, then a banana, then either it is done or it
expects another cherry and so on. The second program on the other hand
can potentially consume three fruits in one go: and depending on the
sequence of fruits consumed, it can decide the next action. The action could
be either to continue executing, stop executing, or raise an error. The
corresponding product DFAs can be represented by merging the two
programs as shown on the right. We divide each program into a head which
is the part before the loop, and a body which is the body of the for loop.
Thus, the product DFA encodes the execution of the two heads in lockstep,
and the two bodies in lockstep. For example, body1 executes if and only if
body2 executes (for the same input sequence). Similarly, body1 exits if and
only if body2 exits.

IMPERATIVE LANGUAGE SYNTAX

if eat() != apple //Head1
 ERROR
loop forever { //Body 1
 if eat() != cherry
 ERROR
 if eat() != banana
 ERROR
 next = eat()
 if next == cherry
 CONTINUE
 if next == $
 STOP
}

if eat() != apple //Head2
 ERROR
loop forever { //Body 2
 n1 = eat()
 n2 = eat()
 n3 = eat()
 if n1 == cherry
 && n2 == banana
 && n3 == cherry
 CONTINUE
 else if n1 == cherry
 && n2 == banana
 && n3 == $
 STOP
 else ERROR
}

Head1
Head2
loop forever {
 Body1
 Body2
}

Head1
Head2
loop forever {
 Body1
}
loop forever {
 Body2
}

Notice that the product DFA that we used correlates one iteration of the first
program’s body with one iteration of the second program’s body. This is
much easier to do than trying to summarise each program separately and
then trying to compare the summaries of the two programs. This first
construction of lockstep correlations of small execution snippets is our
intended bisimulation relation. We will use bisimulation relations for deciding
equivalence.

INTERNAL ACTION

1

2

3

4

$

5

6

7

$

It is much easier to find such bisimulation relations for the kind of DFAs that I
have shown so far, because every edge is associated with an input action.
However, in general, program transitions may not consume an input or
generate an output. To represent this in a labeled transition system, internal
actions are used, which I represent using this cloud shaped figure. For
example, the transition from state 1 to state 5 involves an internal action. In
this case, even though the machine changes state, this change cannot be
observed because it does not involve any interaction with the outside
environment. On the other hand, consumption of a fruit is an observable
action.

EQUUIVALENCE IN THE PRESECE OF
INTERNAL ACTIONS

1

2

3

4

$

5

6

7

2

3

4

$

5

6

7

$ $

Because the internal actions are not observable, the DFA on the left is
observationally equivalent to the DFA on the right, which does not have the
transition from 1 to 5. In our work, we are interested in equivalence
observable events, or events that interact with the external environment

MEMORY

Memory

1

2

3

4

5

6

7

rd

wr

$

Moreover, there may be a larger state, also called memory, associated with
the machine. For example, the Turing machine involves an infinitely long tape.
In general, this memory state could be finite or infinite. Further the transitions
of a machine may involve read and write to this memory. In our example, a
transition from 1 to 5 involves a write to memory, while a transition from 6 to 2
involves a read from memory (indicated using wr and rd annotations). Reads
and writes to memory are also non-observable events.

MEMORY WITH LOOPS

1

2

3

4

5

6

7

8

9

Memory $

Once you have memory, the state transitions may depend on the the current
memory state. For example, the state machine may now have loops. In our
example, the machine at state 6 may deterministically decide to either
transition to state 8 or to state 2, depending on the current state of the
memory.

BISIMULATION WITH MEMORY
RELATIONS

1A

2B

1-2 A-B

2-3-4-2
B-B

2-exit B-exit

Mem1 ~ MemA

Mem2 ~ MemB

Memexit1 ~
MemexitA

In this setting of memory and loops, bisimulation relations now also need to
encode relations between memory states of the two programs being
compared for equivalence. For example, in state 1A, we may want to
constrain the relation between the corresponding memory states Mem1 and
MemA. In fact, it is likely that the lockstep execution guarantee holds only
under the constraints imposed by these memory relations (e.g., Mem1 should
be equal to Mem2). Similarly, we may want to constrain the memory states at
the state 2B, and so on.

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

To see this with a concrete example, consider this program shown as a
flowchart. This program initialises I and sum to 0. Then it executes a loop till
I is less than N, incrementing I at each iteration of the loop. At each iteration,
we add 2*I to sum. At the end of the loop, sum is returned. If I was to
summarize, this program computes the sum of 2*I for I ranging from 0 to n-1.
Recall that we are not interested in identifying summaries of programs,
because every program may not have an easily expressible summary. But
here, just for clarity in discussion, I also show the summary of the program.

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

The second program involves an almost identical program, except that this
time we use J instead of I, res instead of sum, and M instead of N. Also, we
don’t multiply j by 2 before adding it to res. Instead we multiply res by 2 at
the very end before returning. Thus this program computes 2*(Sum over j).

Correlation
nodes

Invariants

(b0, b0’) n = m

(b1, b1’) i = j,
n = m,
sum = 2*res

(b3, b3’) sum = 2*res

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

The two programs can be shown to be equivalent using a product program
that executes both programs in lockstep. On the right I show a bisimulation
relation. The first column of this bisimulation relation encodes the correlated
PCs, e.g., b0 is correlated with b0’; b1 is correlated with b1’, and b3 is
correlated with b3’. Not every instruction needs to be correlated, e.g., we
don’t correlate b2 and b2’. The second column encodes the relations on
memory that are required to hold when the two programs are at the
respective PCs. Because the memory of these programs can be specified
through the six variables, we have relations relating these variables in the
second column.

Correlation
nodes

Invariants

(b0, b0’) n = m

(b1, b1’) i = j,
n = m,
sum = 2*res

(b3, b3’) sum = 2*res

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

In this example, Program 1 is at b0 if and only if Program 2 is at b0’. Similarly,
Program1 is at b1 if an only if Program 2 is at b1’. And finally, Program1 is at
b3 if and only if Program 2 is at b3’. In general, it is possible for a bisimulation
relation to have one-to-many mappings between PCs of the two programs.
We will see some examples to this effect later.

Correlation
nodes

Invariants

(b0, b0’) n = m

(b1, b1’) i = j,
n = m,
sum = 2*res

(b3, b3’) sum = 2*res

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

Assumption:
Input equivalence:
n = m

The memory relations can also be called the program invariants for the
product program. The invariant at the start node specifies that the input
variables n and m must be equal. This comes from the equivalence problem
specification that states that the outputs should be equal for equal inputs.

Correlation
nodes

Invariants

(b0, b0’) n = m

(b1, b1’) i = j,
n = m,
sum = 2*res

(b3, b3’) sum = 2*res

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

Assumption:
Input equivalence:
n = m

The edge (b0,b0’) to (b1,b1’) encodes the fact that Program1 transitions from
b0 to b1 if and only if Program2 transitions from b0’ to b1’. Moreover, we
have set of invariants that we expect at (b1,b1’). I have not yet discussed
how we obtain these invariants. Let’s assume these invariants have been
given to us magically. Based on these invariants, we are interested in proving
that the programs have identical observable behaviour for identical inputs. In
this case, we have three invariants at (b1,b1’): i=j, n=m, and sum=2*res. The
proof involves showing that if we start at (b0,b0’) such that m=n at that point,
and we transition to (b1,b1’) then these three invariants would hold. This is
easy to see because when the product program transitions from (b0,b0’) to
(b1,b1’), the two programs would transition from b0 to b1 and b0’ to b1’
respectively. In this case, the variables I and SUM would be set to 0.
Similarly J and RES would be set to 0 too. If we look at the first invariant, i=j,
it thus evaluates to 0=0 which is trivially true. the second invariant n=m is
true because it was true at (b0,b0’) and neither N nor M have changed.
Finally, sum=2*res evaluates to 0=2*0, on this transition, which is also true.
This part of the inductive bisimulation proof is similar to the “base case” of an
induction-based proof..

