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Hello everyone.  This is a talk on automatic blackbox equivalence checking.  
This is joint work with Manjeet Dahiya, Shubhani, and Abhishek Rose, all of 
whom are current or past PhD students at IIT Delhi.  Also there are several 
past Masters and Bachelors students who have contributed to the work that I 
will present today.
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I will start with a Deterministic Finite Automaton (DFA) that I will assume you 
are already familiar with.  Here I show a cartoon of a DFA where a person, 
representing a machine, starts at state 1 and starts consuming input.  If he 
finds an apple, he moves to state 2; then if he finds a cherry, he moves to 
state 3, and then if he finds a banana, he moves to state 4.  Thereafter, if he 
has reached the end of input (indicated using the dollar sign), he stops and 
exits.  Otherwise, if he sees another cherry, he moves back to state 2.  If he 
sees any other sequence of input fruits, the machine gets stuck which is 
equivalent to an error state.
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Now here is another machine where there are only two states A and B.  The 
person simulating the machine execution starts at state A.  If he eats an 
apple, he moves to state B, then if he sees a sequence of a cherry banana 
cherry, then he stays at state B; and if he sees a sequence of a cherry banana 
and an end-of-input (marked by dollar), then he successfully exits the 
machine.
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We are interested in showing that the two machines are equivalent.  In this 
case, this means that the language of the sequence of input fruits accepted 
by the two machines are identical.  In other words, a sequence  of fruits is 
accepted by the first machine if and only if it is accepted by the second 
machine.  In this simple example, this can be done by summarizing the 
language accepted by each DFA, through regular expressions and then 
computing their equivalence.  However, in general, it may not be possible to 
summarize the machine’s behaviour, and so we need easier ways to 
determine equivalence.
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One approach to identifying such equivalences is bisimulation.  Here try to 
find a lockstep execution of the two machines which specifies that whenever 
the first machine transitions through a sequence of states, the second 
machine transitions through a corresponding sequence of states.  And 
vice-versa.  The third automaton drawn on the right shows a DFA that 
demonstrates this lockstep execution.   If the first machine starts at state 1, 
then the second machine starts at state A and vice-versa.  This is encoded by 
the state 1A.  Similarly, the first machine transitions across the edge 1-2 if 
and only if the second machine transitions across the edge A-B.  To reach 
state 2B.  The second machine transitions from B to itself if and only if the 
first machine cycles through the states 2, 3, 4, and back to 2.  And finally the 
second machine transitions from state B to exit if and only if the first machine 
transitions from 2, 3, 4, to exit.  This third automaton is also called a “product 
DFA” because it involves nodes and edges drawn from the product graph of 
the first two DFAs.



IMPERATIVE LANGUAGE SYNTAX

if eat() != apple   //Head1
    ERROR 
loop forever {   //Body 1
    if eat() != cherry
        ERROR 
    if eat() != banana
        ERROR 
    next = eat()
    if next == cherry
        CONTINUE
    if next == $
        STOP
}

if eat() != apple  //Head2
    ERROR 
loop forever {  //Body 2
    n1 = eat()
    n2 = eat()
    n3 = eat()
    if        n1 == cherry
       && n2 == banana 
       && n3 == cherry 
        CONTINUE
    else if  n1 == cherry 
         && n2 == banana 
         && n3 == $
        STOP
    else ERROR 
}

Head1
Head2
loop forever {
    Body1
    Body2
}

These automata can also be specified in an imperative language syntax.  I 
use the “eat” function to simulate input consumption.  For example, the first 
program involves eating one fruit at a time: it first expects to eat an apple, 
then it expects to eat a cherry, then a banana, then either it is done or it 
expects another cherry and so on.   The second program on the other hand 
can potentially consume three fruits in one go:  and depending on the 
sequence of fruits consumed, it can decide the next action.  The action could 
be either to continue executing, stop executing, or raise an error.   The 
corresponding product DFAs can be represented by merging the two 
programs as shown on the right.  We divide each program into a head which 
is the part before the loop, and a body which is the body of the for loop.  
Thus, the product DFA encodes the execution of the two heads in lockstep, 
and the two bodies in lockstep.  For example, body1 executes if and only if 
body2 executes (for the same input sequence). Similarly, body1 exits if and 
only if body2 exits.



IMPERATIVE LANGUAGE SYNTAX

if eat() != apple   //Head1
    ERROR 
loop forever {   //Body 1
    if eat() != cherry
        ERROR 
    if eat() != banana
        ERROR 
    next = eat()
    if next == cherry
        CONTINUE
    if next == $
        STOP
}

if eat() != apple  //Head2
    ERROR 
loop forever {  //Body 2
    n1 = eat()
    n2 = eat()
    n3 = eat()
    if        n1 == cherry
       && n2 == banana 
       && n3 == cherry 
        CONTINUE
    else if  n1 == cherry 
         && n2 == banana 
         && n3 == $
        STOP
    else ERROR 
}

Head1
Head2
loop forever {
    Body1
    Body2
}

Head1
Head2
loop forever {
    Body1
}
loop forever {
    Body2
}

Notice that the product DFA that we used correlates one iteration of the first 
program’s body with one iteration of the second program’s body.  This is 
much easier to do than trying to summarise each program separately and 
then trying to compare the summaries of the two programs.  This first 
construction of lockstep correlations of small execution snippets is our 
intended bisimulation relation.  We will use bisimulation relations for deciding 
equivalence.
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It is much easier to find such bisimulation relations for the kind of DFAs that I 
have shown so far, because every edge is associated with an input action.  
However, in general, program transitions may not consume an input or 
generate an output.  To represent this in a labeled transition system, internal 
actions are used, which I represent using this cloud shaped figure.  For 
example, the transition from state 1 to state 5 involves an internal action.  In 
this case, even though the machine changes state, this change cannot be 
observed because it does not involve any interaction with the outside 
environment.  On the other hand, consumption of a fruit is an observable 
action.
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Because the internal actions are not observable, the DFA on the left is 
observationally equivalent to the DFA on the right, which does not have the 
transition from 1 to 5.  In our work, we are interested in equivalence 
observable events, or events that  interact  with the external environment
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Moreover, there may be a larger state, also called memory, associated with 
the machine.  For example, the Turing machine involves an infinitely long tape.  
In general, this memory state could be finite or infinite.  Further  the transitions 
of a machine may involve read and write to this memory.  In our example, a 
transition from 1 to 5 involves a write to memory, while a transition from 6 to 2 
involves a read from memory (indicated using wr and rd annotations).  Reads 
and writes to memory are also non-observable events.



MEMORY WITH LOOPS
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Once you have memory, the state transitions may depend on the the current 
memory state.  For example, the state machine may now have loops.  In our 
example, the machine at state 6 may deterministically decide to either 
transition to state 8 or to state 2, depending on the current state of the 
memory.