Correlation
nodes

Invariants

(b0, b0’) n = m

(b1, b1’) i = j,
n = m,
sum = 2*res

(b3, b3’) sum = 2*res

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

Assumption:
Input equivalence:
n = m

The next part of the proof involves an induction hypothesis and an induction
step. The inductive hypothesis here is that the invariants already hold at
(b1,b1’) and the induction step involves showing that after one step transition
from (b1,b1’) to itself, the invariants continue to hold. Let’s look at the first
invariant I=J: assuming I=J, and one iteration of the loop transition (b1,b1’) to
itself, we get I+1 for the new value of I, and J+1 for the new value of J. Given
I=J, it is easy to see that I+1 would also be equal to J+1. Hence, we have
completed the induction step for this first invariant. For the second invariant
M=N, the induction step is trivial because neither M nor N are modified
across the loop edge. Finally, SUM=2*RES gets transformed to
SUM+2*I=RES+J after one iteration of the loop in both programs. Given I=J
and SUM=2*RES (from the inductive hypothesis), it is easy to see that
SUM+2*I=2*(RES+J). Thus we have completed the induction step

Correlation
nodes

Invariants

(b0, b0’) n = m

(b1, b1’) i = j,
n = m,
sum = 2*res

(b3, b3’) sum = 2*res

EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return
sum

b0

b1

b2

b3
Y

N

Program 1:
Computes: Σ
(2*i)
 For i ϵ [0, n)

j=0
res=0

res+=j
++j

j<m

return
2*resb2’

Y

N

Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’

b3’

Assumption:
Input equivalence:
n = m

Finally, the bisimulation proof encodes that Program1 exits to b3 if and only if
Program2 exits to b3’. Moreover when this happens, then SUM=2*RES holds
at (b3,b3’). This completes our equivalence proof because the invariants at
the exit states (b3,b3’) ensure the equivalence of the return values SUM and
2*RES

STEPPING BACK…

An Equivalence Checker is a proof finder

An Inequivalence Checker is a bug finder

1. Try to Find an Equivalence Proof

2. Try to Find a Distinguishing Input

3. Neither found, give up :-(

This talk

We have just seen how an equivalence proof between two programs can be
determined. We are interested in identifying such proofs automatically. Thus
an equivalence checker is a proof finder and that’s what I will focus on in this
talk.
In contrast, an inequivalence checker would be interested in identifying a
distinguishing input that proves that the programs are inequivalent.
Both equivalence checking and inequivalence checking are undecidable
problems. A typical tool would first try to find an equivalence proof. If found,
we are done. Else, it would try and find a distinguishing input or an
inequivalence proof. If found, we are done. Else, we have neither found
equivalence nor inequivalence, and we simply give up.

EQUIVALENCE CHECKING LITERATURE
Simulation Relation,
cut points

Loop free code

Partial equivalence
(with bounded
unrolling)

Regression
verification

Affine programs

Data Driven
(test cases are
given)

Translation
validation
(Pass based,
knowledge of
trasformations)

T
h

e
o

re
ti

c
a

l
b

a
s
is

A
p

p
li

c
a

ti
o

n
 s

p
e

c
if

ic
/
li

m
it

a
ti

o
n

s

A. Turing. Checking a large routine. In The early British computer conferences, pages 70–72. MIT Press, Cambridge, MA, USA, 1989 (reproduction)
Milner, R., "Program Simulation: An Extended Formal Notion", Memo 17, Computers and Logic Research Group, University College of Swansea, U.K. (1961).
Milner, R., "A Formal Notion of Simulation Between Programs", Memo 14, Computers and Logic Research Croup, University College of Swansea, U.K. (1970).
Milner, R., "An algebraic definition of simulation between programs", IJCAI'71 Proceedings of the 2nd international joint conference on Artificial intelligence (1971)
Manna, Z., "The Correctness of Programs", J. of Computer and Systems Sciences, Vol. 3, No. 2. 119-127 (1969).
…
D. W. Currie, A. J. Hu, and S. P. Rajan. Automatic formal veri?cation of DSP software. In DAC, pages 130–135, 2000.
X. Feng and A. J. Hu. Automatic formal veri?cation for scheduled VLIW code. In LCTES-SCOPES, pages 85–92, 2002.
X. Feng and A. J. Hu. Cutpoints for formal equivalence veri?cation of embedded software. In EMSOFT, pages 307– 316, 2005.
T. Matsumoto, H. Saito, and M. Fujita. Equivalence checking of C programs by locally performing symbolic simulation on dependence graphs. In ISQED, pages 370–375, 2006.
T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli, J. Shalev, E. Singerman, A. Tiemeyer, M. Y. Vardi, and L. D. Zuck. Formal veri?cation of backward compatibility of microcode. In CAV, pages 185–198,
2005.
Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole optimizations with alive. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 22–32. PLDI 2015, ACM (2015)
…
D.Jacksonand, D.A.Ladd. SemanticDiff:A tool for summarizing the effects of modi?cations. In ICSM, pages 243–252, 1994.
Lahiri, S., Hawblitzel, C., Kawaguchi, M., Rebelo, H.: Symdiff: A language-agnostic semantic diff tool for imperative programs. In: CAV ’12. Springer (2012)
Lahiri, S., Sinha, R., Hawblitzel, C.: Automatic rootcausing for program equivalence failures in binaries. In: Computer Aided Veri?cation (CAV’15). Springer (2015)
S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic execution. In SIGSOFT FSE, pages 226–237, 2008
D. A. Ramos and D. R. Engler. Practical, low-effort equivalence veri?cation of real code. In CAV, pages 669–685, 2011.
Lopes, N.P., Monteiro, J.: Automatic equivalence checking of programs with uninterpreted functions and integer arithmetic. Int. J. Softw. Tools Technol. Transf. 18(4), 359–374 (Aug 2016)
….