BISIMULATION WITH MEMORY 
RELATIONS 
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In this setting of memory and loops, bisimulation relations now also need to 
encode relations between memory states of the two programs being 
compared for equivalence.  For example, in state 1A, we may want to 
constrain the relation between the corresponding memory states Mem1 and 
MemA.  In fact, it is likely that the lockstep execution guarantee holds only 
under the constraints imposed by these memory relations (e.g., Mem1 should 
be equal to Mem2).  Similarly, we may want to constrain the memory states at 
the state 2B, and so on.



EXAMPLE 1

i=0
sum=0

sum+=2*i
++i

i<n

return 
sum
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Program 1:
Computes: Σ
(2*i)
  For i ϵ [0, n)

To see this with a concrete example, consider this program shown as a 
flowchart.  This program initialises I and sum to 0.  Then it executes a loop till 
I is less than N, incrementing I at each iteration of the loop.  At each iteration, 
we add 2*I to sum.  At the end of the loop, sum is returned.  If I was to 
summarize, this program computes the sum of 2*I for I ranging from 0 to n-1.  
Recall that we are not interested in identifying summaries of programs, 
because every program may not have an easily expressible summary.  But 
here, just for clarity in discussion, I also show the summary of the program.
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Program 1:
Computes: Σ
(2*i)
  For i ϵ [0, n)

j=0
res=0

res+=j
++j
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return 
2*resb2’
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Program 2:
Computes:
2 * Σj
For j ϵ [0, m)

b0’

b1’
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The second program involves an almost identical program, except that this 
time we use J instead of I, res instead of sum, and M instead of N.  Also, we 
don’t multiply j by 2 before adding it to res.  Instead we multiply res by 2 at 
the very end before returning.  Thus this program computes 2*(Sum over j).
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(b3, b3’) sum = 2*res
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The two programs can be shown to be equivalent using a product program 
that executes both programs in lockstep.  On the right I show a bisimulation 
relation.  The first column of this bisimulation relation encodes the correlated 
PCs, e.g., b0 is correlated with b0’; b1 is correlated with b1’, and b3 is 
correlated with b3’.  Not every instruction needs to be correlated, e.g., we 
don’t correlate b2 and b2’.  The second column encodes the relations on 
memory that are required to hold when the two programs are at the 
respective PCs.  Because the memory of these programs can be specified 
through the six variables, we have relations relating these variables in the 
second column.
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In this example, Program 1 is at b0 if and only if Program 2 is at b0’.  Similarly, 
Program1 is at b1 if an only if Program 2 is at b1’.  And finally, Program1 is at 
b3 if and only if Program 2 is at b3’.  In general, it is possible for a bisimulation 
relation to have one-to-many mappings between PCs of the two programs.  
We will see some examples to this effect later.
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Assumption:
Input equivalence: 
n = m

The memory relations can also be called the program invariants for the 
product program.  The invariant at the start node specifies that the input 
variables n and m must be equal.  This comes from the equivalence problem 
specification that states that the outputs should be equal for equal inputs.
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The edge (b0,b0’) to (b1,b1’) encodes the fact that Program1 transitions from 
b0 to b1 if and only if Program2 transitions from b0’ to b1’.  Moreover, we 
have  set of invariants that we expect at (b1,b1’).  I have  not yet discussed 
how we obtain these invariants.  Let’s assume these invariants have been 
given to us magically.  Based on these invariants, we are interested in proving 
that the programs have identical observable behaviour for identical inputs.  In 
this case, we have three invariants at (b1,b1’): i=j, n=m, and sum=2*res. The 
proof involves showing that if we start at (b0,b0’) such that m=n at that point, 
and we transition to (b1,b1’) then these three invariants would hold.  This is 
easy to see because when the product program transitions from (b0,b0’) to 
(b1,b1’), the two programs would transition from b0 to b1 and b0’ to b1’ 
respectively.  In this case, the variables I and SUM would be set to 0.  
Similarly J and RES would be set to 0 too.  If we look at the first invariant, i=j, 
it thus evaluates to 0=0 which is trivially true.  the second invariant n=m is 
true because it was true at (b0,b0’) and neither N nor M have changed.  
Finally, sum=2*res evaluates to 0=2*0, on this transition, which is also true.  
This part of the inductive bisimulation proof is similar to the “base case” of an 
induction-based proof..
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The next part of the proof involves an induction hypothesis and an induction 
step.  The inductive hypothesis here is that the invariants already hold at 
(b1,b1’) and the induction step involves showing that after one step transition 
from (b1,b1’) to itself, the invariants continue to hold.  Let’s look at the first 
invariant I=J:  assuming I=J, and one iteration of the loop transition (b1,b1’) to 
itself, we get I+1 for the new value of I, and J+1 for the new value of J.  Given 
I=J, it is easy to see that I+1 would  also be equal to J+1.  Hence, we have 
completed the induction step for this first invariant.  For the second invariant 
M=N, the induction step is trivial because neither M nor N are modified 
across the loop edge.  Finally, SUM=2*RES gets transformed to 
SUM+2*I=RES+J after one iteration of the loop in both programs.  Given I=J 
and SUM=2*RES (from the inductive hypothesis), it is easy to see that 
SUM+2*I=2*(RES+J).  Thus we have completed the induction step
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Finally, the bisimulation proof encodes that Program1 exits to b3 if and only if 
Program2 exits to b3’.  Moreover when this happens, then SUM=2*RES holds 
at (b3,b3’).  This completes our equivalence proof because the invariants at 
the exit states (b3,b3’) ensure the equivalence of the return values SUM and 
2*RES



STEPPING BACK…

An Equivalence Checker is a proof finder

An Inequivalence Checker is a bug finder

1. Try to Find an Equivalence Proof

2. Try to Find a Distinguishing Input

3. Neither found, give up :-(

This talk

We have just seen how an equivalence proof between two programs can be 
determined.  We are interested in identifying such proofs automatically.  Thus 
an equivalence checker is a proof finder and that’s what I will focus on in this 
talk.
In contrast, an inequivalence checker would be interested in identifying a 
distinguishing input that proves that the programs are inequivalent.
Both equivalence checking and inequivalence checking are undecidable 
problems.  A typical tool would first try to find an equivalence proof.  If found, 
we are done.  Else, it would try and find a distinguishing input or an 
inequivalence proof.  If found, we are done.  Else, we have neither found 
equivalence nor inequivalence, and we simply give up.
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There is extensive literature on equivalence checking, which is unsurprising 
given the fundamental nature of the problem.  Literature ranges from 
theoretical basis for this problem related to simulation relations for example to 
application specific treatments in the context of translation validation, 
regression verification, etc.



STILL MISSING…

An Automatic Equivalence Checker

that works across a long and unknown sequence of  transformations

for practically useful programs written in commonly-used syntaxes

in a scalable way

I will contend that there is still missing an automatic equivalence checker that 
works across a long and unknown sequence of transformations for practically 
useful programs written in commonly-used syntaxes in a scalable way.  When 
I say “long and unknown”, I am interested in supporting at least the kinds of 
transformations supported by modern compilers.  When I say “practically 
useful” and “commonly-used syntaxes”, I am referring to programs such as 
operating systems, web servers, analytic engines, embedded applications, 
etc written in PLs like C, Java, etc.  When I say “automatic”, I mean that a 
machine-readable equivalence proof should be generated without manual 
assistance.