Hawblitzel, C., Lahiri, S.K., Pawar, K., Hashmi, H., Gokbulut, S., Fernando, L., Detlefs, D., Wadsworth, S.: Will you still compile me tomorrow? static cross-version compiler validation. In: ESEC/FSE 2013, ACM
(2013)
Strichman, O., Godlin, B.: Regression verification - a practical way to verify programs. In: Verified Software: Theories, Tools, Experiments, vol. 4171, pp. 496–501. Springer Berlin Heidelberg (2008)
Felsing, D., Grebing, S., Klebanov, V., Ru¨mmer, P., Ulbrich, M.: Automating regression veri?cation. In: ASE ’14, ACM (2014)
…
Verdoolaege, S., Janssens, G., and Bruynooghe, M. 2009. Equivalence checking of static affine programs using widening to handle recurrences. In Computer Aided Verification 21. Springer, 599–613.
Verdoolaege, S., Janssens, G., and Bruynooghe, Equivalence Checking of Static Affine Programs using Widening to Handle Recurrences (TOPLAS12)
…
Churchill, B., Sharma, R., Bastien, J., Aiken, A.: Sound loop superoptimization for google native client. In: Proceedings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems. pp. 313–326. ASPLOS ’17, ACM (2017)
Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence checking. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages
and Applications. pp. 391–406. OOPSLA ’13, ACM (2013)
…
V.Menon, K.Pingali,andN. Mateev. Fractal symbolic analysis. ACM Trans. Program. Lang. Syst., 25(6):776–813, 2003.
Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameterized program equivalence. In: PLDI ’09, ACM (2009)
Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach to optimization. In: POPL ’09
Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for llvm. In: Proceedings of the 23rd International Conference on Computer Aided Verification. pp. 737–742. CAV’11, Springer-Verlag (2011)
B. Goldberg, L. D. Zuck, and C. W. Barrett. Into the loops: Practical issues in translation validation for optimizing compilers. Electr.NotesTheor.Comput.Sci.,132(1):53–71,2005.
G. C. Necula. Translation validation for an optimizing compiler. In PLDI, pages 83–94, 2000.
A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS, pages 151–166, 1998.
Kanade, A., Sanyal, A., Khedker, U.P.: Validation of gcc optimizers through trace generation. Softw. Pract. Exper. 39(6), 611–639 (Apr 2009)
Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Proceedings of the 4th International Conference on Tools and Algorithms for Construction and Analysis of Systems. pp. 151–166. TACAS ’98,
Springer-Verlag (1998)
Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation validation for llvm. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation.
pp. 295–305. PLDI ’11, ACM (2011)
Zaks, A., Pnueli, A.: Covac: Compiler validation by program analysis of the crossproduct. In: Proceedings of the 15th International Symposium on Formal Methods. pp. 35–51. FM ’08, Springer-Verlag (2008)
…

There is extensive literature on equivalence checking, which is unsurprising
given the fundamental nature of the problem. Literature ranges from
theoretical basis for this problem related to simulation relations for example to
application specific treatments in the context of translation validation,
regression verification, etc.

STILL MISSING…

An Automatic Equivalence Checker

that works across a long and unknown sequence of transformations

for practically useful programs written in commonly-used syntaxes

in a scalable way

I will contend that there is still missing an automatic equivalence checker that
works across a long and unknown sequence of transformations for practically
useful programs written in commonly-used syntaxes in a scalable way. When
I say “long and unknown”, I am interested in supporting at least the kinds of
transformations supported by modern compilers. When I say “practically
useful” and “commonly-used syntaxes”, I am referring to programs such as
operating systems, web servers, analytic engines, embedded applications,
etc written in PLs like C, Java, etc. When I say “automatic”, I mean that a
machine-readable equivalence proof should be generated without manual
assistance.

EQUIVALENCE CHECKING RESEARCH ROADMAP

Prior
Work

Translation Validation
across a selected set
of transformations

I want to first talk about the context of our work by discussing the current
equivalence checking research and the future roadmap. Prior work has largely
focussed on translation validation across a selected set of transformations.

Prior
Work

Translation Validation
across a selected set
of transformations

Our
Work

Translation Validation across
a full compilation pipeline for

selected programs

EQUIVALENCE CHECKING RESEARCH ROADMAP

Our work, and also the work of some other research groups, has shown
translation validation across a full compilation pipeline for a selected set of
programs. The full compilation pipeline includes lowering to assembly and
several high-level and low-level transformations. However, we are still not
able to support all possible programs yet.

Prior
Work

Translation Validation
across a selected set
of transformations

Our
Work

Translation Validation across
a full compilation pipeline for

selected programs

Our planned
work

Translation Validation for any general
program across an almost full compilation

pipeline

EQUIVALENCE CHECKING RESEARCH ROADMAP

Through our planned future work over the next 1-2 years, we expect to be
able to validate translations for any general program across an almost full
compilation pipeline. We may not be able to support some very aggressive
transformations, but we should be able to support a reasonably high degree
of optimisation. Importantly, we should be able to validate compilations of
any general program.

Prior
Work

Translation Validation
across a selected set
of transformations

Our
Work

Translation Validation across
a full compilation pipeline for

selected programs

Our planned
work

Translation Validation for any general
program across an almost full compilation

pipeline

Pursuing as a startup
called “CompilerAI

Labs”.

EQUIVALENCE CHECKING RESEARCH ROADMAP

As an aside, we are pursuing this effort as a start called CompilerAI Labs

Prior
Work

Translation Validation
across a selected set
of transformations

Our
Work

Translation Validation across
a full compilation pipeline for

selected programs

Our planned
work

Translation Validation for any general
program across an almost full compilation

pipeline

Pursuing as a startup
called “CompilerAI

Labs”.
Indian Air Force is a
potential customer.

EQUIVALENCE CHECKING RESEARCH ROADMAP

Indian Air Force is a potential customer for this capability

Prior
Work

Translation Validation
across a selected set
of transformations

Our
Work

Translation Validation across
a full compilation pipeline for

selected programs

Our planned
work

Translation Validation for any general
program across an almost full compilation

pipeline

Pursuing as a startup
called “CompilerAI

Labs”.
Indian Air Force is a
potential customer.

This will be the first certified
compiler that uses automatic

translation validation as the sole
certification technique.

EQUIVALENCE CHECKING RESEARCH ROADMAP

If we are successful (which I expect us to be), this will be the first certified
compiler that uses automatic translation validation as the sole certification
technique

Prior
Work

Translation Validation
across a selected set
of transformations

Our
Work

Translation Validation across
a full compilation pipeline for

selected programs

Our planned
work

Translation Validation for any general
program across an almost full compilation

pipeline

What is
desirable
General purpose

push-button verification
across a specification and

an implementation
across a practically large

set of manual and
compiler-generated

transformations

EQUIVALENCE CHECKING RESEARCH ROADMAP

But what is truly desirable is a more general push-button verification across a
high-level specification and an implementation. For example, it would be
really nice if an OS was specified using a high level language like OCaml and
an efficient C implementation could be compared to its Ocaml specification
automatically

EQCHECK SETTINGS
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

APLAS17, HVC17, SAT18,
PLDI20, OOPSLA20

Ongoing

One way to classify equivalence checking efforts is the settings in which
these tools operate. Prior work has involved equivalence checking between
two executable binary programs; equivalence between a C like Programming
language and executable binary code; between two different programs
written in C-like programming language; between two different programs
written in the LLVM IR syntax, and finally between an OCaml-like functional
programming language and a C-like programming language. Some of our
papers, as shown in red, have looked at the first three settings. More
recently, we have been also looking at the other two settings.
Interestingly, different settings provide different challenges and opportunities
that stem from the semantics associated with each level of syntax.

EQCHECK APPLICATIONS
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• WYSIWYX
• Binary Code Analysis for Security
• Superoptimization

Before I dive into the algorithms, let me quickly go over the applications of
equivalence checking in each of these syntaxes. For
executable-to-executable equivalence checking, we have applications related
to security and optimisation, e.g., WYSIWYX refers to what you see is what
you execute. Superoptimization involves identifying faster binary rewrites
automatically.