EQUIVALENCE CHECKING RESEARCH ROADMAP

Prior 
Work

Translation Validation 
across a selected set 
of transformations

I want to first talk about the context of our work by discussing the current 
equivalence checking research and the future roadmap. Prior work has largely 
focussed on translation validation across a selected set of transformations.
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of transformations

Our 
Work

Translation Validation across 
a full compilation pipeline for  

selected programs

EQUIVALENCE CHECKING RESEARCH ROADMAP

Our work, and also the work of some other research groups, has shown 
translation validation across a full compilation pipeline for a selected set of 
programs.  The full compilation pipeline includes lowering to assembly and 
several high-level and low-level transformations.  However, we are still not 
able to support all possible programs yet.
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program across an almost full compilation 

pipeline

EQUIVALENCE CHECKING RESEARCH ROADMAP

Through our planned future work over the next 1-2 years, we expect to be 
able to validate translations for any general program across an almost full 
compilation pipeline.  We may not be able to support some very aggressive 
transformations, but we should be able to support a reasonably high degree 
of optimisation.  Importantly, we should be able to validate compilations of 
any general program.
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Pursuing as a startup 
called “CompilerAI 

Labs”.

EQUIVALENCE CHECKING RESEARCH ROADMAP

As an aside, we are pursuing this effort as a start called CompilerAI Labs
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EQUIVALENCE CHECKING RESEARCH ROADMAP

Indian Air Force is a potential customer for this capability
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compiler that uses automatic 
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certification technique.

EQUIVALENCE CHECKING RESEARCH ROADMAP

If we are successful (which I expect us to be), this will be the first certified 
compiler that uses automatic translation validation as the sole certification 
technique



Prior 
Work

Translation Validation 
across a selected set 
of transformations

Our 
Work

Translation Validation across 
a full compilation pipeline for  

selected programs

Our planned 
work

Translation Validation for any general 
program across an almost full compilation 

pipeline

What is 
desirable
General purpose 

push-button verification 
across a specification and 

an implementation 
across a practically large 

set of manual and 
compiler-generated 

transformations

EQUIVALENCE CHECKING RESEARCH ROADMAP

But what is truly desirable is a more general push-button verification across a 
high-level specification and an implementation.  For example, it would be 
really nice if an OS was specified using a high level language like OCaml and 
an efficient C implementation could be compared to its Ocaml specification 
automatically



EQCHECK SETTINGS 
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

APLAS17, HVC17, SAT18, 
PLDI20, OOPSLA20

Ongoing

One way to classify equivalence checking efforts is the settings in which 
these tools operate.  Prior work has involved equivalence checking between 
two executable binary programs; equivalence between a C like Programming 
language and executable binary code; between two different programs 
written in C-like programming language; between two different programs 
written in the LLVM IR syntax, and finally between an OCaml-like functional 
programming language and a C-like programming language.  Some of our 
papers, as shown in red, have looked at the first three settings.  More 
recently, we have been also looking at the other two settings.
Interestingly, different settings provide different challenges and opportunities 
that stem from the semantics associated with each level of syntax.



EQCHECK APPLICATIONS 
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• WYSIWYX
• Binary Code Analysis for Security
• Superoptimization

Before I dive into the algorithms, let me quickly go over the applications of 
equivalence checking in each of these syntaxes.  For 
executable-to-executable equivalence checking, we have applications related 
to security and optimisation, e.g., WYSIWYX refers to what you see is what 
you execute.  Superoptimization involves identifying faster binary rewrites 
automatically.



EQCHECK APPLICATIONS 
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• Translation Validation and Certified Compilation
• Superoptimization

Checking equivalence across a programming language like C and executable 
binary code has direct applications to translation validation and certified 
compilation, to rule out compiler bugs.  Also, this capability can also be used 
for identifying higher-level optimizations through supeorptimization.



EQCHECK APPLICATIONS 
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• Regression Verification
• Verifying Library Implementations against each other

Checking two different source programs, in the same syntax, against each 
other has applications in regression verification and verification of library 
implementations



EQCHECK APPLICATIONS 
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

Translation Validation in the presence of 
non-deterministic values like Undef and Poison

LLVM presents its own non-intuitive challenges related to non-deterministic 
values such as Undef and Poison, and so translation validation for such 
syntax becomes even more attractive and useful.



EQCHECK APPLICATIONS 
• Executable Binary Code vs. Executable Binary Code

• C like PL vs. Executable Binary Code

• C like PL vs. C like PL

• LLVM IR vs. LLVM IR

• OCaml like PL vs. C like PL

• Push-button  Verification
• Implementation Synthesis

Finally, if you can derive automatic proofs of equivalence between a higher 
level functional language and an imperative language like C, you would make 
progress towards important problems in push-button verification and 
implementation synthesis.



RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

I will talk about three different challenges that we tackled and were of 
significance in our research on equivalence checking.  The first is on the need 
to model the language-level undefined behaviour semantics.  The second is 
about identifying correlations between program transitions automatically.  The 
third is about efficient encoding and discharge of proof obligations using SMT 
Solvers.  And finally I will briefly introduce some of the challenges related to 
LLVM UB and OCaml vs. C.



• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

RESEARCH CHALLENGES

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

I will start with modeling undefined behaviour



UNDEFINED BEHAVIOUR (UB)

• A Part of the High-Level Language Specification

• More specifically, a part of the erroneous conditions specification

• Erroneous conditions without specification are called UB

• Some languages like C are UB-heavy

Undefined Behaviour semantics are a part of the high-level language 
specification related to error conditions.  Error conditions without 
specification are called UB.  Some languages like C are UB heavy because 
they are performance sensitive.  For example, a language like Java would say 
that an error should explicitly raise an exception or print an error message.  In 
contrast, a language like C would leave the behaviour unspecified on an error; 
in other words, the machine is allowed to do anything if an erroneous 
program is executed.  These “can do anything” semantics allow better 
compiler optimization for performance, but make it harder to reason about the 
correctness of a program.



UB IN C : EXAMPLE 1

• a+b is UB on overflow (for int a, b) : Signed Integer Overflow

One example of Undefined Behaviour, or UB, in C is Signed Integer Overflow.  
Consider two integers in C, A and B.  What should happen if A+B is evaluated 
and it overflows.  The C standard deems it to be UB.



Implicattions of UB on Compilers

int c = INT_MAX + 1; sys(“rm –rf /”)

Academic example but this is a 
legal transformation

To better understand the implications of such semantics, consider this 
snippet of code that computes INT_MAX+1.  Clearly, this code will always 
result in UB, because INT_MAX+1 is guaranteed to overflow.  This means that 
the compiler+runtime are free to do anything if this program is executed.  For 
example, they may execute this command to erase all files in the filesystem.  
Of course this is an academic example because no compiler/runtime would 
actually do this.  But the point is that the UB semantics allow the machine to 
do anything, and so this would be a perfectly legal transformation.