EQCHECK APPLICATIONS
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• Translation Validation and Certified Compilation
• Superoptimization

Checking equivalence across a programming language like C and executable
binary code has direct applications to translation validation and certified
compilation, to rule out compiler bugs. Also, this capability can also be used
for identifying higher-level optimizations through supeorptimization.

EQCHECK APPLICATIONS
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• Regression Verification
• Verifying Library Implementations against each other

Checking two different source programs, in the same syntax, against each
other has applications in regression verification and verification of library
implementations

EQCHECK APPLICATIONS
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

Translation Validation in the presence of
non-deterministic values like Undef and Poison

LLVM presents its own non-intuitive challenges related to non-deterministic
values such as Undef and Poison, and so translation validation for such
syntax becomes even more attractive and useful.

EQCHECK APPLICATIONS
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• Push-button Verification
• Implementation Synthesis

Finally, if you can derive automatic proofs of equivalence between a higher
level functional language and an imperative language like C, you would make
progress towards important problems in push-button verification and
implementation synthesis.

RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

I will talk about three different challenges that we tackled and were of
significance in our research on equivalence checking. The first is on the need
to model the language-level undefined behaviour semantics. The second is
about identifying correlations between program transitions automatically. The
third is about efficient encoding and discharge of proof obligations using SMT
Solvers. And finally I will briefly introduce some of the challenges related to
LLVM UB and OCaml vs. C.

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

RESEARCH CHALLENGES

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

I will start with modeling undefined behaviour

UNDEFINED BEHAVIOUR (UB)

• A Part of the High-Level Language Specification

• More specifically, a part of the erroneous conditions specification

• Erroneous conditions without specification are called UB

• Some languages like C are UB-heavy

Undefined Behaviour semantics are a part of the high-level language
specification related to error conditions. Error conditions without
specification are called UB. Some languages like C are UB heavy because
they are performance sensitive. For example, a language like Java would say
that an error should explicitly raise an exception or print an error message. In
contrast, a language like C would leave the behaviour unspecified on an error;
in other words, the machine is allowed to do anything if an erroneous
program is executed. These “can do anything” semantics allow better
compiler optimization for performance, but make it harder to reason about the
correctness of a program.

UB IN C : EXAMPLE 1

• a+b is UB on overflow (for int a, b) : Signed Integer Overflow

One example of Undefined Behaviour, or UB, in C is Signed Integer Overflow.
Consider two integers in C, A and B. What should happen if A+B is evaluated
and it overflows. The C standard deems it to be UB.

Implicattions of UB on Compilers

int c = INT_MAX + 1; sys(“rm –rf /”)

Academic example but this is a
legal transformation

To better understand the implications of such semantics, consider this
snippet of code that computes INT_MAX+1. Clearly, this code will always
result in UB, because INT_MAX+1 is guaranteed to overflow. This means that
the compiler+runtime are free to do anything if this program is executed. For
example, they may execute this command to erase all files in the filesystem.
Of course this is an academic example because no compiler/runtime would
actually do this. But the point is that the UB semantics allow the machine to
do anything, and so this would be a perfectly legal transformation.

EXAMPLE 2
// computes the sum of
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
 int* p = Arr;
 for(int i = 1; i < n+1; ++i) {
 sum = sum + *p;
 ++p;
 }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

To see this in a more practical setting, consider this example program,
“compute_sum”. A pointer P is initialised to a global array A; and the loop
iterates from 1 to N+1, each time dereferencing and incrementing p. SUM
holds the sum of the values dereferenced through P.

The unoptimised version of the program is a CFG representation of the
original program. The optimised version of the program involves some
transformations. For example, it changes i<n+1 to i<=n. Also it register
allocates sum to r.

EXAMPLE 2
// computes the sum of
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
 int* p = Arr;
 for(int i = 1; i < n+1; ++i) {
 sum = sum + *p;
 ++p;
 }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

The first transformation involves converting I < N+1 to I<=N. Notice that this
transformation is only legal if we assume that N+1 does not overflow. For
example, if N was INT_MAX, then the unoptimised program would check I < 0
whereas the optimised program would check I <= INT_MAX, and the two
would not be equivalent. Fortunately, thanks to UB semantics, we can
assume that N+1 cannot overflow and so such a transformation becomes
feasible because for all values of N other than INT_MAX, this transformation
preserves the program behaviour.

EXAMPLE 2
// computes the sum of
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
 int* p = Arr;
 for(int i = 1; i < n+1; ++i) {
 sum = sum + *p;
 ++p;
 }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

n ≠ INT_MAX

In other words, the UB semantics guarantee that n cannot be equal to
INT_MAX and that allows the compiler to perform this transformation legally.

UB IN C : EXAMPLE 2

• Arr[i] is UB if i belongs outside the bounds of Arr

Another example of UB in C specifies that if you index into an array Arr
through an index I, then I must belong to the bounds of the array Arr. If it
indexes outside Arr’s bounds, then this would trigger UB.

IMPLICATIONS OF UB ON COMPILERS

while (…) {
 A[i] = …
 B[j] = …
 j++
}

A[i] = …
while (…) {
 B[j] = …
 j++
}

Aliasing Assumptions can be made
even when we don’t know the
bounds on i and j

To see this with an example, consider this loop where we are making two
different array write accesses A[I] and B[j], and if the computation involving
A[I] is loop invariant, then that computation can be hoisted up. But such
hoisting is only legal if we are assured that A[I] cannot alias with B[j]. It turns
out that if A and B are global variables, then even if we don’t know the
bounds on I and J, we can make such no-alias assumptions, because
accessing an array outside their bounds would be UB and so we don’t need
to bother about that case. If both indices I and J are within bounds of A and
B respectively for a non-UB program, then we can be sure that A[i] cannot
alias with B[j] and thus we can make this transformation legally.

EXAMPLE 2
Based-on Analysis

•Inside the loop, p is based on Arr

•If a pointer is based on an object X, then it must
point within X

•In this example, we can infer that p cannot alias
with ‘sum’

// computes the sum of
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
 int* p = Arr;
 for(int i = 1; i < n+1; ++i) {
 sum = sum + *p;
 ++p;
 }
}

In our compute_sum example, the access into the array Arr is not through a
direct index but through P. Yet we can reason about the fact that P must
point within Arr. This is due to the based-on semantics in C. Because P is
initialized to Arr and is only increment thereafter, P must be always based on
Arr. Consequently, the compiler that the pointer P is based on the variable A.
After that, it can use the C semantics to assume that because P is based on
A, P must point within A; and thus P cannot alias with SUM.

EXAMPLE 2
// computes the sum of
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
 int* p = Arr;
 for(int i = 1; i < n+1; ++i) {
 sum = sum + *p;
 ++p;
 }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

Thus, the compiler transformation that involves the register allocation of the
sum variable across the for loop is a legal transformation based on these
based-on semantics and associated UB conditions.

EXAMPLE 2
// computes the sum of
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
 int* p = Arr;
 for(int i = 1; i < n+1; ++i) {
 sum = sum + *p;
 ++p;
 }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

&sum ≠ p

In particular, we are able to infer that because P is based on Arr, it cannot
alias with the address of SUM for a non-UB program.

EXAMPLE 2

50

PCpair Invariants

(b0, b0’) n1 = n2,
Arr1 = Arr2

(b1, b1’) sum1 = r2,
i1 = i2,
p1 = p2,
Arr1 = Arr2

(b3, b3’) sum1 = sum2
Arr1 = Arr2

X

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3

Y

N

Unoptimized version
(Program 1)

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version
(Program 2)

If we try to check the equivalence of these two versions of the program, we
will never be able to determine equivalence until we model the corresponding
UB semantics. In particular, the equivalence proof would fail on the inductive
step, I.e. the loop edge from (b1,b1’) to itself. This is because the theorem
prover would return counterexamples that would set N to INT_MAX, or P to
alias with &SUM, because in these cases, we will be unable to complete the
induction step.

EXAMPLE 2

51

PCpair Invariants UB Assumes

(b0, b0’) n1 = n2,
Arr1 = Arr2

n1 ≠ INT_MAX

(b1, b1’) sum1 = r2,
i1 = i2,
p1 = p2,
Arr1 = Arr2

n1 ≠ INT_MAX,
&sum ≠ p1,

(b3, b3’) sum1 = sum2
Arr1 = Arr2

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3

Y

N

Unoptimized version
(Program 1)

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version
(Program 2)

Thus, we add another column in our bisimulation relation table that encodes
the conditions for the absence of UB. These conditions are derived from the
programming language’s UB semantics, e.g., no signed overflow. We call
these conditions, UB assumes, and they are encoded using the bitvector
operators available in SMT-like syntaxes.

EXPERIMENTAL SETUP

=
26007 function pairs

(40% contained at least
one loop)

Unoptimized:
-O0

Optimized:
-O2, -O3

x

Optimization
levels

twolf

vpr

parser

gap

Spec Int benchmarks

mcf

bzip2

ctests

crafty

vortex

perlbmk

gzip

sjeng

GCC

LLVMx

Compilers

ICC

ccomp

Before I discuss the algorithm any further, I will first share the results of our
attempts at computing equivalence across compiler transformations
produced by four different compilers, namely GCC, LLVM, ICC, and
CompCert. We used the SPEC Integer benchmarks as the source programs.
We performed equivalence checks for unoptimised O0 vs. optimised O2/O3
compilations. Overall, this experiment involved computing equivalence for
over 26000 function pairs.

EQUIVALENCE CHECKING SUCCESS RATES

Published in: APLAS 2017. 15th Asian Symposium on Programming Languages and Systems.
Manjeet Dahiya, Sorav Bansal: Black-box equivalence checking across compiler optimizations.

Overall success rates: 72-76%

Here is a summary of the equivalence checking statistics. On the X axis we
show the number of Assembly lines of code (ALOC) for the function pair being
checked for equivalence. On the Y axis, we show the cumulative count of
function pairs for which the equivalence checker was able to generate a proof
of equivalence (also called a success or a pass result). The success rate is
the fraction of equivalence tests that returned a pass result (with a proof of
equivalence). Till ALOC 100, the success rates for the equivalence checker
are fairly high, but the success rates decrease rapidly for larger functions.
Most of the equivalence failures for large functions are attributed to timeouts,
and in some cases we could not ascertain the cause of the equivalence
failure. Overall our success rates were 72-76%. This is not very encouraging
especially given that most of the passes are for smaller functions.

SUCCESS RATE BREAKDOWN
•Success rate across O0-O2: 76%
•Success rate across O0-O3: 72%
•Verification runtime for passing:
313 s (avg), 8.5 s (median)

•Verification runtime for passing + failing:
 ~1hr (avg), 22 s (median)

•Largest verified function: 4754 ALOC
•Most complex function: 31 edges in the simulation
relation

In our paper we have a more detailed breakdown of per benchmark and per
compiler/optimization. In the interest of time, I will skip that discussion here.

ESTIMATING THE IMPACT OF UB ON OPTIMIZATION

Equivalence checking with modelling: Success rate
%

Drop in success
rate

All UB 81 NA

All UB except type based strict aliasing 76 5

All UB except signed integer overflow 77 4

All UB except out-of-bounds variable access 50 31

The drop due to out-of-bounds variable access UB is significantly higher than other UBs
•Large number of global variables

•Register allocation or otherwise reordering of memory accesses are frequent
and important optimizations

Published in: HVC 2017. 13th International Haifa Verification Conference
Manjeet Dahiya, Sorav Bansal: Modeling undefined behaviour semantics for checking equivalence across compiler
optimizations.

Here are some interesting things you can do with such an equivalence
checking capability. You can disable the modelling of specific types of UB
and measure the effect on the success rates on our equivalence checker.
This exercise provides insight into the relative importance of different types of
UB. We find that disabling type-based strict aliasing assumptions reduces
success rates by 5% from 81 to 76%. Similarly, disabling signed integer
overflow assumptions decreases success rates by 4%. However, disabling
the out-of-bounds variable access assumptions reduces success rates by a
whopping 31%. This makes it clear that out of bounds memory accesses are
the most consequential to compiler optimizations for C programs. This is not
surprising because these latter UB assumptions are used for alias analysis
which in turn is used for several transformations, including register allocation.

RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

I will next move to our next major challenge that is on identifying correlation
between program transitions automatically, towards the construction of a
bisimulation relation.

EXAMPLE 3: VECTORIZATION

Consider this program. It involves a for loop on I which reads/writes four
different arrays A, B, C, D. Depending on the value of d[I], it updates a[I]
based on the values of b[I] and c[I]. This program is taken from the Testsuite
for Vectorizing Compilers. Unsurprisingly, when this program is compiled, we
obtain a highly vectored implementation

EXAMPLE 3 : VECTORIZATION

This slide shows the vectorized x86 assembly implementation on the right.
The vectorized implementation uses xmm registers and opcodes like pcmpgt
and pblend. A manual reading of the assembly code is rather difficult. But
overall, this represents a four-unrolling of the loop on the left.

Counter Algorithm : Two Key Ideas

• Correlate “sets of paths” (pathsets) instead of individual paths

• Counterexample-Guided Best-First Search

OOPSLA20

Our algorithm, called Counter, involves two key ideas: (1) correlate sets of
paths, or pathsets, instead of individual paths. And (2)
counterexample-guided best-first search. I will explain both these ideas
through examples.

EXAMPLE 4 : CORRELATING PATHSETS

a[r1] = d[r1] > 0 ? b[r1] : c[r1]

a[r1+1] = d[r1+1] > 0 ? b[r1+1] : c[r1+1]

a[r1+2] = d[r1+2] > 0 ? b[r1+2] : c[r1+2]

a[r1+3] = d[r1+3] > 0 ? b[r1+3] : c[r1+3]

Unroll 4 times

I will simplify the example that we had shown on the previous slide and just
consider the loop paths of the two programs. Also let’s assume that there is
only a two-way if statement in the loop body: the if condition checks the value
of d[i]. If it is positive, it assigns c[i] to a[i], else it assigns b[i] to c[i]. In the
assembly program, this single iteration of the loop is unrolled four times and
vectorized. The corresponding operation of a single iteration of the assembly
loop iteration involves updating four different elements of A, namely r1, r1+1,
r1+2, and r1+3. The value used to update each of these elements could be
independently derived from arrays B or C

UNROLLING RESULTS IN AN
EXPONENTIAL NUMBER OF PATHS

If 3 level control flow and 8 unrolling, 38 = 6561 distinct paths to be correlated

Unroll 4 times

 - -
- 16 distinct paths to be correlated

If we unroll this four times, there are actually 2^4 or 16 total number of
potential paths that a program can take. In general, if there are k path inside
the loop body that is unrolled n times, then we have potentially k^n paths that
may be taken. For example, for k=3 and n=8, as in our previous example, this
evaluates to over 6000 paths. Correlating every path separately would be
very expensive.