EXAMPLE 2
// computes the sum of 
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
    int* p = Arr;
    for(int i = 1; i < n+1; ++i) {
        sum = sum + *p;
        ++p;
    }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

To see this in a more practical setting, consider this example program, 
“compute_sum”.  A pointer P is initialised to a global array A; and the loop 
iterates from 1 to N+1, each time dereferencing and incrementing p.  SUM 
holds the sum of the values dereferenced through P.

The unoptimised version of the program is a CFG representation of the 
original program.  The optimised version of the program involves some 
transformations.  For example, it changes i<n+1 to i<=n.  Also it register 
allocates sum to r.



EXAMPLE 2
// computes the sum of 
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
    int* p = Arr;
    for(int i = 1; i < n+1; ++i) {
        sum = sum + *p;
        ++p;
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}

p=Arr
i=1

sum+=*p
++i; p+=4
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Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

The first transformation involves converting I < N+1 to I<=N.  Notice that this 
transformation is only legal if we assume that N+1 does not overflow.  For 
example, if N was INT_MAX, then the unoptimised program would check I < 0 
whereas the optimised program would check I <= INT_MAX, and the two 
would not be equivalent.  Fortunately, thanks to UB semantics, we can 
assume that N+1 cannot overflow and so such a transformation becomes 
feasible because for all values of N other than INT_MAX, this transformation 
preserves the program behaviour.



EXAMPLE 2
// computes the sum of 
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
    int* p = Arr;
    for(int i = 1; i < n+1; ++i) {
        sum = sum + *p;
        ++p;
    }
}

p=Arr
i=1

sum+=*p
++i; p+=4
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Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

n ≠ INT_MAX

In other words, the UB semantics guarantee that n cannot be equal to 
INT_MAX and that allows the compiler to perform this transformation legally.



UB IN C : EXAMPLE 2

• Arr[i] is UB if  i belongs outside the bounds of Arr

Another example of UB in C specifies that if you index into an array Arr 
through an index I, then I must belong to the bounds of the array Arr.  If it 
indexes outside Arr’s bounds, then this would trigger UB.



IMPLICATIONS OF UB ON COMPILERS

while (…) {
    A[i] = …
    B[j] = …
    j++
}

A[i] = …
while (…) {
    B[j] = …
    j++
}

Aliasing Assumptions can be made 
even when we don’t know the 
bounds on i and j

To see this with an example, consider this loop where we are making two 
different array write accesses A[I] and B[j], and if the computation involving 
A[I] is loop invariant, then that computation can be hoisted up.  But such 
hoisting is only legal if we are assured that A[I] cannot alias with B[j].  It turns 
out that if A and B are global variables, then even if we don’t know the 
bounds on I and J, we can make such no-alias assumptions, because 
accessing an array outside their bounds would be UB and so we don’t need 
to bother about that case.  If both indices I and J are within bounds of A and 
B respectively for a non-UB program, then we can be sure that A[i] cannot 
alias with B[j] and thus we can make this transformation legally.



EXAMPLE 2
Based-on Analysis

•Inside the loop, p is based on Arr

•If a pointer is based on an object X, then it must 
point within X

•In this example, we can infer that p cannot alias 
with ‘sum’

// computes the sum of 
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
    int* p = Arr;
    for(int i = 1; i < n+1; ++i) {
        sum = sum + *p;
        ++p;
    }
}

In our compute_sum example, the access into the array Arr is not through a 
direct index but through P.  Yet we can reason about the fact that P must 
point within Arr.  This is due to the based-on semantics in C.  Because P is 
initialized to Arr and is only increment thereafter, P must be always based on 
Arr.  Consequently, the compiler that the pointer P is based on the variable A.  
After that, it can use the C semantics to assume that because P is based on 
A, P must point within A; and thus P cannot alias with SUM.



EXAMPLE 2
// computes the sum of 
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
    int* p = Arr;
    for(int i = 1; i < n+1; ++i) {
        sum = sum + *p;
        ++p;
    }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

Thus, the compiler transformation that involves the register allocation of the 
sum variable across the for loop is a legal transformation based on these 
based-on semantics and associated UB conditions.



EXAMPLE 2
// computes the sum of 
// first n integers of Arr

int Arr[256];
int sum = 0;
void compute_sum(int n)
{
    int* p = Arr;
    for(int i = 1; i < n+1; ++i) {
        sum = sum + *p;
        ++p;
    }
}

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3
Y

N

Unoptimized version

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version

&sum ≠ p

In particular, we are able to infer that because P is based on Arr, it cannot 
alias with the address of SUM for a non-UB program.
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PCpair Invariants

(b0, b0’) n1  = n2,
Arr1 = Arr2

(b1, b1’) sum1 = r2, 
i1 = i2, 
p1 = p2,
Arr1 = Arr2

(b3, b3’) sum1 = sum2
Arr1 = Arr2

X

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3

Y

N

Unoptimized version 
(Program 1)

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version 
(Program 2)

If we try to check the equivalence of these two versions of the program, we 
will never be able to determine equivalence until we model the corresponding 
UB semantics.  In particular, the equivalence proof would fail on the inductive 
step, I.e. the loop edge from (b1,b1’) to itself.  This is because the theorem 
prover would return counterexamples that would set N to INT_MAX, or P to 
alias with &SUM, because in these cases, we will be unable to complete the 
induction step.  
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PCpair Invariants UB Assumes

(b0, b0’) n1  = n2,
Arr1 = Arr2

n1 ≠ INT_MAX

(b1, b1’) sum1 = r2, 
i1 = i2, 
p1 = p2,
Arr1 = Arr2

n1 ≠ INT_MAX,
&sum ≠ p1,

(b3, b3’) sum1 = sum2
Arr1 = Arr2

p=Arr
i=1

sum+=*p
++i; p+=4

i<n+1

return

b0

b1

b2

b3

Y

N

Unoptimized version 
(Program 1)

p=Arr;i=1
r=sum

r+=*p
++i;p+=4

i<=n

sum=r

b0’

b1’

b2’ b3’
return

N

Y

Optimized version 
(Program 2)

Thus, we add another column in our bisimulation relation table that encodes 
the conditions for the absence of UB.  These conditions are derived from the 
programming language’s UB semantics, e.g., no signed overflow.  We call 
these conditions, UB assumes, and they are encoded using the bitvector 
operators available in SMT-like syntaxes.



EXPERIMENTAL SETUP

=
26007 function pairs

(40% contained at least 
one loop)

Unoptimized:
-O0

Optimized:
-O2, -O3

x

Optimization 
levels

twolf

vpr

parser

gap

Spec Int benchmarks

mcf

bzip2

ctests

crafty

vortex

perlbmk

gzip

sjeng

GCC

LLVMx

Compilers

ICC

ccomp

Before I discuss the algorithm any further, I will first share the results of our 
attempts at computing equivalence across compiler transformations 
produced by four different compilers, namely GCC, LLVM, ICC, and 
CompCert.  We used the SPEC Integer benchmarks as the source programs.  
We performed equivalence checks for unoptimised O0  vs. optimised O2/O3 
compilations.  Overall, this experiment involved computing equivalence for 
over 26000 function pairs.