Correlating Pathsets

• Correlating Individual Paths is not Scalable

• Counter identifies a correlation for a set of paths, or pathset, in a
single step

Instead we identify a correlation for a set of paths, or a pathset, in a single
step.

Correlating Pathsets

We use a directed-acyclic-graph representation for a pathset, such as the one
shown above. This directed acyclic graph encodes the possible paths that
may be taken. Even though this represents an exponential number of
different path possibilities, this graph representation is linear in the size of the
unroll factor.

Correlating Pathsets

 - - -

16 distinct paths to be correlated

Yet this linear directed acyclic graph representation exactly represents an
exponential number of paths, 16 in this example.

Correlating Pathsets

SMT-proof
obligations

Correlating
Pathsets

Correlating
individual paths

Usual-case Linear Exponential

Worst-case Exponential Exponential

Scalable Time out

By representing a pathset using a linear-sized representation, and by
correlating a pathset in a single step, we are able to make our algorithm
scalable. In the usual-case, this approach of correlating a pathset in a single
step would yield linear-time algorithms, assuming that the transformations
performed by the compiler can be tackled using reasoning at
pathset-granularity. However, the worst-case still remains exponential. On
the other hand, the approach of correlating individual paths would be
exponential even in the usual case.

Key Idea #2
Counterexample Guided Best-First Search

Our second key idea is counterexample guided best-first search

EXAMPLE 5 : LOOP TRANSFORMATIONS

#define LEN 1000
int original() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < LEN ; i ++) {
 if (i < mid) sum += c[a[i]];
 if (i >= mid) sum += b[i];
 }
 return sum ;
}

int loopSplitting() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < mid ; i ++) {
 if (i < mid) sum += c[a[i]];
 if (i >= mid) sum += b[i];
 }
 for (int i = mid; i < LEN ; i ++) {
 if (i < mid) sum += c[a[i]];
 if (i >= mid) sum += b[i];
 }
 return sum ;
}

Consider this example program on the left. Here there is a single loop that
iterates I from 0 to LEN. Also, we have mid=LEN/2. The body of the loop
does something different for i < mid and something else for i >= mid.

An optimizing compiler typically splits the loop into two loops as shown on
the right. The first loop iterates from 0 to mid, while the second loop iterates
from mid to LEN. The bodies of the two loops are identical to the body of the
original loop.

EXAMPLE 5 : LOOP TRANSFORMATIONS
int loopSplitting() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < mid ; i ++) {
 if (i < mid) sum += c[a[i]];
 if (i >= mid) sum += b[i];
 }
 for (int i = mid; i < LEN ; i ++) {
 if (i < mid) sum += c [a[i]];
 if (i >= mid) sum += b[i];
 }
 return sum ;
}

int loopUnswitching() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < mid ; i++) {
 sum += c[a[i]];
 }
 for (int i = mid; i < LEN ; i ++) {
 sum += b[i];
 }
 return sum ;
}

Next, the optimizing compiler transforms both loops using the loop
unswitching transformation. Notice that in the first loop, the second
statement is never executed; and in the second loop, the first statement is
never executed. The compiler takes advantage of this fact to get rid of the
other statement, and also removes the if condition in the body of both loops.

EXAMPLE 5 : LOOP TRANSFORMATIONS

int loopUnswitching() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < mid ; i++) {
 sum += c[a[i]];
 }
 for (int i = mid; i < LEN ; i ++) {
 sum += b[i];
 }
 return sum ;
}

int loopUnrolling() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < mid ; i ++) {
 sum += c[a[i]];
 }
 for (int i = mid; i < LEN ; i +=4) {
 sum += b[i];
 sum += b[i+1];
 sum += b[i +2];
 sum += b[i +3];
 }
 return sum ;
}

The next transformation of a vectorizing compiler involves unrolling the
second loop because it has a nice pattern where consecutive elements in
memory accessed in a sequence of iterations.

EXAMPLE 5 : LOOP TRANSFORMATIONS
int loopUnrolling() {
 int sum = 0;
 int mid = LEN /2;
 for (int i = 0; i < mid ; i ++) {
 sum += c[a[i]];
 }
 for (int i = mid; i < LEN ; i +=4) {
 sum += b[i];
 sum += b[i+1];
 sum += b[i +2];
 sum += b[i +3];
 }
 return sum ;
}

A0 : loopVectorizedAndRegAllocated :
A1 : r1 = 0; r2 = 0;
A2 : r2 += c [a [r1]]
A3 : r1 ++
A4 : if (r1 != mid) goto A2
A5 : r1 = &b[mid]; r3=& b[LEN]; xmm0 = 0
A6 : xmm0 += * r1 , .. , *(r1 +12)
A7 : r1 += 16
A8 : if (r1 != r3) goto A6
A9 : xmm0 += (xmm0 >> 8)
A10 : xmm0 += (xmm0 >> 4)
A11 : r2 += xmm0 [31:0]
EA : ret r2

Finally, the unrolled loop body of the second loop is implemented using a
single vector operation in the assembly code. Also, in the assembly syntax,
we have several types of register allocation and other transformations.

End-to-End Equivalence Check
 #define LEN 1000
C0: int original() {
C1: int sum = 0;
C2: int mid = LEN /2;
C3: for (int i = 0; i < LEN ; i ++) {
C4: if (i < mid) sum += c[a[i]];
C5: if (i >= mid) sum += b[i];
C6: }
EC: return sum ;
 }

A0 : loopVectorizedAndRegAllocated :
A1 : r1 = 0; r2 = 0;
A2 : r2 += c [a [r1]]
A3 : r1 ++
A4 : if (r1 != mid) goto A2
A5 : r1 = &b[mid]; r3=& b[LEN]; xmm0 = 0
A6 : xmm0 += * r1 , .. , *(r1 +12)
A7 : r1 += 16
A8 : if (r1 != r3) goto A6
A9 : xmm0 += (xmm0 >> 8)
A10 : xmm0 += (xmm0 >> 4)
A11 : r2 += xmm0 [31:0]
EA : ret r2

The two input programs that are given to our equivalence checker in this case
are: the original program and the final vectorized assembly program, and it is
expected to identify an equivalence proof automatically. Indeed, our
equivalence checkers works for this pair of examples, and the corresponding
product program is shown as a CFG (control-flow graph) in the figure below.
The entry node of the product CFG is (C0,A0). Then transition from C0 to C3
(entry to loop head) is correlated with the transition from A0 to A2 in assembly
(entry to loop head for the first loop). The loop path C3-C4-C3 is correlated
with A2-A2 under certain conditions. Under another mutually exclusive
condition (e.g., i=mid), the C3-C4-C3 is correlated with A2-A6. The second
loop in the product program correlates the loop path A6-A6 in the assembly
program with four unrollings of C3-C5-C3 (the four unrollings are represented
using the superscript). Finally if the assembly program exits from A6, the C
program also exits from C3 albeit after making four more executions of the
loop body.

Incremental Construction of the Product CFG

So how do we construct this product program, or product CFG (i.e., CFG of a
product program). We do this incrementally. We already the start nodes of
both programs, i.e., C0 and A0, and so we correlate them first to add a node
(C0,A0) to the product CFG.

Incremental Construction of the Product CFG

We then identify a correlation for the assembly edge A0-A2. Here the
correlation indicates that if any of the paths in the pathset A0-A2 is taken in
assembly, then some path in C0-C3 is taken in the C program. Also, we relax
the bidirectional condition: the condition holds only one way. For example, if
one of the paths in C0-C3 is taken in the C program, it is not necessary for
one of the paths in A0-A2 to be taken. This allows a pathset in the C program
to be correlated with multiple pathsets of the assembly program.

Incremental Construction of the Product CFG

Infer Invariants at
(C3,A2)

Use off-the-shelf invariant inference algorithms to infer affine, equality
and inequality invariants on bitvectors and memory states

Based on the pathset correlations, we can also correlate the end-points and
add a new node, (C3,A2). Further, we use an off-the-shelf invariant inference
algorithm to infer equality, inequality, and affine invariants. The only
difference between prior work on invariant inference and our setting is that we
infer these invariants on the product program. In contrast, most prior
invariant inference work has tackled individual programs. The product
program setting has no effect on the operation of the invariant inference
algorithm.

Incremental Construction of the Product CFG

Relax Invariants
at (C3,A2)

Then after each correlation, we relax invariants at the destination node of that
correlation.

Incremental Construction of the Product CFG

We continue this incremental construction process.

Incremental Construction of the Product CFG

Infer Invariants at
(C3,A6)

Inferring invariants at any new node that is added.

Incremental Construction of the Product CFG

Relax Invariants
at (C3,A6)

And relaxing invariants using any new edge that is added

Incremental Construction of the Product CFG

Check equivalence of
return values under
inferred invariants

Finally, we check the equivalence of the return values (observables) under the
inferred invariants. If the equivalence can be proven under the inferred
invariants, we have obtained a proof of observable equivalence.

SEARCH SPACE

Of course, the incremental construction I described earlier seems too easy to
be true. In reality, we don’t know which assembly pathset to correlate with
which C program pathset. For example, I could potentially correlate A0-A2
with C0-C2-C5

SEARCH SPACE

Or here is another correlation possibility that correlates C0-C2-C5-C7 with
A0-A2

SEARCH SPACE

And so on...

SEARCH SPACE

If I pick one of these possibilities, then I have a similar choice at the next step.

SEARCH SPACE

Exhaustive search would take years to compute equivalence

Overall, this is an exponential search space and an exhaustive search would
take years to complete even for small examples.

SEARCH SPACE

Exhaustive search would take years to compute equivalence

Prior work on data driven

correlation would fail to

construct this required

product-CFG

No prior work before ours can handle the types of transformations that I
described using the previous example.

Counterexamples

Infer Invariants at
(C3,A2)

During invariant inference, we make potential GUESSes for
invariants. We try to prove a GUESS using an SMT Solver.

● If the GUESS is provable, we have found an invariant.
● If not, the SMT solver returns a counterexample

Counterexamples identified at (C3,A2) during
invariant inference

A central idea that we use in our algorithm is the idea of Counterexamples.
During invariant inference, we make potential GUESSes for a possible
invariant. We then check a GUESS by trying to prove that it holds on the
incoming edges. If it holds on all incoming edges, then we have found an
invariant. If it does not hold on some incoming edge, then we obtain a
counterexample from the SMT solver

Counterexamples

Infer Invariants at
(C3,A2)

A counterexample at a node is a potential concrete machine state
that may occur at that particular node during execution.

The concrete state would involve valuations for (related) variables of
both C and A.

Counterexample1: I=5, R1=5
Counterexample2: I=1003, R1=1003

A counterexample at a node represents a potential concrete machine state
that may occur at that particular nodeduring execution. For a product CFG,
this would involve valuations of variables for both programs C and A.
Moreover, because the product program is executing in lockstep, we can
expect the variables of the two programs to have some relations, e.g., I in C is
always equal to R1 in A for all the counterexamples.

COUNTEREXAMPLE GUIDED BEST-FIRST
SEARCH

• Counterexample-Guided Pruning

The two primary ideas that allow us to navigate this large search space are:
(1) counterexample guided pruning. Using the counterexamples, we can
potentially determine that some correlations are obviously incorrect if we find
that the counterexample produces inconsistent behaviour on the two
machines. I will show an example of an inconsistent behaviour.

COUNTEREXAMPLE GUIDED BEST-FIRST
SEARCH

• Counterexample-Guided Pruning
• Counterexample-Guided Ranking

Ranked
higher

(2) Counterexample-Guided Ranking. We use a counterexample guided
heuristic to rank some potential correlations higher than the other. Depending
on the behaviour of the counterexamples, we can identify that some
candidates are more promising than others. I will show this in more detail
too.

Counterexample Guided Best-First Search

● Counterexample Guided Pruning

I will first show an example for counterexample guided pruning

COUNTEREXAMPLE EXECUTION

i=0, r1=0,
b[0] = 5, c[0] = 10

Consider this counterexample at (C2,A2) shown in the green box. Also
consider this product-CFG edge C2-C3,A2-A2. Let’s say that C2-C3
executes the statement a[i]=c[i]. Similarly, A2-A2 executes a[r1]=b[r1]. Now,
we will interpret both these operations of the product-CFG edge on the
counterexample at (C2,A2). Based on this, we will get a counterexample at
(C3,A2), the destination node of this product-CFG edge.

COUNTEREXAMPLE EXECUTION

i=0, r1=0,
b[0] = 5, c[0] = 10 a[0] = 5

a[0] = 10

In this example, the evaluation of the edge on the green counterexample
would cause different values for the “A” array. On the C program side, at
(C3,A2), we would have a[0] evaluated to 10. Whereas on the assembly side
a[0] would evaluate to 5.

Counterexample Guided Pruning

i=0, r1=0,
b[0] = 5, c[0] = 10 a[0] = 5

a[0] = 10

 HeapC ≠ HeapA

This effectively means that the heaps would be unequal at (C3,A2).

Counterexample Guided Pruning

i=0, r1=0,
b[0] = 5, c[0] = 10 a[0] = 5

a[0] = 10

 HeapC ≠ HeapA

PRUNE AWAY THIS CANDIDATE
CORRELATION

If we expect the heaps to be equal at all correlated nodes, then we can easily
prune this candidate correlation because it does not produce identical heap
states at the destination node of the product-CFG edge.

Counterexample Guided Best-First Search

● Counterexample Guided Pruning
● Counterexample Guided Ranking

Next I will show an example for counterexample-guided ranking

Infer Invariant Covers for Executed
Counterexamples

Infer
Invariants

Infer
Invariants

These circles represent counterexamples identified for two different
correlations at the destination node (C2,A2). Based on the counterexamples,
we try and identify the possible affine relations between the variables of the
two programs.