EQUIVALENCE CHECKING SUCCESS RATES

Published in: APLAS 2017. 15th Asian Symposium on Programming Languages and Systems.
Manjeet Dahiya, Sorav Bansal: Black-box equivalence checking across compiler optimizations.

Overall success rates: 72-76%

Here is a summary of the equivalence checking statistics.  On the X axis we 
show the number of Assembly lines of code (ALOC) for the function pair being 
checked for equivalence.  On the Y axis, we show the cumulative count of 
function pairs for which the equivalence checker was able to generate a proof 
of equivalence (also called a success or a pass result).  The success rate is 
the fraction of equivalence tests that returned a pass result (with a proof of 
equivalence).  Till ALOC 100, the success rates for the equivalence checker 
are fairly high, but the success rates decrease rapidly for larger functions.  
Most of the equivalence failures for large functions are attributed to timeouts, 
and in some cases we could not ascertain the cause of the equivalence 
failure.  Overall our success rates were 72-76%.  This is not very encouraging 
especially given that most of the passes are for smaller functions.



SUCCESS RATE BREAKDOWN
•Success rate across O0-O2: 76%
•Success rate across O0-O3: 72%
•Verification runtime for passing: 
313 s (avg), 8.5 s (median)

•Verification runtime for passing + failing:
 ~1hr (avg), 22 s (median)

•Largest verified function: 4754 ALOC
•Most complex function: 31 edges in the simulation 
relation

In our paper we have a more detailed breakdown of per benchmark and per 
compiler/optimization.  In the interest of time, I will skip that discussion here.



ESTIMATING THE IMPACT OF UB ON OPTIMIZATION

Equivalence checking with modelling: Success rate 
%

Drop in success 
rate

All UB 81 NA

All UB except type based strict aliasing 76 5

All UB except signed integer overflow 77 4

All UB except out-of-bounds variable access 50 31

The drop due to out-of-bounds variable access UB is significantly higher than other UBs
•Large number of global variables

•Register allocation or otherwise reordering of memory accesses are frequent 
and important optimizations

Published in: HVC 2017. 13th International Haifa Verification Conference
Manjeet Dahiya, Sorav Bansal: Modeling undefined behaviour semantics for checking equivalence across compiler 
optimizations. 

Here are some interesting things you can do with such an equivalence 
checking capability.  You can disable the modelling of specific types of UB 
and measure the effect on the success rates on our equivalence checker.  
This exercise provides insight into the relative importance of different types of 
UB.  We find that disabling type-based strict aliasing assumptions reduces 
success rates by 5% from 81 to 76%.  Similarly, disabling signed integer 
overflow assumptions decreases success rates by 4%.  However, disabling 
the out-of-bounds variable access assumptions reduces success rates by a 
whopping 31%.  This makes it clear that out of bounds memory accesses are 
the most consequential to compiler optimizations for C programs.  This is not 
surprising because these latter UB assumptions are used for alias analysis 
which in turn is used for several transformations, including register allocation.



RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18

I will next move to our next major challenge that is on identifying correlation 
between program transitions automatically, towards the construction of a 
bisimulation relation.



EXAMPLE 3: VECTORIZATION

Consider this program.  It involves a for loop on I which reads/writes four 
different arrays A, B, C, D.  Depending on the value of d[I], it updates a[I] 
based on the values of b[I] and c[I].  This program is taken from the Testsuite 
for Vectorizing Compilers.  Unsurprisingly, when this program is compiled, we 
obtain a highly vectored implementation



EXAMPLE 3 : VECTORIZATION

This slide shows the vectorized x86 assembly implementation on the right.  
The vectorized implementation uses xmm registers and opcodes like pcmpgt 
and pblend.  A manual reading of the assembly code is rather difficult.  But 
overall,  this represents a four-unrolling of the loop on the left.



Counter Algorithm : Two Key Ideas

• Correlate “sets of paths” (pathsets) instead of individual paths

• Counterexample-Guided Best-First Search

OOPSLA20

Our algorithm, called Counter, involves two key ideas: (1) correlate sets of 
paths, or pathsets, instead of individual paths.  And (2) 
counterexample-guided best-first search.  I will explain both these ideas 
through examples.



EXAMPLE 4 : CORRELATING PATHSETS

        
a[r1] = d[r1] > 0 ? b[r1] : c[r1] 

a[r1+1] = d[r1+1] > 0 ? b[r1+1] : c[r1+1] 

a[r1+2] = d[r1+2] > 0 ? b[r1+2] : c[r1+2] 

a[r1+3] = d[r1+3] > 0 ? b[r1+3] : c[r1+3] 

Unroll 4 times 

I will simplify the example that we had shown on the previous slide and just 
consider the loop paths of the two programs.  Also let’s assume that there is 
only a two-way if statement in the loop body: the if condition checks the value 
of d[i].  If it is positive, it assigns c[i] to a[i], else it assigns b[i] to c[i].  In the 
assembly program, this single iteration of the loop is unrolled four times and 
vectorized.  The corresponding operation of a single iteration of the assembly 
loop iteration involves updating four different elements of A, namely r1, r1+1, 
r1+2, and r1+3.  The value used to update each of these elements could be 
independently derived from arrays B or C



UNROLLING RESULTS IN AN 
EXPONENTIAL NUMBER OF PATHS

If 3 level control flow and 8 unrolling,  38 = 6561 distinct paths to be correlated

Unroll 4 times 

  - - 
- 16 distinct paths to be correlated

If we unroll this four times, there are actually 2^4 or 16 total number of 
potential paths that a program can take.  In general, if there are k path inside 
the loop body that is unrolled n times, then we have potentially k^n paths that 
may be taken.  For example, for k=3 and n=8, as in our previous example, this 
evaluates to over 6000 paths.  Correlating every path separately would be 
very expensive.



Correlating Pathsets

• Correlating Individual Paths is not Scalable

• Counter identifies a correlation for a set of paths, or pathset, in a 
single step

Instead we identify a correlation for a set of paths, or a pathset, in a single 
step.



Correlating Pathsets

We use a directed-acyclic-graph representation for a pathset, such as the one 
shown above.  This directed acyclic graph encodes the possible paths that 
may be taken.  Even though this represents an exponential number of 
different path possibilities, this graph representation is linear in the size of the 
unroll factor.



Correlating Pathsets

  - - - 

16 distinct paths to be correlated

Yet this linear directed acyclic graph representation exactly represents an 
exponential number of paths, 16 in this example.



Correlating Pathsets

SMT-proof 
obligations

Correlating 
Pathsets

Correlating 
individual paths

Usual-case Linear Exponential

Worst-case Exponential Exponential

Scalable Time out

By representing a pathset using a linear-sized representation, and by 
correlating a pathset in a single step, we are able to make our algorithm 
scalable.  In the usual-case, this approach of correlating a pathset in a single 
step would yield linear-time algorithms, assuming that the transformations 
performed by the compiler can be tackled using reasoning at 
pathset-granularity.  However, the worst-case still remains exponential.  On 
the other hand, the approach of correlating individual paths would be 
exponential even in the usual case.