Infer Invariant Covers for Executed
Counterexamples

sum = r2
j=r3
i = r1

sum = r2+r1
i = r1+1

Let’s say that the inferred relations from the counterexamples are:
sum=r2,j=r3,i=r1 for the first correlation; and sum=r2+r1,i=r1+1 for the second
correlation.

Infer Invariant Covers for Executed
Counterexamples

sum = r2
j=r3
i = r1

sum = r2+r1
i = r1+1

Ranked
higher

Rank based on Number of Live
Assembly Values Correlated through

the Inferred Invariants

One of them has affine relations for three different assembly registers, namely
r1, r2, and r3. Whereas the other correlation has affine relations only for r1
and r2, but not for r3. We rank the first correlation higher because it relates a
larger number of assembly registers. This is our ranking heuristic. We find
that this performs remarkably well in practice, to identify the most promising
candidate at each step of the incremental product-CFG construction.

Counter Evaluation

Equivalence checker
based on Counter algorithm

=

Unoptimized
LLVM IR

Optimized x86
assembly codeCompiler

(-O3 –msse4.2)

GCC-8 / Clang-11 / ICC-18.0.3

I will now discuss the experimental results of applying the Counter algorithm
to C programs and their x86 assembly counterparts generated through three
different optimizing compilers, GCC, Clang, and ICC, with O3 and SSE4.2
vectorization transformations enabled.

Counter Evaluation

• TSVC Benchmarks : TestSuite for Vectorizing
Compilers

• 208 function-compiler pairs tested

• 175 function-compiler pairs pass

We took C programs from the TSVC benchmarks, which being a testsuite for
vectorizing compilers, represents one of the hardest set of equivalence
checking problems because compilers produce very aggressive
transformations for these programs. Our tool is able to successfully compute
equivalence for 175 of the 208 function-compiler pairs tested in this testsuite.
This is much larger than any previous equivalence checking effort for these
benchmarks.

Counter Evaluation
• TSVC Benchmarks : TestSuite for Vectorizing Compilers

• 208 function-compiler pairs tested

• 175 function-compiler pairs pass

• LORE Repository for Loop Nests

• 27 different vectorizable loop patterns, all pass

• 16 with multiple potentially-nested loops

• 6 where multiple control flow paths in the loop body

• 17 use multi-dimensional arrays

We also tested on the LORE repository of loop nests which contain 27
different vectorizable loop patterns. Our equivalence checker is able to
compute equivalence for all of these patterns successfully.

Bugs Discovered
https://compiler.ai/bugs

• Bug in ICC-16.03 involving integer overflow

• Bug in ICC-16.03 related to incorrect reordering of memory accesses

• Bug in GCC-4.8 involving incorrect reordering of memory accesses

• Bug in Qemu machine emulator that is shipped with Linux/KVM hypervisor

• Three bugs in DietLibc related to missing unsigned-to-signed typecasts

• Bug in the Yices SMT Solver related to incorrect query result

Over the years, we have found several bugs in compilers and other software
such as the Qemu binary translator, a C library and an SMT solver. All these
bugs were found using our equivalence checker --- in all these cases, when
an expected equivalence proof failed, we tried to identify the reason for the
failure. We would typically expect a shortcoming of our tool, but sometimes
we found that the bug was in the program pair being tested. Except the GCC
bug, all other bugs were previously unknown and were fixed immediately
upon reporting by us. You can find more details on these bugs at
https://compiler.ai/bugs

https://community.intel.com/t5/Intel-C-Compiler/icc-16-0-3-not-respecting-fno-strict-overflow-flag/td-p/1078194
https://community.intel.com/t5/Intel-C-Compiler/icc-16-0-3-not-respecting-no-ansi-alias-flag/td-p/1075325
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68480
https://mail.gnu.org/archive/html/qemu-devel/2014-06/msg02675.html
https://compiler.ai/bugs/dietlibc_bug_report.pdf
https://github.com/SRI-CSL/yices2/issues/146

A central effort in making this equivalence checking possible is improving its
scalability through efficient encoding and discharge of proof obligations. This
effort involves a lot of engineering and it is usually not possible to explain all
the different optimizations we perform in a single talk like this. Some of these
approaches are discussed in our SAT18 paper. But I will skip this discussion
in the interest of time.

RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

Skipped

QUERY DECOMPOSITION

Most proof obligations can be expressed as Hoare triples

{Pre} w {src=dst}

Which get lowered to

Pre => WP_w(src=dst)

Becomes easier if WP_w(src=dst) is small

Skipped

QUERY DECOMPOSITION

Before After
If we can prove:

 Pre => (E3=E7)
 Pre => (E4=E8)

src srcdst dst

Counterexample-Guided Algorithm to Identify Equality Pairs

Finally, I will briefly motivate some interesting problems that we are currently
working on

RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

LLVM has weaker forms of undefined behaviour, such as undefined values
and poison values. These non-deterministic values make some of the most
basic transformations invalid. For example 2*y can no longer be
strength-reduced to y+y. This is highly non-intuitive for human programmers
and prior work has addressed this problem in limited settings of loop-free
code or of bounded translation validation. We are interested in identifying
translation validation algorithms for code with loops in the presence of such
LLVM-style UB.

LLVM UB AND COMPILER
TRANSFORMATIONS

fooSRC() {
 …
 x = 2*y;
 …
}

fooTGT() {
 …
 x = y + y;
 …
}

fooSRC() {
 …
 x = y+y+y;
 …
}

fooTGT() {
 …
 x = 4*y - y;
 …
}

As I said earlier, the most interesting problem in this space is the automatic
identification of equivalence proofs between a higher level of abstraction,
such as a functional program, and a lower level of abstraction, such as a C
program. This example shows a list implementation in OCaml on the left and
C on the right. The C implementation has several implementation details like
pointers, allocation, struct, etc. People have previously completed such
equivalence proofs manually using proof assistants. However manual proofs
are usually cumbersome and thus have low adoption. Automatically
identifying equivalences would be a desirable capability - we are trying to
generalize our bisimulation framework to these settings.

OCAML VS. C

To conclude, (read from the slide).

CONCLUSIONS
• Equivalence Checking is a fundamental problem with important applications in

• Translation Validation, Push-button Verification, Program Synthesis and
Superoptimization

• Much progress has been made over the past 20+ years

• Invariant inference, automatic correlation, UB modelling, assembly-level modelling, …

• Several problems are still open, some within shooting distance . . .

• Support for address-taken local variable modelling, scalability improvements, LLVM, …

Even after decades of research, formal verification tools have not become
mainstream in the software development pipeline. We think that this is set to
change soon. With the aim of “innovation to industry”, we have founded a
deep-tech startup based on our research that develops certified compilers
and tools for source and binary code analysis. We are looking for bright
engineers who are passionate about the space of compilers and/or formal
verification to join us.

COMPILERAI
https://compiler.ai

• Deep-tech start-up based on our research in the area of equivalence checking.

• Building the first certified compiler that uses automatic translation validation as the

sole certification technique for Indian Air Force.

• Tools for Source and Binary executable code analysis.

https://compiler.ai/demo

Thank you and I am happy to take questions. You can try the equivalence
checker for yourself at compiler.ai/demo

THANK YOU
QUESTIONS?

See equivalence checking demo at
https://compiler.ai/demo

https://compiler.ai/demo