Key Idea #2
Counterexample Guided Best-First Search

Our second key idea is counterexample guided best-first search



EXAMPLE 5 : LOOP TRANSFORMATIONS

#define LEN 1000
int original() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < LEN ; i ++) {
       if ( i < mid ) sum += c[a[i]];
       if ( i >= mid ) sum += b[i];
    }
    return sum ;
}

int loopSplitting() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < mid ; i ++) {
       if ( i < mid ) sum += c[a[i]];
       if ( i >= mid ) sum += b[i];
    }
    for ( int i = mid; i < LEN ; i ++) {
       if ( i < mid ) sum += c[a[i]];
       if ( i >= mid ) sum += b[i];
    }    
    return sum ;
}

Consider this example program on the left.  Here there is a single loop that 
iterates I from 0 to LEN.  Also, we have mid=LEN/2.  The body of the loop 
does something different for i < mid and something else for i >= mid.

An optimizing compiler typically splits the loop into two loops as shown on 
the right.  The first loop iterates from 0 to mid, while the second loop iterates 
from mid to LEN.  The bodies of the two loops are identical to the body of the 
original loop.



EXAMPLE 5 : LOOP TRANSFORMATIONS
int loopSplitting() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < mid ; i ++) {
       if ( i < mid ) sum += c[a[i]];
       if ( i >= mid ) sum += b[i];
    }
    for ( int i = mid; i < LEN ; i ++) {
       if ( i < mid ) sum += c [a[i]];
       if ( i >= mid ) sum += b[i];
    }    
    return sum ;
}

int loopUnswitching() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < mid ; i++) {
       sum += c[a[i]];
    }
    for ( int i = mid; i < LEN ; i ++) {
       sum += b[i];
    }    
    return sum ;
}

Next, the optimizing compiler transforms both loops using the loop 
unswitching transformation.  Notice that in the first loop, the second 
statement is never executed; and in the second loop, the first statement is 
never executed.  The compiler takes advantage of this fact to get rid of the 
other statement, and also removes the if condition in the body of both loops.



EXAMPLE 5 : LOOP TRANSFORMATIONS

int loopUnswitching() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < mid ; i++) {
       sum += c[a[i]];
    }
    for ( int i = mid; i < LEN ; i ++) {
       sum += b[i];
    }    
    return sum ;
}

int loopUnrolling() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < mid ; i ++) {
       sum += c[a[i]];
    }
    for ( int i = mid; i < LEN ; i +=4) {
       sum += b[ i ];
       sum += b[ i+1 ];
       sum += b[ i +2];
       sum += b[ i +3];
    }    
    return sum ;
}

The next transformation of a vectorizing compiler involves unrolling the 
second loop because it has a nice pattern where consecutive elements in 
memory accessed in a sequence of iterations.



EXAMPLE 5 : LOOP TRANSFORMATIONS
int loopUnrolling() {
    int sum = 0;
    int mid = LEN /2;
    for ( int i = 0; i < mid ; i ++) {
       sum += c[a[i]];
    }
    for ( int i = mid; i < LEN ; i +=4) {
       sum += b[ i ];
       sum += b[ i+1 ];
       sum += b[ i +2];
       sum += b[ i +3];
    }    
    return sum ;
}

A0 : loopVectorizedAndRegAllocated :
A1 :    r1 = 0; r2 = 0;
A2 :       r2 += c [ a [ r1 ]]
A3 :       r1 ++
A4 :       if ( r1 != mid ) goto A2
A5 :    r1 = &b[mid]; r3=& b[LEN]; xmm0 = 0
A6 :       xmm0 += * r1 , .. , *( r1 +12)
A7 :       r1 += 16
A8 :       if ( r1 != r3 ) goto A6
A9 :    xmm0 += ( xmm0 >> 8)
A10 :  xmm0 += ( xmm0 >> 4)
A11 :  r2 += xmm0 [31:0]
EA    :  ret r2

Finally, the unrolled loop body of the second loop is implemented using a 
single vector operation in the assembly code.  Also, in the assembly syntax, 
we have several types of register allocation and other transformations.



End-to-End Equivalence Check
   #define LEN 1000
C0: int original() {
C1:   int sum = 0; 
C2:   int mid = LEN /2;
C3:   for ( int i = 0; i < LEN ; i ++) {
C4:      if ( i < mid ) sum += c[a[ i ]];
C5:      if ( i >= mid ) sum += b[i];
C6:   }
EC:   return sum ;
   }

A0 : loopVectorizedAndRegAllocated :
A1 :    r1 = 0; r2 = 0;
A2 :       r2 += c [ a [ r1 ]]
A3 :       r1 ++
A4 :       if ( r1 != mid ) goto A2
A5 :    r1 = &b[mid]; r3=& b[LEN]; xmm0 = 0
A6 :       xmm0 += * r1 , .. , *( r1 +12)
A7 :       r1 += 16
A8 :       if ( r1 != r3 ) goto A6
A9 :    xmm0 += ( xmm0 >> 8)
A10 :  xmm0 += ( xmm0 >> 4)
A11 :  r2 += xmm0 [31:0]
EA    :  ret r2

The two input programs that are given to our equivalence checker in this case 
are: the original program and the final vectorized assembly program, and it is 
expected to identify an equivalence proof automatically.  Indeed, our 
equivalence checkers works for this pair of examples, and the corresponding 
product program is shown as a CFG (control-flow graph) in the figure below.  
The entry node of the product CFG is (C0,A0).  Then transition from C0 to C3 
(entry to loop head) is correlated with the transition from A0 to A2 in assembly 
(entry to loop head for the first loop).  The loop path C3-C4-C3 is correlated 
with A2-A2 under certain conditions.  Under another mutually exclusive 
condition (e.g., i=mid), the C3-C4-C3 is correlated with A2-A6.  The second 
loop in the product program correlates the loop path A6-A6 in the assembly 
program with four unrollings of C3-C5-C3 (the four unrollings are represented 
using the superscript).  Finally if the assembly program exits from A6, the C 
program also exits from C3 albeit after making four more executions of the 
loop body.



Incremental Construction of the Product CFG

So how do we construct this product program, or product CFG (i.e., CFG of a 
product program).  We do this incrementally.  We already the start nodes of 
both programs, i.e., C0 and A0, and so we correlate them first to add a node 
(C0,A0) to the product CFG.



Incremental Construction of the Product CFG

We then identify a correlation for the assembly edge A0-A2.  Here the 
correlation indicates that if any of the paths in the pathset A0-A2 is taken in 
assembly, then some path in C0-C3 is taken in the C program.  Also, we relax 
the bidirectional condition: the condition holds only one way.  For example, if 
one of the paths in C0-C3 is taken in the C program, it is not necessary for 
one of the paths in A0-A2 to be taken.  This allows a pathset in the C program 
to be correlated with multiple pathsets of the assembly program.



Incremental Construction of the Product CFG

Infer Invariants at 
(C3,A2)

Use off-the-shelf invariant inference algorithms to infer affine, equality 
and inequality invariants on bitvectors and memory states

Based on the pathset correlations, we can also correlate the end-points and 
add a new node, (C3,A2).  Further, we use an off-the-shelf invariant inference 
algorithm to infer equality, inequality, and affine invariants.  The only 
difference between prior work on invariant inference and our setting is that we 
infer these invariants on the product program.  In contrast, most prior 
invariant inference work has tackled individual programs.  The product 
program setting has no effect on the operation of the invariant inference 
algorithm.



Incremental Construction of the Product CFG

Relax Invariants 
at (C3,A2)

Then after each correlation, we relax invariants at the destination node of that 
correlation.



Incremental Construction of the Product CFG

We continue this incremental construction process.



Incremental Construction of the Product CFG

Infer Invariants at 
(C3,A6)

Inferring invariants at any new node that is added.



Incremental Construction of the Product CFG

Relax Invariants 
at (C3,A6)

And relaxing invariants using any new edge that is added



Incremental Construction of the Product CFG

Check equivalence of 
return values under 
inferred invariants

Finally, we check the equivalence of the return values (observables) under the 
inferred invariants.  If the equivalence can be proven under the inferred 
invariants, we have obtained a proof of observable equivalence.



SEARCH SPACE

Of course, the incremental construction I described earlier seems too easy to 
be true.  In reality, we don’t know which assembly pathset to correlate with 
which C program pathset.  For example, I could potentially correlate A0-A2 
with C0-C2-C5



SEARCH SPACE

Or here is another correlation possibility that correlates C0-C2-C5-C7 with 
A0-A2



SEARCH SPACE

And so on...



SEARCH SPACE

If I pick one of these possibilities, then I have a similar choice at the next step.



SEARCH SPACE

Exhaustive search would take years to compute equivalence

Overall, this is an exponential search space and an exhaustive search would 
take years to complete even for small examples.



SEARCH SPACE

Exhaustive search would take years to compute equivalence

Prior work on data driven 

correlation would fail to 

construct this required 

product-CFG

No prior work before ours can handle the types of transformations that I 
described using the previous example.



Counterexamples

Infer Invariants at 
(C3,A2)

During invariant inference, we make potential GUESSes for 
invariants.  We try to prove a GUESS using an SMT Solver.

● If the GUESS is provable, we have found an invariant.
● If not, the SMT solver returns a counterexample

Counterexamples identified at (C3,A2) during 
invariant inference

A central idea that we use in our algorithm is the idea of Counterexamples.  
During invariant inference, we make potential GUESSes for a possible 
invariant.  We then check a GUESS by trying to prove that it holds on the 
incoming edges.  If it holds on all incoming edges, then we have found an 
invariant.  If it does not hold on some incoming edge, then we obtain a 
counterexample from the SMT solver



Counterexamples

Infer Invariants at 
(C3,A2)

A counterexample at a node is a potential concrete machine state 
that may occur at that particular node during execution.

The concrete state would involve valuations for (related) variables of 
both C and A.

Counterexample1: I=5, R1=5
Counterexample2: I=1003, R1=1003

A counterexample at a node represents a potential concrete machine state 
that may occur at that particular nodeduring execution.  For a product CFG, 
this would involve valuations of variables for both programs C and A.  
Moreover, because the product program is executing in lockstep, we can 
expect the variables of the two programs to have some relations, e.g., I in C is 
always equal to R1 in A for all the counterexamples.



COUNTEREXAMPLE GUIDED BEST-FIRST 
SEARCH

• Counterexample-Guided Pruning

The two primary ideas that allow us to navigate this large search space are: 
(1) counterexample guided pruning.  Using the counterexamples, we can 
potentially determine that some correlations are obviously incorrect if we find 
that the counterexample produces inconsistent behaviour on the two 
machines.  I will show an example of an inconsistent behaviour.



COUNTEREXAMPLE GUIDED BEST-FIRST 
SEARCH

• Counterexample-Guided Pruning
• Counterexample-Guided Ranking

Ranked 
higher

(2) Counterexample-Guided Ranking.  We use a counterexample guided 
heuristic to rank some potential correlations higher than the other.  Depending 
on the behaviour of the counterexamples, we can identify that some 
candidates are more promising than others.  I will show this in more detail 
too.



Counterexample Guided Best-First Search

● Counterexample Guided Pruning

I will first show an example for counterexample guided pruning



COUNTEREXAMPLE EXECUTION

i=0, r1=0, 
b[0] = 5, c[0] = 10

Consider this counterexample at (C2,A2) shown in the green box. Also 
consider this product-CFG edge C2-C3,A2-A2.  Let’s say that C2-C3 
executes the statement a[i]=c[i].  Similarly, A2-A2 executes a[r1]=b[r1].  Now, 
we will interpret both these operations of the product-CFG edge on the 
counterexample at (C2,A2).  Based on this, we will get a counterexample at 
(C3,A2), the destination node of this product-CFG edge.



COUNTEREXAMPLE EXECUTION

i=0, r1=0, 
b[0] = 5, c[0] = 10 a[0] = 5

a[0] = 10

In this example, the evaluation of the edge on the green counterexample 
would cause different values for the “A” array.  On the C program side, at 
(C3,A2), we would have a[0] evaluated to 10.  Whereas on the assembly side 
a[0] would evaluate to 5.



Counterexample Guided Pruning

i=0, r1=0, 
b[0] = 5, c[0] = 10 a[0] = 5

a[0] = 10

 HeapC ≠  HeapA

This effectively means that the heaps would be unequal at (C3,A2).  



Counterexample Guided Pruning

i=0, r1=0, 
b[0] = 5, c[0] = 10 a[0] = 5

a[0] = 10

 HeapC ≠  HeapA

PRUNE AWAY THIS CANDIDATE 
CORRELATION

If we expect the heaps to be equal at all correlated nodes, then we can easily 
prune this candidate correlation because it does not produce identical heap 
states at the destination node of the product-CFG edge.



Counterexample Guided Best-First Search

● Counterexample Guided Pruning
● Counterexample Guided Ranking

Next I will show an example for counterexample-guided ranking



Infer Invariant Covers for Executed 
Counterexamples

Infer 
Invariants

Infer 
Invariants

These circles represent counterexamples identified for two different 
correlations at the destination node (C2,A2).  Based on the counterexamples, 
we try and identify the possible affine relations between the variables of the 
two programs.



Infer Invariant Covers for Executed 
Counterexamples

sum = r2
j=r3
i = r1

sum = r2+r1
i = r1+1

Let’s say that the inferred relations from the counterexamples are: 
sum=r2,j=r3,i=r1 for the first correlation; and sum=r2+r1,i=r1+1 for the second 
correlation.



Infer Invariant Covers for Executed 
Counterexamples

sum = r2
j=r3
i = r1

sum = r2+r1
i = r1+1

Ranked 
higher

Rank based on Number of Live 
Assembly Values Correlated through 

the Inferred Invariants

One of them has affine relations for three different assembly registers, namely 
r1, r2, and r3.  Whereas the other correlation has affine relations only for r1 
and r2, but not for r3.  We rank the first correlation higher because it relates a 
larger number of assembly registers.  This is our ranking heuristic.  We find 
that this performs remarkably well in practice, to identify the most promising 
candidate at each step of the incremental product-CFG construction.



Counter Evaluation

Equivalence checker
based on Counter algorithm

=

Unoptimized 
LLVM IR

Optimized x86 
assembly codeCompiler

(-O3 –msse4.2)

GCC-8 / Clang-11 / ICC-18.0.3

I will now discuss the experimental results of applying the Counter algorithm 
to C programs and their x86 assembly counterparts generated through three 
different optimizing compilers, GCC, Clang, and ICC, with O3 and SSE4.2 
vectorization transformations enabled.



Counter Evaluation

• TSVC Benchmarks : TestSuite for Vectorizing 
Compilers

• 208 function-compiler pairs tested

• 175 function-compiler pairs pass

We took C programs from the TSVC benchmarks, which being a testsuite for 
vectorizing compilers, represents one of the hardest set of equivalence 
checking problems because compilers produce very aggressive 
transformations for these programs.  Our tool is able to successfully compute 
equivalence for 175 of the 208 function-compiler pairs tested in this testsuite.  
This is much larger than any previous equivalence checking effort for these 
benchmarks.



Counter Evaluation
• TSVC Benchmarks : TestSuite for Vectorizing Compilers

• 208 function-compiler pairs tested

• 175 function-compiler pairs pass

• LORE Repository for Loop Nests

• 27 different vectorizable loop patterns, all pass

• 16 with multiple potentially-nested loops

• 6 where multiple control flow paths in the loop body

• 17 use multi-dimensional arrays

We also tested on the LORE repository of loop nests which contain 27 
different vectorizable loop patterns.  Our equivalence checker is able to 
compute equivalence for all of these patterns successfully.



Bugs Discovered
https://compiler.ai/bugs

• Bug in ICC-16.03 involving integer overflow

• Bug in ICC-16.03 related to incorrect reordering of memory accesses

• Bug in GCC-4.8 involving incorrect reordering of memory accesses

• Bug in Qemu machine emulator that is shipped with Linux/KVM hypervisor

• Three bugs in DietLibc related to missing unsigned-to-signed typecasts

• Bug in the Yices SMT Solver related to incorrect query result

Over the years, we have found several bugs in compilers and other software 
such as the Qemu binary translator, a C library and an SMT solver.  All these 
bugs were found using our equivalence checker --- in all these cases, when 
an expected equivalence proof failed, we tried to identify the reason for the 
failure.  We would typically expect a shortcoming of our tool, but sometimes 
we found that the bug was in the program pair being tested.  Except the GCC 
bug, all other bugs were previously unknown and were fixed immediately 
upon reporting by us.  You can find more details on these bugs at 
https://compiler.ai/bugs

https://community.intel.com/t5/Intel-C-Compiler/icc-16-0-3-not-respecting-fno-strict-overflow-flag/td-p/1078194
https://community.intel.com/t5/Intel-C-Compiler/icc-16-0-3-not-respecting-no-ansi-alias-flag/td-p/1075325
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68480
https://mail.gnu.org/archive/html/qemu-devel/2014-06/msg02675.html
https://compiler.ai/bugs/dietlibc_bug_report.pdf
https://github.com/SRI-CSL/yices2/issues/146


A central effort in making this equivalence checking possible is improving its 
scalability through efficient encoding and discharge of proof obligations.  This 
effort involves a lot of engineering and it is usually not possible to explain all 
the different optimizations we perform in a single talk like this.  Some of these 
approaches are discussed in our SAT18 paper.  But I will skip this discussion 
in the interest of time.

RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18



Skipped

QUERY DECOMPOSITION

Most proof obligations can be expressed as Hoare triples

{Pre} w {src=dst}

Which get lowered to

Pre => WP_w(src=dst)

Becomes easier if  WP_w(src=dst) is small



Skipped

QUERY DECOMPOSITION

Before After
If we can prove:

                Pre => (E3=E7)
                Pre => (E4=E8)

src srcdst dst

Counterexample-Guided Algorithm to Identify Equality Pairs



Finally, I will briefly motivate some interesting problems that we are currently 
working on

RESEARCH CHALLENGES

• Modeling Undefined Behaviour

• Identifying Correlations between Program Transitions

• Efficient Encoding and Discharge of Proof Obligations

• LLVM UB / OCaml vs. C

APLAS17, HVC17

OOPSLA20

Ongoing

SAT18



LLVM has weaker forms of undefined behaviour, such as undefined values 
and poison values.  These non-deterministic values make some of the most 
basic transformations invalid.  For example 2*y can no longer be 
strength-reduced to y+y.  This is highly non-intuitive for human programmers 
and prior work has addressed this problem in limited settings of loop-free 
code or of bounded translation validation.  We are interested in identifying 
translation validation algorithms for code with loops in the presence of such 
LLVM-style UB.

LLVM UB AND COMPILER 
TRANSFORMATIONS

fooSRC() {
  …
  x = 2*y;
  …
}

fooTGT() {
  …
  x = y + y;
  …
}

fooSRC() {
  …
  x = y+y+y;
  …
}

fooTGT() {
  …
  x = 4*y - y;
  …
}



As I said earlier, the most interesting  problem in this space is the automatic 
identification of equivalence proofs between a higher level of abstraction, 
such as a functional program, and a lower level of abstraction, such as a C 
program.  This example shows a list implementation in OCaml on the left and 
C on the right.  The C implementation has several implementation details like 
pointers, allocation, struct, etc.  People have previously completed such 
equivalence proofs manually using proof assistants.  However manual proofs 
are usually cumbersome and thus have low adoption.  Automatically 
identifying equivalences would be a desirable capability - we are trying to 
generalize our bisimulation framework to these settings.

OCAML  VS.  C



To conclude, (read from the slide).

CONCLUSIONS
• Equivalence Checking is a fundamental problem with important applications in

• Translation Validation, Push-button Verification, Program Synthesis and 
Superoptimization

• Much progress has been made over the past 20+ years

• Invariant inference, automatic correlation, UB modelling, assembly-level modelling, …

• Several problems are still open, some within shooting distance . . .

• Support for address-taken local variable modelling, scalability improvements, LLVM, …



Even after decades of research, formal verification tools have not become 
mainstream in the software development pipeline. We think that this is set to 
change soon.  With the aim of “innovation to industry”, we have founded a 
deep-tech startup based on our research that develops certified compilers 
and tools for source and binary code analysis.  We are looking for bright 
engineers who are passionate about the space of compilers and/or formal 
verification to join us.

COMPILERAI
https://compiler.ai

• Deep-tech start-up based on our research in the area of equivalence checking.

• Building the first certified compiler that uses automatic translation validation as the 

sole certification technique for Indian Air Force.

• Tools for Source and Binary executable code analysis.

https://compiler.ai/demo


Thank you and I am happy to take questions.  You can try the equivalence 
checker for yourself at compiler.ai/demo

THANK YOU
QUESTIONS?

See equivalence checking demo at 
https://compiler.ai/demo

https://compiler.ai/demo

